IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 March 2024, accepted 16 April 2024, date of publication 25 April 2024, date of current version 3 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3393831

== RESEARCH ARTICLE

Simulation Based Resource Optimization
Using a Decision Tree Clearing Function

CIHANGIR ERTABAN", (Member, IEEE), AND ERINC ALBEY

Ozyegin University, Cekmekoy, 34794 Istanbul, Turkey

Corresponding author: Cihangir Ertaban (cihangir.ertaban @ozu.edu.tr)

ABSTRACT This study presents a novel approach to resource allocation in software development teams
working with Kanban. The simulation algorithm created in this study takes three types of resources, three
types of work, resource capabilities, and a blocking mechanism different from the classic machine breakdown
scenario. The data generated by the simulations are used to train a decision tree regression which is integrated
into an optimization model as a clearing function. In numerical analysis, the research compares the decision
tree clearing function to a straightforward two-step model that only takes the best of the simulation data and
finds a resource allocation and a greedy heuristic algorithm which starts from an initial feasible solution and
improves it step-by-step. Findings show that the developed decision tree clearing function model outperforms
the other two benchmark models in mid and high amounts of data.

INDEX TERMS Agile software development, clearing functions, decision tree regression, optimization

methods, simulation.

I. INTRODUCTION

The advent of agile ways of working [1] has revolutionized
the world of software development, offering iterative produc-
tion in short cycles, focused on the value delivered to the
customer, via small self-organized teams [2]. Among popular
agile frameworks, Kanban with its roots in lean manufactur-
ing and project management, has shown significant efficacy
in managing software development schedules [3].

Principles of Kanban, which include visualizing the
workflow, limiting work-in-progress, managing flow, making
process policies explicit, and improving continuously, show
software development teams a solid path of effectiveness
without disrupting them, since Kanban is an evolutionary
approach rather than a revolutionary change [4]. On the other
hand, applying these principles in software development
teams is a complex flow to model due to the unpredictability
and dependencies in the nature of the work. Currently,
software development teams, especially those working with
Kanban, lack comprehensive scientific analysis tools and
decision-support systems to guide them in managing their
workflow and resource allocation effectively. This gap in

The associate editor coordinating the review of this manuscript and

approving it for publication was Jesus Felez

the literature and practice motivates the current study, which
aims to provide an analytical overview and a decision support
tool for optimizing the work and resources of software
development teams working with Kanban.

The objective of this study is to devise a model that
can consider multiple factors in the workflow, such as
modifications in resource allocation and work-in-progress
limits. For instance, this model will help teams understand
how increasing the capacity of a station may affect the output,
and how to decide a resource with the capability of processing
a single type of work versus multiple types of work with
different costs. At present, there are only limited analysis and
decision-support tools that can accommodate such analysis.

Our approach, detailed in Fig. 1: Overview of the Study,
involves a comparison of two benchmark models and a
decision tree clearing function model. Given the complex
nature of the Kanban system, we model the process in a
simulation, incorporating elements like multiple work item
types at multiple stations, including blocks, and a resource
optimization model.

The contribution of this study lies in its novel approach of
combining simulation, resource optimization, and a decision
tree clearing function for resource allocation in software
development teams working with Kanban. This approach

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 60425

https://orcid.org/0000-0001-9492-8413
https://orcid.org/0000-0001-5004-0578
https://orcid.org/0000-0003-4501-1339

IEEE Access

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

Decision Tree Clearing

Two-Step ¢
Function

Heuristic

Collect Data with
Simulation

Start with an Initial
Feasible Solution

Colleet Data with
Simulation

! ! !

Find a Local Optimal Fit Decision Tree
Solution Regression

! ! !

Solve Decision Tree
Integrated Resource
Optimization

! ! !

Test Model Result

Find Maximum Value

Solve Resuorce
Optimization

Solve Resource
Optimization

Test Model Result Test Model Result

FIGURE 1. Overview of the study.

not only offers practical benefits to software teams but also
provides a foundation for further academic exploration in this
area.

The rest of this paper is organized as follows: Section II
presents a literature review relating to queueing models,
simulations in software development, and clearing functions.
Section IIT describes the simulation model used in this study
and explains the models. Section IV covers the numerical
analysis and the comparison of the models. The final section
concludes the paper and discusses potential avenues for
further research.

II. LITERATURE REVIEW
This study is based on a holistic approach combining
simulations to collect data regarding a software development
team working with Kanban with resource optimization. The
literature review starts with the queueing models, since the
Kanban system can also be considered as a complex queueing
system. Due to the complexity of finding closed form
solutions to queueing systems, either some approximations
are used or some tools such as simulations are utilized
for modelling and solution generation. Therefore, in the
second part of the literature review, simulations in software
development field are investigated. Finally, the overview of
the literature relevant to clearing functions, which helps to
capture the relationship between characteristics and existing
status of the manufacturing systems and desired outputs of
the system such as cycle time or throughput, are presented.
A queueing model serves as a system where flow items
needing a service are processed. Due to limited capacity,
the items wait for their turn, and once serviced, they
promptly exit the system [5]. Erlang, initiated one of the
earliest significant researches on queueing for telephone
lines [6]. Queueing models have since been examined as
an applied probability theory subset. Over time, queueing
models have evolved into a robust research field with various
models including “Birth-Death (M/M/1)” processes, ‘“Multi-
Server” systems, “Finite Capacity (M/M/1/K)” queue,

60426

“Multi-Server Finite Capacity (M/M/c/K)” queue, “‘Finite
Source (M/M/c/M)” systems, ‘‘State-Dependent” service,
“M/G/1” queue, “G/M/1” queue, “Queueing Networks”
among others [7], [8].

In the context of queueing models, the Kanban system in
this study can be regarded as a multi-server priority queueing
network with feedback. Research has generated queueing
models for traditional and adaptive single stage Kanban
systems [9], but introducing multiple stages, multiple work
item types and the block concept in this study amplifies the
complexity. The blocks or interventions typically stem from
machine breakdowns, signifying a server halt [10], unlike
this study where the block applies to the work item with
the server maintaining its ability to work on another item.
Consequently, the flow in this study is too intricate to be
modelled as a queueing model, which propels the choice for
simulation to understand the Kanban system dynamics in the
software development team.

