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ABSTRACT This paper proposes a parallel implementation of the Bron-Kerbosch algorithm, which finds all
maximal cliques in large, complex graphs using CPU and thread-level parallelism and distributed memory
with multiple cores. With the growing size and complexity of modern graphs, sequential algorithms can
become impractical, making parallel computation a promising solution for reducing duration and enhancing
scalability. Decomposing the graph into smaller components and distributing the workload across multiple
threads using task parallelism is the proposed method. To optimise the algorithm’s efficacy across processes,
load-balancing techniques are also investigated. The modified Bron-Kerbosch algorithm is implemented
and evaluated on a variety of large graphs, exhibiting significant runtime and scalability enhancements over
the sequential version. The conclusion of the paper discusses the prospective applications of the parallel
Bron-Kerbosch algorithm in a variety of domains, including social network analysis, bio informatics, and
network security. Overall, this research contributes to the expanding body of work on parallel computing and
graph analysis by emphasising the advantages of CPU and thread-level parallelism for efficiently solving
complex computational problems.

INDEX TERMS Distributed memory, Bron-Kerbosch algorithm, parallel computing, high-performance
computing, graph theory, maximal cliques, social network analysis, bio-informatics, network security,
performance optimization, scalability, compute nodes, compute threads.

I. INTRODUCTION
The goal of this paper is to propose a parallel imple-
mentation of the Bron-Kerbosch algorithm for locating all
maximal cliques in large graphs using CPU and parallel
programming techniques such as task parallelism which
involves decomposing the algorithm into smaller tasks to be
executed concurrently and data parallelism by dividing the
data across multiple processors to perform the same operation
independently. This approach is effective for algorithms with
many independent tasks or large data sets such as graphs.

Maximal clique is a subgraph where every vertex is
connected to every other vertex in the subgraph and which
cannot be extended by including one more adjacent vertex.
Finding all maximal cliques in a graph is NP-hard because
the number of potential cliques grows exponentially with the
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graph size, making it computationally intensive to identify
every clique without a known polynomial-time solution.

Fig 1 and Fig 2 illustrate the NP-complete problem of
locating maximal cliques in graphs. It emphasises the signif-
icance of locating maximum cliques and the computational
complexity that makes sequential algorithms impracticable
for large datasets.

The Fig 3 contains multiple cliques, but only the blue
and red polygons are maximal cliques. By adding more
neighbouring vertices to the set, maximal cliques cannot
be created further. It is essential to observe that maximum
cliques and maximal cliques are distinct. A maximum clique
is a clique in a network that cannot contain more vertices than
any other clique, which is referred to as the clique count of
a graph. Although a maximum clique is always maximal, the
converse is not always the case.

To circumvent this, the authors propose a modified parallel
version of the Bron-Kerbosch algorithm to decrease the total

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 59575

https://orcid.org/0009-0001-9919-4268
https://orcid.org/0000-0002-0083-6516
https://orcid.org/0009-0005-6902-622X
https://orcid.org/0000-0002-7216-2207
https://orcid.org/0000-0002-1094-1985


T. R. Rote et al.: Distributed Memory Implementation of Bron-Kerbosch Algorithm

FIGURE 1. Example of maximal cliques.

FIGURE 2. Example of maximum cliques.

FIGURE 3. Graph having both maximum and maximal cliques.

duration for locating the largest clique in a graph using
parallel computing.

The novelty of this research paper lies in its integra-
tion of CPU and thread-level parallelism to optimize the

Bron-Kerbosch algorithm, contrasting previous works that
predominantly focused on GPU-accelerated computations.
While GPU acceleration has been shown to significantly
reduce runtime by leveraging massive parallelism, it presents
challenges including higher development complexity, greater
demand for specialized hardware, and potential underutiliza-
tion in environments not optimized for GPU resources.

Ourmethodology addresses these challenges by employing
a more accessible, cost-effective approach that exploits the
ubiquitous nature of multi-core CPUs and the inherent
parallelism of modern computing environments.

