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ABSTRACT Recent advances in Generative Adversarial Networks (GANs) have produced synthetic images
with high visual fidelity, making them nearly indistinguishable from human-created images. These synthetic
images referred to as deepfakes, have become a major source of misinformation due to social media.
Technology is advancing rapidly, so reliable methods for distinguishing real from fake images are needed.
The current detection mechanisms require image forensics tools such as error level analysis (ELA), and
clone detection to detect manipulated images. These approaches are limited because they require forensics
expertise to use, are manual in application nature, and are unscalable, creating a need for a framework
for a scalable tool that experts and non-experts can use to combat the spread of manipulated images and
preserve digital visual information authenticity. We approach this problem with a multi-model ensemble
framework using the transfer learning method to effectively detect fake images. The proposed approach
named Multi-Model GAN Guard (MMGANGuard)integrates four models into an ensemble framework to
identify GAN-generated image characteristics to improve deepfake detection. The Gram-Net architecture,
ResNet50V2, and DenseNet201 models are used with co-occurrence matrices using transfer learning for
MMGANGuard. Through comprehensive experiments, the proposed model demonstrates promising results
in detecting the deepfake with high accuracy on the StyleGAN dataset. For automated detection of deepfake-
generated images, the proposed model exceeded 97% accuracy, 98.5% TPR, 98.4% TPR, and 95.6% TPR
in these evaluations, eliminating the need for manual assessment which is promising for future research in
this domain.

INDEX TERMS
Deep fake, data analytics, deep learning, GANs, StyleGAN, detection, multi-model.

I. INTRODUCTION enough to create deepfake [4], depending on the analysis

The rise in the usage of smartphones and the widespread
availability of low-cost digital devices like mobile phones,
laptops, and tablets has abruptly increased multimedia
consumption and the availability of digital images [1].
Advancement in artificial intelligence (AI) [2] has provided
immense benefits to humankind but it also has its drawbacks.
Al models like (GANs) [3] have now been intelligent
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of large amounts of data to learn how to generate new
examples that are excruciatingly accurate in comparison
with the original thing as shown in Figure 1. The field
of machine learning has witnessed notable advancements,
particularly in the development of sophisticated algorithms
capable of efficiently manipulating multimedia content to
disseminate disinformation on social networking platforms.
The term deepfake is coined from the technological frame-
work known as deep learning, which encompasses a form
of artificial intelligence [S5]. The utilization of deep fakes
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FIGURE 1. The image on the left is real while the image on the right is
fake.

in contemporary society has given rise to their application
for unethical and illicit intentions, such as the fabrication
of counterfeit profiles, the production of falsified images,
and the dissemination of unfounded rumors through social
media platforms. The prevalence of targeted campaigns
has significantly increased in contemporary times, thereby
raising concerns regarding potential adverse consequences.
Misinformation [6] can be categorized as information that
is factually incorrect or misleading, disseminated without
the intention of deceiving. On the other hand, disinforma-
tion [6] refers to a deliberate tactic employed to manipulate
individuals by fabricating and spreading false information to
achieve predetermined political or financial objectives [7].
As per expert analysis, there is a projection that the deliberate
dissemination of distorted news through various channels will
increasingly serve as the primary means to influence public
opinion or conceal information. At present, the dissemination
of false information is facilitated by the extensive utilization
of social media platforms.

Deepfake has a long history of being used to make
famous people controversial among their supporters. Deep-
fake images can be utilized to harm people’s reputations,
such as character assassination of well-known personali-
ties to defame them, trying to blackmail individuals for
monetary gain, or causing religious or political unrest
by targeting famous personalities with fake images [8].
Deepfake technology/applications, such as FakeApp [9],
FaceSwap [10], DALL-E [11], and Midjourney [12], are
now widely available, and anyone with no prior knowledge
of computer science may generate a fake video or image
in seconds. Furthermore, YouTube provides easy access to
open-source projects on GitHub. Many experts believe that
as technology advances, deepfakes will become considerably
more sophisticated, causing more substantial dangers to the
public, such as election interference, political conflict, and
increased criminal activities.