Software development is a complex procedure due to
the unique features being developed and often entails
working with new technologies or acquiring new skills.
Therefore, it’s challenging to model a software development
team realistically using a queueing model. The alternative
lies in using simulations to understand system dynamics,
accommodate variations, and envisage potential scenarios in
intricate environments [11], [12].

Output
4 Constant Proportion (Graves)
Fixed Capacity (LP)
) Nonlinear Combined
#° (Srinivasan, Karmarkar)
> WIP

FIGURE 2. Examples of clearing functions [13].

Simulations have been previously used as an effective
tool to model complex queueing systems in various fields.
Pellegrini et al. combine simulations and a multi-objective
optimization model for air traffic management [14], Hsu et
al. develop a simulation based optimization approach for
material handling planning [15], Osorio and Bierlaire apply a
simulation based optimization model to complex stochastic
situations in urban transportation. Moreover, examples of
previous studies related to Kanban include Baradaran and
Akhavan’s combination of simulation and optimization of
Kanban system parameters [16] and Weflen et al. [17] use
of Kanban to estimate lead time using a probabilistic model.
This study employs simulations to predict key aspects such
as output, lead time, and efficiency to assist decision-making
in resource optimization via clearing functions.

Clearing functions have been used extensively to capture
the complex relationship between throughput, utilization,

VOLUME 12, 2024

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

IEEE Access

workloads, and lead times in manufacturing systems [13],
[18], [19]. As a clearing function, Graves defined a linear
function [20] whereas Srinivasan et al. [19] and Kar-
markar [13] proposed nonlinear functions, as seen in Fig. 2,
Albey et al. consecutive studies use clearing functions to
model complex manufacturing models and generate accurate
and effective estimates [21], [22].

Baycik [23] proposes machine learning based approaches
including decision tree regression and random forest to
address integer programming in large size instances. In tree
models, the quality of the nodes and the method of split are
key. Lee and Jun use a tree model in a logistic regression
tree [24] and propose a split model based on separability.
Hsu [25] uses decision trees to predict cycle time in
manufacturing and share that decision trees perform better
than other machine learning algorithms.

Ertaban and Albey [26] use a simulation model to collect
data about a team working with Kanban and and train
machine learning models to find an optimum parameter set.
This study extends Ertaban and Albey’s [26] simulation
basis and extends with a different perspective including
an integrated clearing function. Moreover, the combined
resource optimization model is compared with a two-step
model and a greedy heuristic algorithm.

lll. SIMULATION MODEL AND PROPOSED SOLUTION
APPROACHES

This section presents the simulation models that constitute
the backbone of the solution approaches (a proposed solution
and two benchmark solution approaches).

Given its complexity, the Kanban system employed by
the software development team in this study cannot be
adequately represented by traditional queueing models. Thus,
a simulation model is used to make realistic estimates about
the flow of work. Based on the results of the simulation,
three solution approaches are investigated. The first two are
benchmark models and the third one is the proposed decision
tree clearing function, which constitutes the main contri-
bution of this paper. The first benchmark model is a two-
step model, where the first step consists of the simulations
and chooses the best result of the simulations. Then, the
best result of the simulation is used as input for the second
step, which is the multi-capability resource optimization. The
second benchmark model is a greedy heuristic approach.
The heuristic starts with an initial feasible solution. Then
it goes on with increasing the resources in an incremental
way until reaching a maximum number of iterations or a
maximum amount of resources. The benchmark models are
used to compare the results with the proposed decision tree
clearing function. Both benchmark models come up with
a local optimal simulation result which is the input for
the multi-capability resource optimization model explained
afterwards.

VOLUME 12, 2024

A. SIMULATION MODEL

The Kanban System subject to this study defined as
multi-server priority queueing network with feedback before-
is a combination of different queueing models including
multi-server queueing networks, feedback models and prior-
ity queues. All these different queueing models are studied in
separate studies with probabilistic models. Integration of two
of such models have been also researched in variations, but
combining all these models (and more) make the resulting
probabilistic model highly complex. Even if such a model
might be constructed, reaching a solution using that model
might be intractable. For this reason, data collection from
simulation and learning from the data is taken as the tractable
path.

The simulation software is a key element in the con-
struction of the model. After investigations with regards to
speed, integration, analytical and automation capabilities,
Python software language is chosen as the simulation basis.
Simulations, visualizations and optimization models are
carried out end-to-end through a Jupyter notebook based on
an open-source discrete event simulation framework Simpy
running on Python. In addition, many libraries including
Numpy, Cplex, Matplotlib have been used in this study. The
simulations are run on a Macbook Pro (2015) equipped with
Intel Core i5 processor.

The simulation base is built on Ertaban and Albey’s [26]
previous work and has similar elements without prioritization
of work item types. The process-based simulation starts
with different types of work items being randomly created.
Then, each work item is pulled and processed by resources
at multiple stations. When the work in all the stations is
complete, the work item is done. The simulation is run for
52 weeks. All parameters of the simulation are driven from
data collected from a large Telco organization and further
adaptations are done based on authors’ experiences.

The simulation consists of three main stations representing
analysis, development, and test. The stations are adapted
from a typical software development value stream. In the
analysis station, the requirements of business are captured
and a solution is described. At the end of the analysis process,
an analysis document is likely to be created. The process
is carried out by the analysts/ business analysts. After the
analysis station, the work is processed in development by
the developers. During the development phase, all software
development is carried out according to the requirements.
At the end of development, the code is ready to be tested.
Although some of the tests are automated in IT organizations,
it is still a common practice to split the test and development
phases. The role of tester carries out the functional tests.
At this station, various functions and scenarios are tested and
the errors are fixed. The goal is to finalize the code and make
it ready to go live. After this station, the code is deployed, and
the work item is done. Every work item must be processed in
these three stations before being completed.

60427

IEEE Access

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

Software development teams conduct different types of
work. The Kanban approach starts with understanding
existing processes and optimizing through a series of steps.
One of these steps is described as classification of work item
types as part of mapping the value stream [4]. Some common
types of work include requirements, features, improvement
stories, bugs, maintenance, and refactoring. Moreover, some
teams may classify the work items based on the application
it is being developed, and some teams may classify based on
the technology.