Moreover, our work contributes to the field by enhancing
load balancing and scalability through sophisticated thread
management and data distribution techniques, ensuring
efficient utilization of CPU resources. This is particularly
relevant for applications in domains without access to spe-
cialized GPU hardware or where the economic implications
of deploying GPU-based solutions are prohibitive.

Overall, the research paper presents a novel approach to
parallelizing the Bron-Kerbosch algorithm that leverages the
power of CPU and thread-level parallelism to accelerate
the computation and improve load balancing, with potential
applications in various domains, including social network
analysis, bioinformatics, and network security. This paper
presents a parallel implementation of the Bron-Kerbosch
algorithm, which utilizes CPU and thread-level parallelism
and distributed memory with multiple cores to find all the
largest cliques in a large complex graph. The key contribution
of our methodology, set against GPU-accelerated methods,
includes addressing the accessibility and scalability chal-
lenges while maintaining competitive performance, marking
a significant advancement in the parallel computing land-
scape for the Bron-Kerbosch algorithm.

II. RELATED WORKS
Wei et al. [1] addressed the problem of accelerating the
Bron-Kerbosch algorithm for maximal clique enumeration
using GPUs. The Bron-Kerbosch algorithm is a widely-used
algorithm for finding all maximal cliques in an undirected
graph, but it can be computationally expensive for large
graphs. They proposed a parallel implementation of the
algorithm using GPUs to significantly reduce the compu-
tation time. Their approach involved partitioning the input
graph into sub-graphs and processing each sub-graph in
parallel on a GPU, which allowed for efficient processing of
large graphs with billions of edges. The authors evaluated
their approach on various real-world datasets and showed
that it achieved significant speedup compared to CPU-based
implementations, demonstrating the effectiveness of their
approach in accelerating the Bron-Kerbosch algorithm. Conte
and Tomita [2] analyzed the overall and delay complexity
of the CLIQUES and Bron-Kerbosch algorithms, which
are two widely-used algorithms for finding all maximal
cliques in an undirected graph. They presented a theoretical
analysis of these algorithms and derived upper and lower
bounds on their overall and delay complexity. Their analysis
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showed that the Bron-Kerbosch algorithm has a higher overall
complexity but a lower delay complexity than the CLIQUES
algorithm. Moreover, the authors proposed a modification to
the Bron-Kerbosch algorithm to reduce its overall complexity
while maintaining its low delay complexity. Their approach
involved pruning the search space by exploiting the structure
of the input graph. The authors also evaluated their approach
on various real-world datasets and showed that it achieved
significant speedup compared to the original Bron-Kerbosch
algorithm. The study provides valuable insights into the
theoretical complexity of the CLIQUES and Bron-Kerbosch
algorithms and offers a practical approach to improve the
efficiency of the Bron-Kerbosch algorithm. The paper by
Brosowsky et al. [3] explores the problem of finding maximal
skew sets of lines on a Hermitian surface, which has
applications in coding theory and algebraic geometry. They
introduced a new algorithm based on the Bron-Kerbosch
algorithm for solving this problem efficiently. Their approach
involved modifying the Bron-Kerbosch algorithm to work
on the incidence graph of lines and points on the Hermitian
surface, and using this modified algorithm to find maximal
skew sets of lines. The authors showed that their algorithm
outperformed existing algorithms for the problem on various
test cases. Their study contributes to the development of
efficient algorithms for finding maximal skew sets of lines on
a Hermitian surface, which has important applications in var-
ious fields. Zaitseva et al. [4] examines the problem of finding
a compromise solution in economic competition, where
multiple parties compete to achieve their own objectives
while facing conflicting constraints. The authors proposed
a new approach based on the compromise programming
method to find a compromise solution that satisfies the
objectives of all parties and minimizes the deviation from
their ideal solutions. Their approach involved formulating the
problem as a mathematical optimization problem and solving
it using a specialized algorithm. The authors demonstrated
the effectiveness of their approach on various test cases and
showed that it outperformed existing approaches for finding
a compromise solution in economic competition. Their study
provides a valuable contribution to the field of economics
and offers a practical approach to addressing the problem
of finding a compromise solution in economic competition.
The paper by Besta et al. [5] addresses the problem
of efficiently performing graph mining on processing-in-
memory systems. They proposed a new instruction set
architecture (ISA) called Sisa, which is designed specifically
for graph processing and is set-centric in nature. Their
approach involved designing a set of new instructions that
operate on sets of data, rather than individual data elements,
and implementing them on a processing-in-memory system.
The authors demonstrated the effectiveness of their approach
on various test cases and showed that it outperformed
existing graph processing architectures. Their study provides
a valuable contribution to the field of computer architecture
and offers a practical solution to the problem of efficient