In recent times, the emergence of deepfake technology
has brought both awe and apprehension. While deepfakes
have showcased their potential for creative expression, it is
crucial to acknowledge the unsettling misuses associated with
these manipulated images. This article aims to shed light
on the various dangers posed by deepfake images and the
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growing concerns surrounding their malicious exploitation.
They can be used in a variety of ways for malicious intent like
Exploitation and Personal Harassment, Fraudulent Activities
and Scams, and Political Manipulation [13], [14].

There have been many attempts to resolve this issue with
different approaches [5] including manual and automated
solutions. The manual detection of deepfake content requires
an extensive amount of knowledge to operate such tools
reducing the broader scope to ordinary people. Some
automated techniques for fake image detection have also
been proposed lately which use several methods such as
detecting an image using the pupil of the eye [15], which
comes with several steps of masking and filtering the eye
area which detects the irregularity in the pupil but this
approach is prone to noise and depends on the specific angle
of face to detect the eyes. Other techniques like Robust
Hashing [16] are also being proposed but the main problem is
they lose their performance when tested on multiple datasets
of GANS . To resolve this problem effectively in an automated
fashion, we propose a multi-model ensemble framework
named MMGANGaurd as shown in Figure 2

The Multi-Model GAN Guard aims to develop a frame-
work that integrates advanced techniques such as Global
Texture Enhancement [17], [18] Co-occurrence matrices on
RGB channels [19], [20], [21], DenseNet201 [22], [23],
and ResNet5S0V2 [24], [25]. The primary objective is to
detect StyleGAN-generated [26], [27], images and provide a
prediction indicating whether the image is fake or real. The
implementation of this framework can bring several benefits,
including:

o Debunking fake images shared on social media plat-
forms, helping to reduce the spread of misinformation
and misleading content.

o Preventing targeted campaigns aimed at defaming
or harming individuals by identifying and exposing
manipulated images.

o Detecting and addressing controversial fake images,
particularly those that involve the exploitation and
potential blackmailing of women, thus promoting safety
and protecting individuals from harm.

By leveraging the combined power of these techniques, the
approach aims to contribute to a more trustworthy and secure
digital environment, fostering transparency and safeguarding
individuals from the negative consequences of fake images.
The contribution of the proposed model is as follows:

1) We propose a multi-model approach using ensemble
modeling to address the crucial issue of deepfake
detection which is a novel and unique idea.

2) The proposed model leverages the transfer learning
method to boost the performance of the detection.
We use four pre-trained models trained on a Style-
GAN [26] dataset and fine-tune them to come up with
an ensemble model.

3) We provide a complete prototype of the ensemble
model with a soft voting approach to boost the detection
accuracy using different datasets.
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FIGURE 2. Flowchart MMGANGUARD.

4) We demonstrate the model’s strength and scalability to
deepfake detection using the StyleGAN dataset [26].
The proposed framework represents a robust perfor-
mance to address the issue with good generalizability
and adaptability to the problem.
The rest of the paper organization includes a detailed
summary of related work followed by a discussion on the
MMGANGuard in the proposed methodology section. This
section provides a detailed overview of the architecture and
training process of the proposed model. Following this,
a comparative evaluation of the model is presented in the
implementation and experiments section. Finally, the paper
concludes by outlining open gaps for future research.

Il. RELATED WORK

Identifying fake faces from real ones has become a
challenging problem as more development is happening
in the GANs enhancement but there has been a lesser
focus on identifying real and fake images generated by
GANSs. The authors in [17] have discussed state-of-the-art
techniques for detecting fake faces generated from multiple
GAN architectures like FaceGAN, StarGAN, DRAGAN,
and PGGAN, etc. The paper focuses on a texture-based
technique for detecting fake and real images by calculating
global texture statistics as a robust measure for fake and
real faces. Different experiments have been performed on
different techniques. A model called GramNet architecture
has been introduced which acts as a backbone for CNN
to detect the texture differences between a fake and a real
face and outperforms all the previous techniques on different
GANSs generated datasets [17].

Another study proposed in [28] introduced a method
called fake images discriminator (FID) for detecting that
GAN-generated fake pictures make use of strong spectral
correlation, which can be defined as the correlation among
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the three-color components in finite neighborhood pixels
of the images. There are two approaches mentioned for
detecting fake images passive forensics and active forensics.
The suggested approach comes under passive forensics which
involves automated detection of images based on certain fea-
tures, this begins by converting the color picture into its three
component colors of RGB. Then on the RGB components,
Discrete wavelet transform (DWT) is applied. The suggested
FID approach demonstrates remarkable performance on faces
generated by StyleGAN2. Additionally, the FID approach
is quite resilient against the four most typical perturbation
assaults which involve compression, adding blur, noise, and
resizing. This work hasn’t performed more experiments with
additional datasets which can be termed as one of the
drawbacks [28].