IN PROGRESS

TODO
oo

g O m
Task
12

FIGURE 3. Kanban board with three work item types.

[
2

ANALYSIS | ‘ DEVELOPMENT | |

H
BB:

2

In this study, based on the initial data from the Telco
company, three types of work are considered:

Type 1: Front-end software development of the user
interface and connection to the backend

Type 2: Backend development of the work including
servers, database and preparation of the connection with the
front-end.

Type 3: Data management.

Fig. 3 depicts three types of work in three swim lanes.
Each type of work must go through respective analysis,
development and test stations.

Processing different work item types requires different
skills. The members of the team may have only one capability
to process one type of work or multiple capabilities. The
variations in capabilities add the next level of complexity
to the model. At each of the analysis, development, and
test stations all three types of work need to be conducted.
To conduct this type of work, the resource at this station
needs to have the capabilities to carry out the work. Each
resource may have one of the 7 capabilities showing its ability
to conduct the types of work. These abilities are shown in
Table 1.

TABLE 1. Work item type - capability matrix.

Type - Capability | C1 | C2 | C3 | C4 | C5 | C6 | C7
Type 1 T 001101
Type 2 ol 1t |o | 1|0 1|1
Type 3 oo | 1o | 1] 1|1

The resource capabilities in Table 1 include single
capability resources (Capability types 1, 2, 3), double
capability resources (Capability types 4, 5 and 6) and a
triple capability resource (Capability type 7). Modelling
multi-capability resources (double and triple capabilities)
requires one resource to handle more than one type of work

60428

item at the same station. This resource ends up splitting its
time into different types of work. To translate this structure
into the simulation, a day-based resource capacity structure
is used. The simulation is implemented in a way that each
resource may work on a day or not, corresponding to 50% or
100% of capacity.

As an example, capability type 4 resources may handle
both type 1 and type 2 work. The resource may distribute the
time into types 1 and 2 with a 50% split.

Limiting WIP is one of the key principles of Kanban [4].
When a WIP limit is applied, the resources may not pull
additional work when the number of work being processed
is equal to the WIP limit. A new work may be pulled only
if one work is processed. It is possible to apply a WIP limit
to all in process work or separately to each station. In this
study, a WIP limit is applied to all work items in process.
Application of this principle to the simulation requires using a
“hold” function which keeps the work items unless the work
items in the process are less than the WIP limits.

Due to the natural complexity of software development
in especially large organizations, the work being carried
out might be blocked due to a reason outside the team.
The block might be waiting for some information, waiting
for integration, or approval from another individual or a
department. In such cases, the teams working in Kanban put
the work item into a block status and pull the next work. When
the block is resolved, the team pulls it back at the first chance
without sending it to the end of the queue.

In this study, a work item may be blocked at any of the
analysis, development, and test stations with a probability.
The collected data shows that each of these stations’ block
probabilities are independent from each other, which means
that being blocked at one of these stations does not correlate
to a block at any other station. In the simulation software that
is being used, the block probability, time of processing before
the block, block time and time of processing after the block
are all parameters derived from the original data.

The parameters of the simulation are based on the
data collected from a large international telecommunication
company. The data is based on the work conducted at
analysis, development, and test stations including blocked,
non-blocked work items and their processing and waiting
times of one team.

B. TWO-STEP MODEL
The two-step model (see Fig. 4) is a straightforward model.
It starts with collecting data from simulations. The first
step includes running simulations including all combinations
of the 9 different types of resources and the WIP limit
parameters from the initial value to the upper limit. In this
study, the initial value for the resources is 0.5 person
increasing with an increment size of 0.5 to 2 person, and the
WIP limit starting at 3, with an increment size of 6 until 21.
In total, this consists of (49 x4 =1, 048, 732) simulations.
The highest value of these simulations is picked at the end
of the first step.

VOLUME 12, 2024

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

IEEE Access

Initial soluticn with
minimum rescurce

I

Simulete

Increase ooz resource
capacity by mcrement
value

Bax Resource Mo
Reached?

Yes

Simulations Complete

l

Fick the best
Simulation Result

Fun Optimizatoe
Model minimizing
cost

FIGURE 4. Diagram of the two-step model.

The second step includes taking the resources of the
highest value simulation of the first step and using this
resource allocation as input for the multi-capability resource
optimization. At the end of the multi-capability resource opti-
mization, a final resource set that satisfies the requirements of
the first step is found.

C. GREEDY HEURISTIC MODEL

In the greedy heuristic model (which will be referred
to as simply the heuristic model from this point on),
the simulations start from a minimum feasible resource
allocation, which is 0.5 at each station for each work item
type. This accumulates to a total of 1.5 person analysis
resources, 1.5 person development resources and 1.5 person
test resources. Then the simulation increases every resource
one by one, tries different WIP limit parameters and finds the
best value of the iteration. At the end of the iteration, the base
point is improved to the next base point and the next iteration
begins. In this study, a maximum resource amount of 1.5 at
each station is taken as the upper limit. The algorithm stops
if any resource goes beyond the limit and takes the maximum
value as the final value as shown in Fig. 5.

After the iterations hit the upper limit and the simulation
phase ends, the final result is taken into the multi-capability
resource optimization model to find the best allocation of
resources.

D. MULTI-CAPABILITY RESOURCE OPTIMIZATION MODEL
Both benchmark models find a simulation result which is the
best solution on the horizon of the approach. This simulation
result includes various capacity usages of resources at stations
and work item types. As an example, the model starts with
50% employees at each station at each type. On the other
hand, practically, the software development team consists of
full-time equivalent team members. So, it is necessary to

VOLUME 12, 2024

Initial solution with
minimum resource

!

Simulate

!

Increase coe resource
capaciy by mcrement [
value

]

Simulate

Try For &1l
Staticns & bypes

Set Resourres b
latest Basis level

Increase in all
Stations & types iried?