graph mining on processing-in-memory systems. The paper
by Sade and Cohen [6] addresses the problem of diverse
enumeration of maximal cliques, which involves finding all
possible subsets of nodes in a graph that form complete
subgraphs, while ensuring that the enumerated cliques are
diverse in terms of their size and structure. They proposed
a new algorithm based on a divide-and-conquer strategy
that combines different enumeration techniques to achieve
both efficiency and diversity. The authors demonstrated the
effectiveness of their approach on various test cases and
showed that it outperformed existing algorithms for diverse
enumeration of maximal cliques. Their study provides a
valuable contribution to the field of graph mining and offers
a practical solution to the problem of diverse enumeration
of maximal cliques. The paper by Coppola and Elgazzar [7]
proposes novel machine learning algorithms for detecting
centrality and cliques in YouTube social networks. They
first extract the social network from YouTube data and then
apply their algorithms to identify the most important nodes
(i.e., those with high centrality) and cliques (i.e., groups of
nodes with strong connections). The authors show that their
approach outperforms traditional algorithms for centrality
and clique detection in terms of accuracy and efficiency. The
study demonstrates the potential of machine learning tech-
niques for analyzing large-scale social networks and provides
valuable insights into the structure and dynamics of YouTube
communities. The paper by Prinz [8] presents a method for
computing the maximum common edge sub-graph (MCES)
of two molecular graphs. The MCES is an important problem
in chemistry as it can help identify structural similarities
between molecules, which is useful for drug design and
other applications. The author proposes an efficient algorithm
based on a dynamic programming approach that can handle
large molecular graphs with thousands of vertices and edges.
The proposed algorithm has been shown to outperform
existing methods for MCES computation on a benchmark
dataset. The study provides a valuable contribution to the
field of computational chemistry and highlights the potential
of dynamic programming techniques for solving complex
graph problems. The paper by Pasternak et al. [9] proposes a
method for identifying protein function and functional links
based on large-scale co-occurrence patterns. The authors use
data from the STRING database to construct a co-occurrence
network of proteins, where edges between nodes represent
the frequency of co-occurrence across different biological
processes. They then apply a community detection algorithm
to identify clusters of proteins with similar co-occurrence
patterns and infer their functional annotations. The proposed
method was shown to achieve high accuracy in predicting
protein functions and identifying functional links between
proteins. The paper by Gianinazzi et al. [10] presents parallel
algorithms for finding large cliques in sparse graphs. The
authors propose two algorithms based on the Bron-Kerbosch
algorithm, a popular algorithm for clique enumeration. The
first algorithm uses a vertex-centric approach and the second
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algorithm uses a set-centric approach, where the set of can-
didate vertices for each recursive call is stored explicitly. The
authors demonstrate that their parallel algorithms can achieve
high speedup on large-scale sparse graphs, outperforming
existing state-of-the-art algorithms for clique enumeration.
The study highlights the importance of parallel computing in
graph algorithms and provides useful insights for optimizing
clique enumeration on modern parallel architectures. The
paper by Almasri et al. [11] presents a parallelization
approach for maximal clique enumeration on GPUs. The
authors propose a new parallel algorithm that exploits the par-
allelism of GPUs and improves the performance of the Bron-
Kerbosch algorithm. The approach is based on a workload
balancing scheme that distributes the computation across
multiple GPUs. The experimental results show that their
approach outperforms existing CPU-based implementations
and achieves significant speedup compared to serial GPU
implementations. In the paper by Zhou et al. [12], the authors
focus on the problem of enumerating maximal k-plexes,
a generalization of the maximal clique problem. The paper
presents a new algorithm that guarantees a worst-case time
complexity of O(n2k2), where n is the number of nodes in
the graph and k is the size of the k-plex. The algorithm is
based on a novel pivoting strategy and pruning techniques
that reduce the search space. The experimental results show
that their algorithm outperforms existing algorithms in terms
of running time and scalability. In the paper by Jain and
Seshadhri [13], the authors propose a new algorithm for exact
clique counting that leverages the power of pivoting. The
algorithm is based on the concept of a pivot vertex, which
is a vertex that has high degree and forms many cliques. The
algorithm uses a dynamic programming approach to compute
the number of cliques that contain the pivot vertex and the
number of cliques that do not contain it. The experimental
results show that their algorithm outperforms existing state-
of-the-art algorithms in terms of running time and memory
usage. Jin et al. [14] proposes a new algorithm for enu-
merating maximal cliques in large graphs, called FastEC.
The algorithm relies on a divide-and-conquer approach to
tackle the scalability issue, and it employs a novel data
structure called clique tree to speed up the computation. The
authors show that their algorithm outperforms state-of-the-
art methods in terms of both time and memory efficiency on
several benchmark datasets. Kurita et al. [15] propose a Pauli
string partitioning algorithm based on the Isingmodel to solve
the simultaneous measurement problem in quantum com-
puting. The proposed algorithm can efficiently decompose
a large-scale quantum state into smaller subsystems, which
enables the simultaneous measurement of each subsystem.
The authors demonstrate the effectiveness of their method on
various quantum systems and show that it outperforms other
existing methods in terms of the number of measurements
required. Yamout et al. [16] present parallel algorithms for the
vertex cover problem on GPUs. They propose two different
algorithms based on the maximal independent set and the