Similarly, authors in [19] proposed a framework by
using a mix of co-occurrence matrices and deep learning
to recognize GAN-produced fake pictures. The paper used
a deep convolutional neural network (CNN) architecture
to extract co-occurrence matrices on three color channels
in the pixel domain and trained a model. The proposed
method is promising and achieves more than 99 percent
classification accuracy in both datasets, with more than
56,000 pictures based on unpaired image-to-image transla-
tions using cycleGAN [29]) and face attributes/expressions
using StarGAN [30].

Chih-Chung Hsu et, al. proposed to recognize computer-
generated pictures quickly and accurately. Simply learning
a binary classifier is difficult due to the challenges in
identifying common discriminative characteristics for assess-
ing the fake pictures created by various GANs. To solve
this problem, the authors use contrastive loss to find the
characteristic properties of synthetic pictures created by
various GANs and then combine a classifier to recognize
such computer-generated images. The suggested technique
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effectively recognized 94.7% of fake pictures created by
multiple state-of-the-art GANs [31].

Another study in [16] proposed a novel approach
for detecting fake images using robust hashing. While
various hashing methods have been developed for image
retrieval, the authors specifically chose this approach for
its remarkable resilience against image compression and
resizing. Furthermore, it exhibits high sensitivity to the
manipulations typically employed in generating fake images.
Particularly, when an original hash code is employed for
compression, the suggested approach outperforms standard
methods in detecting fake or tampered photos. However, it is
worth noting that the approach has not been tested on multiple
datasets generated by GANs, which may potentially impact
its overall performance [16]. The authors in [32] an approach
for detecting a GAN-generated image through convolutional
neural networks. They proposed an architecture for detecting
neuron behavior to identify fake faces. Different experiments
were performed, and he concluded that by monitoring
neuron behavior we can detect a fake face. Mean neuron
coverage (MNC) is proposed for capturing the layered neuron
activation behavior. This approach has proven good against
the four common perturbation attacks such as compression,
resizing, light, and noise but one of the drawbacks of this
approach is it may not perform well on the random image
from the latest GANs like StarGAN-v2 [32].

Guo et al. [15] proposed a method to detect faces generated
by GAN models based on irregular pupil shapes. The authors
highlight that GAN-generated faces often lack physiological
constraints, leading to distinctive features in the pupils.
They introduce a technique to automatically extract pupils
from both eyes and calculate the boundary intersection-over-
union (BIoU) scores. These scores are used to assess and
identify if the pupil shapes resemble ellipses, thus revealing
GAN-generated faces. The proposed method achieved an
impressive AUC of 0.94, indicating the effectiveness of
using irregular pupil shapes as anomalies for identifying
GAN-generated faces [15], [33].

lIl. MMGANGUARD

The MMGANGaurd solution is a novel framework that
leverages an ensemble approach integrating four different
models that each process the image independently. We use the
pre-trained models of DenseNet, GramNet, Co-occurrence
matrices, and ResNet to come up with an ensemble model
that uses soft voting to finalize the binary classification for
a particular data observation. We focus on the strengths of
each model for its robustness and adaptability to combine and
fine-tune it for better detection accuracy. Figure 3 presents an
overview of the system architecture in which four different
models are designed to detect fake images. The Gram-Net
Model utilizes Gram-Net Architecture, which captures the
global texture statistics of an image. By analyzing these
statistics, the model generates a prediction score. The Co-
Occurrence Model, on the other hand, focuses on exam-
ining the relationships between pixels within the image to
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contribute to the overall assessment of its authenticity. The
ResNet50 Model is a deep residual network that performs
a more in-depth analysis of the image, allowing for a more
comprehensive evaluation. Lastly, the DenseNet201 Model,
known for its dense connections, adds further depth to the
image analysis, enhancing the model’s ability to detect fake
images. Each of these models brings its approach to the
task, contributing to the overall combined model score for
predicting real and fake images The weighted average is
computed by the following equation:

MMGANGuard = ResNet * 2 + DenseNet * 6
= 4+(CoOccurrence + GramNet) x 0.1

ey

As per Figure 3, a set of weights is defined: [2, 6,
0.1]. These weights determine the relative importance of
each model’s prediction in the outcome. The ResNet model
weights 2, the DenseNet model has a weight of 6, and the
combined predictions from the Co-Occurrence and GramNet
models are given a weight of 0.1. To obtain the MMGAN-
Guard prediction, the individual predictions from each model
are multiplied by their respective weights. The weighted
predictions from the Co-Occurrence and GramNet models
are summed together. Then, all the weighted predictions are
averaged by dividing them by 4 (the total number of models)
to normalize the results. Finally, the result is generated to
determine the class with the highest probability from the
predictions. The model also calculates the confidence level as
a percentage by dividing the value of the predicted class by
the sum of all classes’ values and rounding it to two decimal
places.

Comparing MMGANGuard to existing deepfake detection
methods in terms of computational efficiency and scalability
is essential for assessing its practical applicability. MMGAN-
Guard’s efficiency can be evaluated based on factors such as
inference speed, memory usage, and model size. Compared
to traditional deepfake detection methods that may rely on
complex handcrafted features or computationally intensive
algorithms, MMGANGuard, with its fusion of deep learning
architectures and transfer learning, offers advantages in terms
of computational efficiency. By leveraging pre-trained mod-
els like ResNet50V2 and DenseNet201, MMGANGuard can
achieve high detection accuracy with reduced computational
resources and inference time. Additionally, the use of transfer
learning allows MMGANGuard to adapt and generalize
well to new datasets or scenarios, enhancing its scalability.
Furthermore, MMGANGuard’s modular design facilitates
easy integration with existing deepfake detection pipelines,
making it accessible and adaptable for deployment in real-
world applications.

MMGANGuard, the combination of Gram-Net,
ResNet50V2, DenseNet201, and co-occurrence matrices,
represents a comprehensive approach to deepfake detection
within the StyleGAN dataset. Gram-Net’s specialized
architecture excels in capturing style and texture variations,
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complemented by ResNet50V2’s depth and DenseNet201’s
dense connectivity, which together enable the extraction
of intricate hierarchical features essential for discerning
manipulated content. Leveraging transfer learning, these
models benefit from pre-trained weights on diverse datasets,
enhancing their generalization capabilities. Furthermore, the
integration of co-occurrence matrices provides additional
insights into spatial relationships within images, enriching
the model’s understanding of textural patterns and anomalies.
Through this synergistic fusion of diverse architectures and
feature representations, MMGANGuard achieves robust and
reliable detection of deepfake images, bolstering the integrity
and authenticity of digital media content.

Qualitative examples of correctly identified deepfakes,
false positives, and false negatives provide valuable insights
into the performance of deepfake detection models. Correctly
identified deepfakes showcase the model’s ability to discern
subtle anomalies and manipulation artifacts, such as unnat-
ural facial expressions and misaligned features. Conversely,
false positives highlight instances where authentic images are
incorrectly flagged as deepfakes, often due to high visual
fidelity or resemblance to synthetic content. False negatives,
on the other hand, represent deepfakes that evade detection,
often employing advanced manipulation techniques or subtle
alterations that elude the model’s detection capabilities.
By analyzing these examples, researchers can identify
patterns, challenges, and potential areas for improvement
in deepfake detection algorithms, ultimately enhancing the
accuracy and reliability of these systems in real-world
scenarios.

MMGANGuard is flexible in terms of adapting to new
patterns from GANs and we can set the weights of different
models to increase performance on certain GAN types and it
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is scalable. Currently, we have to define the weights manually
for each model based on how well it performs on the data set,
and moving forward in the future we will work on assigning
weights based on the Al model so that it will automatically
decide the weights. Another limitation is that GANs are
rapidly evolving and every GAN architecture has a separate
set of features so it won’t perform well on unknown GAN
data.