Ves

Choose the best result
a5 the new hasas

Max Herabion’ Resource Mo
Reached?
Yes
Fun Opaimization
End Heuristic Made| minimiring
sk

FIGURE 5. Diagram of the heuristic model.

find a resource allocation solution which accommodates the
simulation result in both benchmark models. This solution is
found by the multi-capability resource optimization model.
The mathematical model is explained below:

Sets:

i = workitemtypes,i € I = {1, 2, 3}

Jj = stations,j € J = {1 : Analysis, 2 : Development, 3 :
Test}

k = capabilities, k € K = {1,2,3,4,5,6,7}

Parameters:

tixk = 1 if capability k is able to handle work item type i,
0 otherwise

cjk = cost of each resource at station j with capability k

Decision Variables:

sij = resource capacity input used on work item type i at
station j

Xjk = # of resource of capability k at station j

yijk = amount of resource capacity from capability k on
work item type i at station j

Constraints:
Yijk = tuM Vi, j, k (H
si < D yik Vi)
i
> vik =xi Vik 3)

1

The first constraint guarantees that capacities of resources
will only be used based on defined capabilities. The second
constraint assigns more capacity than the input coming from
the simulation and the third constraint turns the capacities into
full-time resources at specific capabilities at each station.

60429

IEEE Access

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

TABLE 2. cji; cost of each resource capability.

Analyst Developer | Tester
Capability 1 1000 2000 1000
Capability 2 1000 2000 1000
Capability 3 1000 2000 1000
Capability 4 1500 2500 1500
Capability 5 1500 2500 1500
Capability 6 1500 2500 1500
Capability 7 2500 3500 2500

Objective Function:
Min > xjcii “
Jk

Objective function is a minimization of cost searching for
the minimum cost level that meets the capacity requirement.

The first parameter tj representing the capability of
resource and work item relationship is shown in Table 1 and
the cost of each resource (in hypothetical units) according to
their capability is shown in Table 2. It may be observed that
multi-capability resources are more expensive than the ones
that can process one single type of work.

The last set of parameters is the output of the work item
type. For the base simulation parameter set, the first work
item type is 50 units, whereas the second work item type is
100 and the third type is 60 units. The output is the generated
value of the team.

IV. DECISION TREE CLEARING FUNCTION

The decision tree clearing function model begins with
a series of comprehensive simulations, akin to the two-
step model. A distinctive feature of this model is its
integration of decision tree analysis into the multi-capability
optimization framework, enhancing predictive accuracy and

Initial solution with
minimum resource

l

Simulate

I

Increase coe resounce
capacity by incremem
value

Max Resource Mo
Reached?

Yex

Simulations Complete

|

Fit Decizion Tree
Begression

Zolve Diecision Tree
Integrated Resource
Dptamization

FIGURE 6. Diagram of the decision tree clearing function model.

60430

resource allocation. This approach provides the opportunity
to combine the simulation results with the optimization model
rather than separating the two. Thus, simulation results which
have a lower value than the best solution, but are at the same
time cost effective are considered as well. Such simulation
results are almost disregarded in the benchmark models.
Fig. 6 represents the flow logic of the proposed decision tree
clearing function.

A. DECISION TREE REGRESSION
The first part of the decision tree clearing function is the
decision tree regression. A decision tree regression is fit to
the comprehensive simulation results. The parameters x in
this regression are the resources and the WIP, whereas the
goal, y, is the output.

Fig. 7 shows a high level overview of the decision tree with
a base parameter set of values with lighter colored nodes on
the left with lower final results and darker nodes on the right
with higher results. Fig. 8 shows the final three nodes of the
decision tree later in the numerical analysis.

FIGURE 7. Decision tree regression fit on the simulation results max
depth: 5.

B. 1.6 DECISION TREE INTEGRATED OVERALL
MATHEMATICAL MODEL

The overall mathematical model of the decision tree clearing
function is as follows:

Sets:

i = work item types

J = stations

k = capabilities

f = feature

m = leaf node

Parameters:

tig. = 1 if capability k can handle work item type i,

0 otherwise

cjk = cost of each resource at station j with capability k

mean,, = mean value of node m showing output

us, = upper bound of the decision variables representing
feature f at node m

Ifm = lower bound of the decision variables representing
feature f at node m

output = output value

Decision Variables:

Xjx = number of resource of capability k at station j

yijk = amount of resource capacity from capability k on
work item type i at station j

zm = 1 if node m is active, O otherwise

ry = value of the decision variable representing feature f

Constraints:

yijk S tauM Vi, j k Q)

VOLUME 12, 2024

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

IEEE Access

D vk =xp ik 6)
i
D=1 (7
m
output = Zmeanmzm (8)
m
= vk Vf ©)
ijk
S D upmin VS (10)
m
rr D lnim f (11)
m
zm € {0, 1} (12)

This model integrates the decision tree clearing into
the multi-capability resource optimization model. Thus,
the first two constraints come from the multi-capability
resource optimization model ensuring capacity usage based
on capabilities (5) and capacity usage conversion to full-time
equivalent resources (6). The following constraints (7) force
only one decision node to be active and (8) describe the
output as the mean value of the active node. The constraint (9)
is linking the capacity usage y;j to the respective value of
the decision tree 7y and the following two constraints are
upper (10) and lower (11) bounds. The last constraint declares
that decision variable for the nodes can only be O or 1.

Objective Function:

Max output — ijkcjk (13)
Jk
Objective function is a maximization of profit calculated
by output minus cost. This suggests a balance between more
resources for maximal output and less resources for minimal
cost.

V. NUMERICAL ANALYSIS

The numerical analysis consists of the results of a base
parameter set for the benchmark models and the decision
tree clearing function followed by a sensitivity analysis.
The base parameter set results include the total value, costs
calculated by the resource optimization, and the final value.
The sensitivity analysis shows the changes of the final value
in reflection with the parameters of resource costs, value per
work item type and sample size.

A. BASE RESULTS

Base results consist of the two-step, heuristic, and decision
tree clearing function methods using the same parameter set.
This base parameter set includes the values and the costs of
resources described above in the parameters.

As seen in Table 3, decision tree clearing function model
with a depth of five outperforms the benchmark models due
to its capability of taking the costs into account and not only
seeking for the highest output value. The two-step model
finds a final value of -2390 which is the worst result. In the

VOLUME 12, 2024

TABLE 3. Comparison of results.

Benchmark Models Decision Tree Clearing Function

Two-Step | Heuristic Max Depth: 5 Max Depth: 10
Final Value -7500 -8110 -5420 -4670
Output Value 7500 7390 4080 4830
Cost 15,000 15,500 9500 9500

TABLE 4. Resource setting of the best result of the simulations.