edge coloring approaches, respectively. The authors show
that their parallel algorithms can significantly speed up the
computation compared to their sequential counterparts on
various large-scale graphs. The proposed methods can be
useful in various applications, such as network optimization
and social network analysis. The paper by Moussa et al. [17]
presents a genetic algorithm for solving the maximum
clique problem. The genetic algorithm uses a population
of candidate solutions and applies genetic operators such
as crossover and mutation to generate new solutions. The
fitness of each solution is evaluated based on the size of the
clique it represents. The authors evaluate the performance
of their algorithm on a set of benchmark instances and
compare it with other state-of-the-art algorithms. The paper
by Afeefi [18] presents IMSD (Interactive Methods for
Finding Similar or Diverse Answer Sets), a system for
finding similar or diverse answer sets to user queries. The
system uses an algorithm based on the maximum clique
problem to identify sets of related items. The algorithm
generates a graph representation of the items and applies
a clique-finding algorithm to identify sets of related items.
The author evaluates the performance of the system on
a dataset of movie recommendations and shows that it
outperforms other state-of-the-art methods. The paper by
Karcı [19] discusses finding innovative and efficient solutions
to NP-hard and NP-complete problems in graph theory.
The author presents a review of various techniques and
algorithms for solving these problems, including heuristic
algorithms, metaheuristic algorithms, and exact algorithms.
The author also discusses the limitations and challenges of
these approaches and proposes some directions for future
research. Brighen et al. [20] address the problem of listing all
maximal cliques in large graphs on a vertex-centric model.
They propose a novel approach based on a vertex-centric
algorithm, which works by performing a depth-first search
traversal of the graph to identify each vertex’s neighbors and
their neighbors, forming a clique if all vertices are adjacent.
They then extend the search by filtering out vertices that
cannot belong to any maximal cliques and continue searching
for the maximal cliques until no more cliques can be found.
The authors report that their algorithm is highly scalable,
efficient, and effective in identifying maximal cliques in large
graphs.