A. ARCHITECTURE OVERVIEW

Figure 3 describes the system architecture of MMGANGuard
designed to detect deepfake images. The process allows users
to upload images for analysis, processes these images using
a combination of four different models, and provides an
evaluation of whether the image is fake or real. The User
Interface layer is the front end of the system where users
can interact with the system. It consists of an input box for
image upload and a ‘Detect’ button to initiate the deepfake
detection process. Once the user uploads an image and clicks
the ‘Detect’ button, the image is sent to the Data Layer for
further processing. Once the classification is complete, the
result is sent back to the user interface layer for display
to the user. This deepfake detection framework provides
a user-friendly interface for users to upload and analyze
images using advanced deep-learning models. By utilizing
the strengths of the Gram-Net Model, Co-Occurrence Model,
ResNet50 Model, and DenseNet201 Model, it delivers a
comprehensive analysis for deepfake detection.

B. MODELS EXPLANATION
MMGANGuard is developed with the assistance of the
following four models: Co-occurrence Matrix, Global
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MMGANGuard’s decision-making process relies on iden-
tifying specific characteristics indicative of GAN-generated
images, which contribute to its interpretability. For instance,
the model may focus on subtle inconsistencies in facial
features, such as unrealistic proportions or blending artifacts,
which are common in deepfake images but less prevalent in
authentic ones. Additionally, MMGANGuard may analyze
texture patterns and style variations that deviate from natural
image distributions, leveraging insights from Gram-Net and
co-occurrence matrices to identify anomalous regions within
the image. By elucidating these underlying characteristics,
MMGANGuard provides users with insights into why certain
images are flagged as potential deepfakes, enhancing the
transparency and interpretability of its results.

1) CO-OCCURRENCE MATRICES

The function takes an array of images, X, and computes
co-occurrence matrices for each image. These matrices
measure the similarity between pixels in the image. The
function creates a 3D array with the same dimensions as X,
representing each image with its RGB channels and pixel
dimensions. It iterates over each image, channel, and row,
creating a 2D histogram of adjacent pixels. This histogram
is then normalized and added to the co-occurrence matrix
for the current image and channel. The resulting 3D array
of co-occurrence matrices is passed to a convolutional neural
network (CNN) for further processing. Refer to Figure 4 for
a visual representation of the model.

The CNN consists of convolutional, pooling, fully con-
nected, and output layers. It is trained using input data
and labels, and evaluated using test data and labels. The
model optimization employs binary cross-entropy as the loss
function and the Adam optimizer with a learning rate of
0.001. The model achieves an accuracy of 97% on the dataset.

2) GLOBAL TEXTURE STATISTICS: GRAM-NET MIODEL

Gram-Net, outlined in Figure 5, introduces Gram Blocks into
the ResNet architecture. These blocks are strategically placed
before each down-sampling layer and at the input image.
They effectively integrate global image texture information
across different semantic levels. Each Gram Block encom-
passes key elements such as a dimension-aligning convolu-
tional layer, a Gram matrix calculation layer for extracting
comprehensive texture features, a pair of conv-bn-relu layers
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for refining representations, and a global pooling layer for
optimal alignment with the ResNet backbone. The Gram
matrix calculation is as follows:

Gif' =X Fi' Fi! @)

In Equation 2, F! denotes the I-th feature map that has been
transformed into a vectorized spatial dimension. Meanwhile,
Fii! signifies the kth element in the ith feature map of layer 1.
The subsequent demonstration illustrates the effectiveness of
the Gram matrix as a robust descriptor for capturing global
or extensive-range texture characteristics. The Gram-Net
model is a powerful deep-learning architecture designed for
image classification tasks. It is composed of various layers,
including convolutional layers, batch normalization layers,
pooling layers, and dense layers. As shown in Figure 6:

The model takes 100 x 100 images with 3 color channels
as input. It begins with a convolutional layer, Conv 7 x 7 x 1,
followed by batch normalization and ReLU activation. A max
pooling layer reduces spatial dimensions. Residual blocks
with two convolutional layers capture hierarchical features.
Gram matrices are used to capture style information, obtained
through convolutional layers and processed further. Global
average pooling aggregates spatial information. Additional
convolutional layers process the gram matrices and style
information. Dense layers handle classification by concate-
nating features and producing the final output.

When tested on the 140k Real and Fake Face dataset [34],
the model achieves an accuracy of 93.95%. With approxi-
mately 13 million trainable parameters, Gram-Net is a pow-
erful model for image classification. Its architecture allows it
to capture both spatial and style information, facilitating the
learning of rich representations from images [17].