Al | A2 | A3 | DI | D2 | D3 | T1 | T2 | T3
Resource 1 1 1 1 1.5 11505115 1

following sections, execution steps and performance of each
method are explained in detail, and then a sensitivity analysis
is conducted with further parameters.

1) TWO-STEP MODEL

The two-step model starts with the simulation phase consist-
ing of incremental simulation of resources from 0.5 to 2 at
each of the 9 resource types and 4 different WIP limits(3, 9,
15, 21), which accumulates to 49x4 = 1,048,576 simulations.
The model finds the highest output with a maximum resource
limit of 10. This value is 13,610 and found at 10 resources
and a WIP value of 21. The resource setting of this maximum
output is shown in Table 4.

Then, the method proceeds with the second step: multi-
capability resource optimization. This step takes the resource
setting of the highest output simulation as an input and
allocates the minimum cost resource capability distribution.
The multi-capability resource allocation finds a result of
3 analysts (capabilities 1, 3, 6), 4 developers (capabilities 1,
2, and two times 3), and 4 testers (capabilities 2, two times 3,
and 4) with a total cost of 16,000. Since the total output is
13,610, the final result is -2390 for the two-step model.

2) GREEDY HEURISTIC MODEL

Table 5 shows the incremental steps of the heuristic model.
The first column shows the total number of resources at
the base level of each step, the output value. Then, the
best improvement column depicts the specific resource type
(Analyst, developer, or tester and the type of this resource
from 1 to 7) that generates the maximum increase compared
to the base value. Increasing this resource would lead to the
base value of the next step. The final column in the table
shows the WIP limit at the best improvement found.

The heuristic model ran for 11 steps and finished at the
12th. Each step consists of trying out an increment of 0.5 at
each of the 9 resource types and 4 different WIP limits(3, 9,
15, 21) at each of these resource increments. Thus, each step
consisting of 36 simulations accumulates to 396 simulations
for the whole model. The heuristic hits the maximum resource
limit of 10 finding the highest output value of 12,390. At this
moment, the resource setting is shown in Table 6:

This resource setting is the input for the multi-capability
resource optimization model which finds a final solution with
more than 10 resources, which is the maximum resource cap.

60431

IEEE Access

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

TABLE 5. Steps of the heuristic model.

Step | Total no of | Output Value Best WIP Limit
Resources at Base Improvement
1 45 2320 Dev. T.3 15
2 5 3730 Dev. T. 1 21
3 55 4020 TestT. 2 15
4 6 4210 Dev. T. 2 9
5 6.5 4550 Dev. T. 1 15
6 7 4570 Analyst T. 3 15
8 7.5 5070 Test T. 3 15
9 8 5480 Test T. 1 21
9 8.5 5600 Analyst T. 1 21
10 9 5980 Dev.T. 3 21
11 9.5 6680 Test T. 3 21
12 10 7390 N/A N/A

TABLE 6. Resource setting of the final result of heuristic.

Al | A2 | A3 | DI | D2 | D3 | Tl | T2 | T3
Resource 1 0.5 1 1.5 1 1.5 1 1 1.5

For this reason, the result before the last step is taken into
account (Row 11 in Table 5), and found a result of 3 analysts
(capabilities 1, 2, 3), 3 developers (capabilities 2, 3, 5), and
4 testers (capabilities 1, 2, and two times 3). The feasible
optimization result of the heuristic model provides an output
value of 12,320 and a cost of resources of 13,500 which
accumulate for -1180.

3) DECISION TREE CLEARING FUNCTION

The decision tree clearing function is a holistic approach
combining simulations and resource optimization. It uses the
data generated by the simulation set to train the decision tree
regression and integrates it into the resource optimization
model using upper and lower bounds.

In this study, the decision tree regressor function is used
from the sklearn [27] package in Python. For the base results,
a regression with a maximum depth of 5 is chosen. The R2
value of the regression is 0.8383 which can be accepted as
a strong result. Based on the decision tree with a maximum
depth of 5, 320 upper and 320 lower bounds are found.
The bounds are used as input parameters for the integrated
optimization model.

The integrated optimization model finds an optimum
solution of 1554,13 using the decision tree regression with
a maximum depth of 5. A snapshot, showing the final levels

TABLE 7. Heuristic model - resource allocation.

Analysis | Development | Test

Capability 1 1 1 1
Capability 2 1 1 1
Capability 3 1 1 2
Capability 4 0 0 0
Capability 5 0 1 0
Capability 6 0 0 0
Capability 7 0 0 0

Total Resources 3 4 4
Total Cost 15.500

60432

node #57
Dev2 <0.75
mse = 3229378.186
samples = 98304
value = 9731.894

node #58 node #59 node #61 node #62
mse = 1124686.999 mse = 2856764.359 mse = 3223080.314 mse = 4749581.416
samples = 24576 samples = 73728 samples = 73728 samples = 221184
value = 8177.256 value = 10250.107 value = 10135.503 value = 12681.278

FIGURE 8. Decision tree regression final 3 nodes at max depth: 5.

of the decision tree that leads to the maximum output for the
instance under consideration is shown in Fig. 8.

The output value found is 11,054.28 and the cost is 9500.
At this node (see Fig. 8 right bottom node) there are 221,184
samples, which is an indicator of the need for further analysis
of the decision tree clearing function. The multi-capability
resource allocation finds a result of 2 analysts (capabilities 3,
4), 2 developers (capabilities 3, 4), and 2 testers (capabilities
3, 4) with a total cost of 9500.

Since the output value is an aggregated value at the best
node, it does not reflect an exact simulation result. Thus, the
resource allocation is simulated again and the output value is
found as 8500 at a WIP value of 21.

The final value is found as -1000 which is better than the
benchmark models. The power of decision tree is shown in
this case, which finds an optimum value at a total resource
of 6 (See table 8) whereas the benchmark models find their
best values at 10 resources. The reason for this is the decision
tree clearing function methods’ ability to integrate the cost
optimization instead of using two separate steps.

TABLE 8. Resource setting of the final result of decision tree clearing
function model with max depth of 5.