Baudin et al. [21] focus on the problem of maximal
clique enumeration in large real-world link streams, which
are time-varying graphs that model the interactions between
entities over time. They propose a new algorithm called
FAME, which relies on a series of preprocessing steps
to extract frequent subgraphs from the link stream data.
They then use these subgraphs to guide the enumeration of
maximal cliques, reducing the search space and improving
the algorithm’s efficiency. The authors report that FAME
outperforms existing state-of-the-art algorithms on large
real-world link streams in terms of both runtime and
memory usage. Blanuša et al. [22] tackle the problem
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of clique enumeration on many-core architectures, which
are highly parallel computing systems that can perform
many computations simultaneously. They propose a novel
algorithm called KEC, which is designed to take advantage
of the high parallelism offered by many-core architectures.
KEC works by partitioning the vertices of the graph into
subsets and processing each subset on a separate core,
using fast set intersection operations to identify the maximal
cliques within each subset. The authors report that KEC
outperforms existing state-of-the-art algorithms on many-
core architectures, achieving significant speedup over the
CPU-based implementations. Blanuša et al. [23] presents
a parallelization approach for maximal clique enumeration
on modern manycore processors. The authors use the Bron-
Kerbosch algorithm, which is a popular algorithm for finding
all maximal cliques in an undirected graph. They propose
a parallel implementation of the Bron-Kerbosch algorithm
using OpenMP and show that it achieves good perfor-
mance on manycore processors. Besta et al. [24] introduces
Graphminesuite, a framework for high-performance and
programmable graph mining algorithms with set algebra. The
authors provide a set of graph mining primitives, including
maximal clique enumeration, and show how they can be
combined to implement various graph mining algorithms.
The framework is designed to be highly scalable and can take
advantage of parallelism on both CPUs and GPUs. Lyu and
Mishra [25] discusses the problem of activating rare triggers
in hardware trojans. The authors propose a method based on
repeated maximal clique sampling to identify the minimal set
of triggers that can activate a trojan. They show that their
method can be used to activate hardware trojans that are
otherwise difficult to activate, and that it is scalable to large
designs.

The papers discussed above face the common problem
of efficiently enumerating all maximal cliques in large-scale
graphs. To tackle this problem, several papers propose paral-
lel algorithms, including those that utilize modern manycore
processors and GPUs. Additionally, many of the papers
focus on improving the speed and scalability of maximal
clique enumeration by utilizing efficient data structures,
such as set intersections and bit vectors. Some papers also
use heuristics and approximation algorithms to reduce the
complexity of the problem. Overall, the common solutions
implemented include parallelization, efficient data structures,
and heuristics/approximation algorithms to improve the
speed and scalability of maximal clique enumeration.

A. MOTIVATION & JUSTIFICATION
The Distributed Memory Implementation of the Bron-
Kerbosch Algorithm using Java threads is a paper motivated
by the need for efficient and scalable algorithms for analyzing
complex graphs amidst the exponential growth of big data.
This need is particularly pressing in fields such as social
network analysis, bioinformatics, and network security,
where graphs are commonly employed to represent data.

Analyzing these graphs is crucial for extracting meaningful
information from the vast amounts of data being generated
and collected.

The Bron-Kerbosch algorithm, a cornerstone method for
identifying all maximal cliques in an undirected graph, has
significant practical applications across various domains.
However, its high computational demand, especially for large
graphs, renders it impractical for execution on a single pro-
cessor. This challenge underscores the necessity for parallel
implementations of the algorithm that can harness the com-
putational capabilities of contemporarymulti-core processors
and distributed computing environments. The paper on the
Distributed Memory Implementation of the Bron-Kerbosch
Algorithm using Java threads responds to this necessity by
delivering an efficient and scalable parallel implementation.
The adaptation of Java threads in this context leverages
the distributed memory architecture of high-performance
computing systems, enabling the algorithm to efficiently
process large graphs containing millions of vertices and
edges. This implementation incorporates advanced strategies
such as load balancing, task parallelism, data partitioning, and
sophisticated memory management techniques to enhance
the algorithm’s performance. These optimizations are crucial
for addressing the inherent computational complexities and
achieving scalability and efficiency in processing large-scale
graphs.

Furthermore, by emphasizing the utilization of Java’s
concurrent programming capabilities, this paper bridges the
gap between theoretical algorithmic efficiency and practical,
scalable solutions for real-world applications. The proposed
algorithm’s potential applications extend across various
domains that demand efficient and scalable methods for
analyzing large, complex graphs. By offering a scalable
implementation of the Bron-Kerbosch algorithm, this paper
contributes significantly to the arsenal of tools and techniques
available for deriving valuable insights from complex graphs,
thereby advancing the state-of-the-art in graph analysis and
its application in critical areas of research and industry.