3) RESNET50V2 MODEL

The ResNet50V2 model is used for feature extraction. It is
loaded without the top layer to allow for the addition
of custom classification layers suitable for our binary
classification task. The output of the ResNet5S0V2 model
is then passed through a Global Average Pooling layer,
flattened, and passed through two Dense layers with ReLU
activation. The final layer is a Dense layer with two nodes
(corresponding to our classes: real and fake), which uses
a softmax activation function to yield the classification
output this model has 23.5 million parameters. The model
is compiled using the Adam optimizer and categorical
cross-entropy as the loss function. We monitor several
metrics during training, including categorical accuracy,
precision, recall, and the area under the Receiver Operating
Characteristic and Precision-Recall curves.

The provided model explained in Figure 6 is a deep learn-
ing architecture designed for binary image classification.
It consists of an input layer, a ResNet50V2 layer, a global
average pooling layer, a flattened layer, dense layers, and
a classification layer. The first layer, ResNetS0V2, takes
features from the images that are fed to it. The features are
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then put through pooling and dense layers to be classified.
The model has a total of 24,679,810 parameters, with
24,634,370 being trainable. Training on the 140k Real and
Fake Faces [34] dataset achieves an accuracy of 98.26%.
In summary, this model employs ResNet50V2 for feature
extraction and dense layers for classification, and it achieves
high accuracy in differentiating between real and fake images.

4) DENSENET201 MODEL

The DenseNet201 model is based on the original DenseNet
architecture proposed by Huang et al. [22] DenseNet
introduces the concept of dense connections, where each
layer is connected to every other layer in a feed-forward
fashion. This connectivity pattern improves gradient flow,
encourages feature reuse, and reduces the number of
parameters. DenseNet201 extends this idea by introducing a
deeper network with 201 layers, including dense blocks and
transition layers. Overview of the model is shown in Figure 8
below.
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The architecture shown in Figure 7 comprises three dense
blocks. Between each pair of adjacent blocks, there exist
transition layers. These transition layers play a crucial role
in altering the feature-map sizes using convolution and
pooling operations. By incorporating these transition layers,
the model can effectively manage the flow of information
and adapt the feature-map sizes to facilitate efficient learning
and information propagation throughout the network. This
approach allows DenseNet to leverage the benefits of dense
connections and adaptively adjust the feature dimensions,
leading to improved performance in various deep-learning
tasks.

The provided model architecture is designed for real/fake
image classification, specifically for detecting deepfake
images. It includes an input layer, DenseNet201 layer,
a global average pooling layer, flatten layer, dense layers, and
a classification layer. The model has a total of 19,371,458
parameters, with 19,142,402 being trainable. It is compiled
with the Adam optimizer using a learning rate of 0.001 and
employs categorical cross-entropy as the loss function. The
model achieves an accuracy of 95.4% on the 140k Real and
Fake Faces dataset. In summary, this architecture combines
DenseNet201 for feature extraction and dense layers for
classification, resulting in a model that detects deepfake
images with high accuracy.

IV. IMPLEMENTATION AND EXPERIMENTS

This section includes the evaluations, results, and the dataset
used for training and testing. It presents a comprehensive
analysis of the obtained results, providing insights into the
performance and effectiveness of the implemented system.
The experiments were performed on Google Colab T4 with
15GB GPU RAM and 12.7GB System RAM.

A. DATASET

140k Real and Fake Faces dataset [34] is used for training and
testing, the dataset comprises a collection of 70k real images
sourced from the Nvidia Flickr dataset and an additional 70k
fake images randomly sampled from the 1 Million FAKE
images dataset generated using StyleGAN [26]. To create
this dataset, both the real and fake image datasets were
merged, as shown in Figure 10. All images were resized
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FIGURE 7. DenseNet model with deep fake classification.

TABLE 1. Overview of the performance on the ‘140k real and fake faces’ dataset.