Al | A2 | A3 | DI | D2 | D3 | Tl T2 | T3
Resource 1 05105 (051 05 1 0.5 | 0.5 1

B. SENSITIVITY ANALYSIS

The base results are merely objective and provide a biased
view due to the chosen set of parameters. Also, in the study,
the full simulation set of over one million data points is
considered, whereas in practical cases, only a sample data
set is accessible. For this reason, a sensitivity analysis is
conducted. The sensitivity analysis covers three dimensions;
the parameter set of values and costs, sample size, and
decision tree depth. For the parameter set, two sets of values
and two sets of costs are used. The values and cost sets are
shown in Table 9.

Three different sets of values and two sets of resource costs
end up in six value and cost sets.

The second dimension of the sensitivity analysis is the
sample size. In this study, 1,048,576 (49 * 4) simulations
represent all combinations. Instead of trying four different
levels of resource capacity (0.5, 1, 1.5, 2) at each work item

VOLUME 12, 2024

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

IEEE Access

TABLE 9. Sensitivity analysis value and cost sets.

Value and Values Resource Costs
Cost Sets Type 1,2, 3 Al1,A2,A3,D1,D2,D3, Tl, T2, T3
Set 1 50, 100, 60 1000, 1500, 2500, 2000, 2500,
3500, 1000, 1500, 2500
Set 2 50, 100, 60 1000, 1300, 1500, 1500,
1750, 2000, 1000, 1300, 1500
Set 3 150, 200, 160 1000, 1500, 2500, 2000,
2500, 3500, 1000, 1500, 2500
Set4 150, 200, 160 1000, 1300, 1500, 1500,
1750, 2000, 1000, 1300, 1500

TABLE 10. Sensitivity analysis.

Value | Sample Results

and

Cost Size Heuristic | Two-Step | Decision

Tree (5)

1000 -3370 -1516

Set 1 10,000 -1180 -3460 -1000
Full -2390 -1000
1000 -940 234

Set 2 10,000 -920 -930 650
Full 10 650

type at each station, trying five would end up in 7,812,500
(4° %4) simulations, whereas adding one more work item type
would need 67,108,864 (412 * 4) runs.

The numbers can easily grow beyond computation limits.
In such cases, since a full set of simulations is not available,
the most favorable solution is to use sample data to
conduct estimations. For this reason, data size is one of the
dimensions of sensitivity analysis. In addition to the full set
of simulations, two different sample sizes of 1000 and 10,000
are selected. For each of these sample sizes, five data samples
are picked randomly. The results of the sensitivity analysis are
presented in Table 10.

The results show that the decision tree clearing function
outperforms the other methods in these value and cost
combinations. It is seen that the heuristic method is very
competitive at smaller sample sizes since it is not dependent
on the sample size. Increased sample size improves the
performance of the two-step method since the maximum
value of the sample drives the method. Also, decision tree
clearing function improves with an increase in sample size
up to a level. Value and cost set one is totally cost dominated,
in which the results are negative. On the other hand, value and
cost set two is cost dominated for the heuristic method and
the two-step method except for the full size. For this value
and cost set, the decision tree method is capable of finding
positive results. To test the methods under value dominated
-profit- scenarios, a higher value set is tested with the same
cost sets.

The results of the profit scenarios are shown in Table 11.

The profit scenarios add up to the findings regarding
the heuristic method. It performs competitively with the
two-step model with smaller samples. The main highlight
of the profitable scenarios is the decision tree clearing
function. In these scenarios, the decision tree with depth

VOLUME 12, 2024

TABLE 11. Sensitivity analysis - profit scenarios.

Value | Sample Results
and
Cost Size Heuristic | Two-Step | Decision
Tree (5)
1000 14,442 12,054
Set 3 10,000 16,490 16,088 12,500
Full 19,240 12,500
1000 16,692 12,852
Set 4 10,000 16,070 18,278 14,150
Full 21,440 14,150

TABLE 12. Profit scenarios - additional decision tree depths.

Value | Sample Results
and Decision | Decision Decision
Cost Size Tree (5) Tree (10) | Tree (15)
1000 12,054 11,338 11,474
Set 3 10,000 12,500 13,116 15,624
Full 12,500 13,190 15,380
1000 12,852 14,178 13,960
Set 4 10,000 14,150 15,406 17,676
Full 14,150 15,390 17,380

of five performs worse. The last takeaway is the two-step
method. Just like the cost dominated parameters, two-step
method improves with larger sample sizes, and reaches to the
highest results at full size. The profit scenarios show that the
decision tree clearing function with depth of 5 is incapable of
competing with the others. So, further analysis was conducted
on these scenarios with increased depth of decision tree.
In addition to 5, decision tree method with depths of 10 and
15 are conducted and shown together with previous results in
Table 12.

Increased level of depth shows that the decision tree
method is capable of finding better results with more depth.
In both value and cost sets, decision tree results increase for
the sample sizes of 10,000 and full size. For only value and
cost set 3, decision tree at the depth of 10 and 15 cannot find
a higher result than the depth of five, which indicates it is an
exceptional case due to random samples.

C. FINDINGS

The value and cost parameters end up in negative results
in the first two sets, and positive results in the latest two
sets. The first observation by clustering the results in positive
and negative is that the two-step model with a full data
set finds the highest results in profit scenarios. The reason
is, by its nature, the first step of the two-step model is
finding the highest single simulation result of the model.
This is a straightforward global maximum point. From this
level, the model applies resource optimization to find the
best fitting resource set. In case the model finds a resource
allocation satisfying the highest value resource simulation,
then the problem is solved. Only in the case that the resource
optimization cannot find a satisfying result, another lower
simulation result can be tried. The resource optimization
model is flexible, and especially in positive cases, its
contribution to the positive results is relatively small.

60433

IEEE Access

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

TABLE 13. Best performing method based on scenario types.

Amount of Data

Small Mid Large
Heuristic Two-step/ Two-step
Decision tree
Decision tree

Profit Scenarios

Heuristic/ Decision tree

Decision Tree

Cost Scenarios

The other benchmark model, which is the heuristic, starts
with an initial minimal data set and goes only until a local
optimal point before conducting resource optimization. When
compared to the global maximum value of the two-step
model, it is only a matter of an unlikely coincidence that
the heuristic model would find the global maximum. On the
other hand, the power of the decision tree clearing function
comes from integrating the costs of the resources and the
generated value together into the optimization model. This
strength comes forward in cases where resource costs balance
the values, and the final results are close to zero, or negative.