Model Precision (Real)  Recall (Real)  F1-Score (Real)  Precision (Fake)  Recall (Fake)  F1-Score (Fake)  Accuracy
GRAM Net 0.93 0.97 0.95 0.97 0.92 0.95 0.946
Co-Occurrence 0.91 0.94 0.93 0.94 0.91 0.93 0.926
ResNet50V2 0.98 0.95 0.96 0.95 0.98 0.96 0.96
DenseNet201 0.95 0.98 0.96 0.98 0.95 0.96 0.96
MMGANGuard 0.96 0.98 0.97 0.98 0.95 0.97 0.97

FIGURE 8. 140K real and fake images dataset.

to a resolution of 256 pixels for consistency. The data
was then divided into train, validation, and test sets to
facilitate model training and evaluation. The training and
validation datasets used in the experiments consist of 100,000
and 20,000 samples, respectively. Additionally, there are
20,000 samples reserved for testing. To enhance the model’s
generalization and mitigate overfitting, augmentation tech-
niques are applied during training. Three augmentation
operations are employed: random translation, random zoom,
and random rotation. These operations introduce variations to
the images, helping the model learn from diverse perspectives
and reducing the risk of memorizing specific features of
the training set. Additionally, the dataset includes several
CSV files that provide convenient auxiliary information.
By combining these two datasets and preprocessing the
images, this dataset offers a diverse range of real and fake
faces for various applications in computer vision and machine
learning research.

B. EVALUATION METRICS

To evaluate the performance of the deepfake image detection
application, various metrics are employed, including accu-
racy, precision, recall, Fl-score, and the confusion matrix.
By running the models on the 140k Real and Fake Faces
dataset, the following results were obtained for each model.
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Table 1 presents the performance metrics of four dif-
ferent models (GRAM Net, Co-Occurrence, ResNet50V2,
DenseNet201) along with a MMGANGuard on the 140k real
and fake faces dataset. The dataset is used for classifying
images as either real or fake faces. The models were evaluated
based on several performance measures, including precision,
recall, F1-score, and accuracy. Precision measures the ability
of a model to correctly identify true positives (real or fake
faces) out of all the samples it classified as positive. Recall
measures the ability of a model to identify all true positives,
out of all the actual positive samples in the dataset. F1-score
is the harmonic mean of precision and recall, providing
an overall measure of a model’s performance. Figure 9
represents the validations curves of the model including the
confusion matrix, ROC and precision-recall curve. Similarly,
Figure 10, and 11 represents the curves for ResNet and
GramNet respectively.

In Table 1, the results for each model are presented
separately for real and fake faces, along with an overall
accuracy score. The values in the Precision (Real), Recall
(Real), and F1-Score (Real) columns represent the model’s
performance in correctly identifying real faces. Similarly,
the values in the Precision (Fake), Recall (Fake), and
F1-Score (Fake) columns represent the model’s performance
in correctly identifying fake faces. The Accuracy column
provides the overall accuracy of each model in classifying
both real and fake faces.

In Table 3 the computation time of the existing four models
is compared on 10 epochs each and shows that these models
comparatively trains better than the existing state of the art
models.

Based on Table 1, the MMGANGuard outperforms
individual models in most of the metrics. It achieves high
precision, recall, and F1-score for both real and fake faces,
indicating its effectiveness in correctly classifying both cate-
gories. Moreover, the overall accuracy of the MMGANGuard
is also higher compared to the individual models. Therefore,
the table suggests that the MMGANGuard performs better
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FIGURE 11. Gram Net Curves.

overall in classifying real and fake faces compared to the other
models evaluated in this dataset.

C. ACCURACY CURVE
Accuracy is a common evaluation metric used to measure
the performance of a classification model. It represents the
proportion of correct predictions made by the model out of
the total number of predictions. On the other hand, validation
accuracy refers to the accuracy of a model’s predictions
on a validation dataset, which is a separate dataset used to
assess the performance of the model during training. It serves
as an estimate of how well the model generalizes to the
unseen. The accuracy curve for the Gram-Net Figures 12a,
ResNet50V2 Figures 12b, DenseNet201 Figures 12c,
Co-Occurrence Figures 12d trained models are represented.
Overall, the DenseNet201 model demonstrates strong
performance with high precision, recall, and F1-score values
for both the real and fake classes. The model achieves an
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TABLE 2. Detailed performance metrics.

Model TPR FPR TNR FNR

ResNet50V2 97.85% 5.02% 9498%  2.15%
DenseNet201 94.96% 238% 97.62% 5.04%
Gram-Net 92.74%  3.16% 96.84% 7.26%
Co-Occurrence 91.09% 5.72% 94.28% 8.91%
MMGANGuard 98.4% 4.40%  95.6% 1.50%

accuracy of 96%, indicating its effectiveness in correctly
classifying instances from the dataset.

D. CONFUSION MATRIX

A confusion matrix in Table 2 helps evaluate classification
model performance. Table 2 compares the True Positive Rate
(TPR), False Positive Rate (FPR), True Negative Rate (TNR),
and False Negative Rate (FNR).
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TABLE 3. Comparison of computation time of models.

Model Epochs  Duration
Co-Occurrence 10 20min 9sec
DenseNET201 10 10min 3sec
RESNET50V2 10 1hr 9min
Gram-Net 10 8.5hrs

Across all the models, there is a consistent pattern of
higher accuracy in classifying fake images (higher TN rates)
compared to real images. The models generally exhibit a
good ability to detect fake images with high True Negative
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Rates (TNR) ranging from approximately 94% to 97%.
However, the performance in identifying real images (True
Positive Rates or TPR) varies, with values ranging from
approximately 91% to 98%. The False Positive Rates (FPR)
are relatively low, indicating a low proportion of fake images
being incorrectly classified as real. The False negative Rates
(FNR) are also generally low, suggesting a reasonable ability
to correctly classify real images as real.

The MMGANGuard achieves a higher TPR of 98.4%
compared to all the individual models. This indicates a
superior ability to correctly identify true positives. However,
the FPR of 4.40% suggests a slightly higher rate of
false positives compared to DenseNet201 and Gram-Net.
Nevertheless, the MMGANGuard model demonstrates a
relatively better balance between true positive identification
and avoiding false positives. The following Figure 13 also
shows the comparison of the models. In summary, the
MMGANGuard outperforms the individual models in terms
of true positive identification (TPR). However, they exhibit
a slightly higher false positive rate (FPR) compared to some
of the individual models. Overall, the MMGANGuard model
shows promising performance in detecting fake images.

V. CONCLUSION AND FUTURE WORK

In conclusion, the deepfake image detection MMGANGuard
utilizing a combination of four different models, namely
GRAM Net [17], Co-Occurrence [19], ResNet50V2 [24],
and DenseNet201 [22], has demonstrated promising results
in combating the proliferation of manipulated media on
the internet. The high accuracy achieved by these models
highlights their effectiveness in detecting deepfake images
generated by StyleGANS.

To further enhance the deepfake image detection applica-
tion, several avenues for future work can be explored. Firstly,
expanding the dataset to include a wider range of deepfake
types, such as videos, audio recordings, and images, would
enable the models to learn and detect a broader spectrum of
manipulated media, currently it only works for StyleGAN
generated dataset. This would contribute to improving the
application’s performance in detecting deepfakes across
various modalities. Additionally, considering the evolving
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landscape of deepfake generation, exploring different types
of GANs that produce deepfakes with distinct sets of features
and characteristics could help ensure the application’s effec-
tiveness against emerging manipulation techniques. Adapting
the models to handle GANs with different architectural
variations and training methodologies would strengthen
the application’s ability to detect increasingly sophisticated
deepfake content. Moreover, integrating the deepfake image
detection application with popular social media platforms
would provide real-time deepfake detection and flagging
capabilities. This proactive approach could help mitigate the
rapid spread of deepfake content by promptly identifying
and alerting users to the presence of manipulated media.
By partnering with social media platforms, the application
can contribute to a safer online environment and empower
users to make informed decisions about the authenticity of
shared content.

Lastly, the deepfake image detection application holds
potential beyond its current scope. It could be adapted and
extended for use in other domains where image manipulation
is prevalent, such as:

« Journalism and forensics. The app could help journalists
check the authenticity of visual content or help forensic
investigators look into and find cases of image tampering
by including features and requirements that are specific
to those fields.

o This can be embedded into our social media platforms
and can have a flag if the uploaded image is fake or real,
this would hugely impact the community as it will help
in controling deepfakes.

o Corporate Security: Companies can implement the
tool to safeguard against malicious actors attempting
to spread fabricated videos to damage reputations or
manipulate stock prices.

Overall, the deepfake image detection application’s current
success and potential for future advancements make it a
valuable tool in the ongoing fight against the misuse and
spread of manipulated media.
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