The second observation is based on the heuristic method.
The heuristic method starts with an initial feasible solution
which has minimum adequate resources and increases the
resources based on the highest improvement. The method
stops at a given limit of a maximum number of resources.
Unlike the other two models, the heuristic model does
not need any sample data. Hence, the method itself uses
simulations to find the highest improvement at each node.
In a case where the heuristic model ends at 11 steps as in the
base scenario above, 396 simulations are conducted, where
the minimum number of base data for the other two steps is
1000. Thus, the total number of simulations and necessary
computation time is much smaller for the heuristic method.
The results of the heuristic method are very competitive with
limited data (sample size of 1000), and even for a relatively
small amount of data (sample size of 10,000) the heuristic
model can still be competitive. The heuristic model falls
behind with an increased amount of data.

The decision tree clearing function provides the best results
in all of the cost dominated sets. In these sets, the highest
value is achieved through minimum cost. In most cases, the
decision tree clearing function with the depth of five ends
at a resource distribution of six resources in total. This is a
conservative, low-cost solution.

Another significant pattern is that the decision tree clearing
function results are improving in line with decision tree depth
in profit scenarios. In both profit scenarios at sample sizes of
1000, and 10,000, the decision tree clearing function with the
depth of 15 performs better than with the depth of 10. So,
the decision tree gets better and better. Theoretically, if the
decision tree goes to a depth that is enough to include only
one result in a node, it should reach or pass all other methods,
since it should find the exact best solution. But this case is not
practically possible due to computation time at large sample
cases and is not the intent of using the decision tree clearing
function.

Table 13 summarizes the best performing methods based
on scenario types and amount of data. Taking the summary

60434

and the results into consideration, as a conclusion of the
numerical analysis, it is possible to come up with three key
findings:

1. Two-step model performs best in profit scenarios.
In both profit and cost dominated scenarios, the perfor-
mance of the two-step model increases with the amount of
data.

2. Heuristic model is competitive with limited data and
computational time. When the information level increases,
heuristic starts to be irrelevant.

3. Decision tree clearing function performs best in cost
dominated scenarios. Also, when there is reasonably good
and high amount of data, decision tree performs well. As seen
in profit cases, the method’s performance increases with
higher level of depth.

VI. CONCLUSION

In conclusion, this study introduces a novel decision tree
clearing function that effectively balances output and cost
considerations. This study is one of the pioneering works
encompassing extensive simulations of a Kanban-driven
IT team and integrating the simulation results with a
multi-capability resource optimization model.

This approach addresses complex elements of software
development such as including multiple work item types,
resources with varying capabilities, work-in-progress limits,
and blocked work items. The proposed decision tree clearing
function exhibits superior performance against benchmark
models under the studied parameters.

However, software development is a dynamic process
filled with uncertainties. Despite our model’s performance,
potential enhancements exist. Future enhancements might
include integrating lead and cycle times, enhancing work
efficiency, and improving resource utilization strategies.
We could further optimize the model by incorporating
lead and cycle times, work efficiency, resource utiliza-
tion, prioritization, and multi-capability resource alloca-
tion. Furthermore, considering the dynamic and uncer-
tain nature of software development, integrating stochas-
tic models or robust optimization approaches could be
beneficial.

Our proposed model does require extensive computation
and simulation, a recognized limitation. Future research
could aim to streamline the computational process or
devise faster solution methods. Despite the mentioned
limitations, this work presents a significant step forward,
offering a comprehensive tool for IT leaders to optimize
their decision-making and team management process in a
challenging, fast-paced environment.

APPENDIX

PARAMETERS OF THE SIMULATION MODEL

Parameters of the simulation model are collected from a telco
company. Table 14 explains processing times and block times
as input parameters for the simulation.

VOLUME 12, 2024

C. Ertaban, E. Albey: Simulation Based Resource Optimization Using a Decision Tree Clearing Function

IEEE Access

TABLE 14. Processing and block times as parameters.

Station
Analysis no Block
Analysis to Block

Analysis after Block
Analysis Block
Development no Block
Development to Block
Development after Block
Development Block
Test no Block

Expression
LOGN(26.3, 67.6)
LOGN(32, 70.4)
53*BETA(0.438, 0.438)
2 + EXPO(36.3)
WEIB(34.1, 0.988)
WEIB(31.2, 1.06)
LOGN(28.9, 59.1)
2+ LOGN(24.3, 46.9)
EXPO(26.6)

Test to Block 0.999 + EXPO(16.1)
Test after Block 1 + EXPO(15.6)
Test Block 1 + WEIB(23.9, 0.703)

In addition to these parameters, the block percentages are
based on the same data provided in Table 15.

TABLE 15. Block probabilities.

Station Block Probability
Analysis 18.45 %
Development 35.42 %
Test 19.59 %
ACKNOWLEDGMENT

For the purpose of editing and grammar enhancement,
OpenAi GPT-4 is used in this article.

REFERENCES

[1] K. Beck et al.,, “Manifesto for agile software development,” 2001.
[Online]. Available: https://agilemanifesto.org/

[2] S. Denning, “Why agile is eating the world,” vol. 2, 2018. [Online].
Available: https://www.forbes.com/sites/stevedenning/2018/01/02/why-
agile-is-eating-the-world%E2%80%8B %E2%80%8B/

[3] H. Lei, F. Ganjeizadeh, P. K. Jayachandran, and P. Ozcan, “A statistical
analysis of the effects of scrum and Kanban on software development
projects,” Robot. Comput.-Integr. Manuf., vol. 43, pp. 59-67, Feb. 2017.

[4] D. J. Anderson, Kanban: Successful Evolutionary Change for Your
Technology Business. Washington, DC, USA: Blue Hole Press, 2010.

[5] J. Howl, “Queueing systems,” Automatica, vol. 3, nos. 3—4, pp. 231-244,
1966.

[6] A.K. Erlang, “Sandsynlighedsregning Og telefonsamtaler,” Nyt tidsskrift
for Matematik, vol. 20, pp. 33-39, Oct. 1909.

[71 W. J. Stewart, Probability, Markov Chains, Queues, and Simulation:
The Mathematical Basis of Performance Modeling. Princeton, NJ, USA:
Princeton Univ. Press, 2009.

[8] G. Franzl, “Queueing models for multi-service network,” Ph.D. disserta-
tion, Inst. Telecommun., Tech. Univ. Vienna, Vieanna, Austria, 2015.

[9] V. Tardif and L. Maaseidvaag, “An adaptive approach to controlling
Kanban systems,” Eur. J. Oper. Res., vol. 132, no. 2, pp.411-424,
Jul. 2001.

[10] D.P. Gaver, “A waiting line with interrupted service, including priorities,”
J. Roy. Stat. Soc. Ser. B, Stat. Methodol., vol. 24, no. 1, pp. 73-90,
Jan. 1962.

[11] Y. Pan, M. Zhou, and Z. Chen, “Simulation-based optimization for
resource allocation at TPL systems,” Int. J. Ind. Eng., Theory, Appl., Pract.,
vol. 19, no. 2, pp. 1-12, 2012.

[12] J. A. Garcia-Garcia, J. G. Enriquez, M. Ruiz, C. Arévalo, and A. Jiménez-
Ramirez, “Software process simulation modeling: Systematic literature
review,” Comput. Standards Inter., vol. 70, Jun. 2020, Art. no. 103425.

[13] U. S. Karmarkar, “Capacity loading and release planning with work-
in-progress (WIP) and leadtimes,” J. Manuf. Oper. Manage., vol. 2,
nos. 105-123, p. 37, 1989.

[14] A. Pellegrini, P. D. Sanzo, B. Bevilacqua, G. Duca, D. Pascarella,
R. Palumbo, J. J. Ramos, M. A. Piera, and G. Gigante, *“Simulation-based
evolutionary optimization of air traffic management,” IEEE Access, vol. 8,
pp. 161551-161570, 2020.

VOLUME 12, 2024

[15] H.-P. Hsu, C.-C. Chou, and C.-N. Wang, ‘“‘Heuristic/Metaheuristic-
based simulation optimization approaches for integrated scheduling of
yard crane, yard truck, and quay crane considering import and export
containers,” IEEE Access, vol. 10, pp. 64650-64670, 2022.

[16] V. Baradaran and B. Akhavan, “Determining number of withdrawal
Kanban using bi-level optimization and simulation approaches,” Int. J. Ind.
Eng., vol. 26, no. 2, pp. 1-22, Mar. 2019.

[17]1 E. Weflen, C. A. MacKenzie, and I. V. Rivero, “An influence diagram
approach to automating lead time estimation in agile Kanban project
management,” Expert Syst. Appl., vol. 187, Jan. 2022, Art. no. 115866.

[18] J. Pahl, S. VoB, and D. L. Woodruff, “Production planning with load
dependent lead times,” 4OR, vol. 3, no. 4, pp. 257-302, Dec. 2005.

[19] A. Srinivasan, M. Carey, and T. E. Morton, Resource Pricing and
Aggregate Scheduling in Manufacturing Systems. Pittsburgh, PA, USA:
Carnegie Mellon University, 1988.

[20] S.C. Graves, “A tactical planning model for a job shop,” Operations Res.,
vol. 34, no. 4, pp. 522-533, Aug. 1986.

[21] E. Albey, U. Bilge, and R. Uzsoy, “An exploratory study of disaggregated
clearing functions for production systems with multiple products,” Int.
J. Prod. Res., vol. 52, no. 18, pp. 5301-5322, Sep. 2014.

[22] E. Albey, U. Bilge, and R. Uzsoy, “Multi-dimensional clearing functions
for aggregate capacity modelling in multi-stage production systems,” Int.
J. Prod. Res., vol. 55, no. 14, pp. 4164—4179, Jul. 2017.

[23] N.O. Baycik, ‘““Machine learning based approaches to solve the maximum
flow network interdiction problem,” Comput. Ind. Eng., vol. 167,
May 2022, Art. no. 107873.

[24] S. Lee and C.-H. Jun, “A novel split selection of a logistic regression tree
for the classification of data with heterogeneous subgroups,” Int. J. Ind.
Eng., Theory, Appl. Pract., vol. 30, no. 2, pp. 1-16, 2023.

[25] C.-H.Hsu, “Optimal decision tree for cycle time prediction and allowance
determination,” IEEE Access, vol. 9, pp. 41334-41343, 2021.

[26] C.Ertaban and E. Albey, ““Optimization of workflow and output in Kanban
teams through machine learning,” Manuscript Submitted Publication,
vol. 11, no. 1, Dec. 2024, Art. no. 2179123.

[27] F. Pedregosa, S. Varoquaux, A. Gramfort, V. Michel, and B. Thirion,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, Dec. 2011.

CIHANGIR ERTABAN (Member, IEEE) received
the B.S. degree in management engineering from
Istanbul Technical University, in 2007, and the
M.S. degree in industrial engineering from Bogaz-
ici University, Istanbul, in 2011. In 2017, he started
the Ph.D. studies with Ozyegin University,
Istanbul.

He worked in the banking, tech, and consulting
industries as a Business Analyst, the Project
Manager, a Product Owner, and an Agile Coach.
He is currently a Professional Coach certified by the International Coaching
Federation. He is the Senior Manager of Global Consulting Company, with
a focus on agile ways of working, including Kanban. His research interests
include team performance, agile in education, managing agile teams, and
Kanban. He published and spoke at multiple conferences, including XP,
Agile Prague, and Forward 3.0.

ERINC ALBEY received the bachelor’s, master’s,
and Ph.D. degrees from the Department of Indus-
trial Engineering, Bogazici University.

After completing the Ph.D. degree, in 2012,
he was a Postdoctoral Researcher with North
Carolina State University, where he also taught
courses in operations research and production
systems. He is currently an Assistant Professor
and the Director of the OzUBEX Digital Trans-
formation Center, Ozyegin University. During his
academic career, he has worked on projects in collaboration with companies,
such as SAP, Intel, and Novartis. In addition to his academic work, he has
managed the analytics team at a firm specializing in customer analytics and
developed various predictive models. His areas of research interests include
optimization, planning and scheduling, predictive modeling, and applications
of mathematical modeling and simulation in flexible production systems.

60435