B. CONTRIBUTION
The contribution of this research paper lies in the develop-
ment of an efficient parallel implementation of the Bron-
Kerbosch algorithm, utilizing CPU and threads on multicore
platforms. By eliminating the traditional approach of sequen-
tial configuration creation and introducing a novel method
for computing configurations based on selected vertices,
we significantly enhance the program’s performance. This
optimization enables the algorithm to navigate the search
space more effectively, reducing the computational overhead
associated with processing large graphs.

Furthermore, the implementation leverages shared mem-
ory and a shared datastore within the multicore program to
optimize memory usage and minimize the necessity for data
duplication.

The authors have rigorously tested their implementation
on clusters of graphs to validate the approach’s applicability
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and effectiveness in critical fields such as social network
analysis, bioinformatics, and network security. These tests
demonstrate the algorithm’s capability to handle large-scale
graphs efficiently, thereby underscoring its potential for broad
application in analyzing complex network structures.

In essence, the research paper’s contribution is twofold:
it introduces a method for parallelizing the Bron-Kerbosch
algorithm on multicore platforms, and it empirically demon-
strates the method’s efficiency and broad applicability
across multiple domains. This dual contribution not only
advances the computational methodologies available for
clique detection in large graphs but also opens new avenues
for research and application in areas where efficient graph
analysis is paramount.

C. OUTLINE OF WORK
1) SEQUENTIAL PROGRAM
Outline of the sequential implementation of the Bron-
Kerbosch algorithm:

1) Initialize three sets: ‘A’ (empty set), ‘B’ (all vertices),
and ‘C’ (empty set).

2) Call the ‘BronKerbosch’ function with the three sets as
arguments.

3) In the ‘BronKerbosch’ function:
a) Check if the set ‘B’ and set ‘C’ are empty. If so,

output set ‘A’ as a set of vertices in maximal clique
and return.

b) Iterate over each vertex ‘v’ in ‘B’.
c) Recursively call ‘BronKerbosch’ with updated sets:

‘A + {v}’, ‘B ∩ neighbours(v)’, and ‘C ∩ neigh-
bours(v)’.

d) Remove ‘v’ from ‘B’ and add it to ‘C’.
4) Continue until all maximal cliques have been found.

Our solution uses the approach of task parallelism in which
we decompose the sequence alignment problem into smaller
sub-problems and perform each sub-problem in parallel. The
results of the sub-problems can then be combined to get the
final result.

2) PARALLEL PROGRAM
Outline of the parallelized implementation of the Bron-
Kerbosch algorithm using threads:

1) Initialize three sets :‘A’ (empty set), ‘B’ (all vertices),
and ‘C’ (empty set).

2) Create ‘n’ threads.
3) Divide ‘B’ into ‘n’ subsets, and assign each sub-set

to a different thread. Each thread will perform the
BronKerbosch function on its assigned sub-set.

4) In the ‘BronKerbosch’ function:
a) Check if the set ‘B’ and set ‘C’ are empty. If so,

output set ‘A’ as a set of vertices in maximal clique
and return.

b) Iterate over each vertex ‘v’ in ‘B’.

c) Recursively call ‘BronKerbosch’ with updated sets:
‘A + {v}’, ‘B ∩ neighbours(v)’, and ‘C ∩ neigh-
bours(v)’.

d) Remove ‘v’ from ‘B’ and add it to ‘C’.
5) Wait for all threads to finish.
6) Continue until all maximal cliques have been found.

In summary, the parallelized implementation of the
Bron-Kerbosch algorithm divides the work of finding max-
imal cliques among multiple threads, each operating on a
different subset of vertices. This can help to speed up the
algorithm’s runtime, particularly for large graphs.

D. COMPARISON OF EXISTING AND PROPOSED
PERFORMANCE:
Table 1 shows advantage and disadvantages of existing
algorithms. The proposed parallel implementation of the
Bron-Kerbosch algorithm would aim to speed up the
algorithm’s execution by dividing the work among multiple
threads, each of which would work on a subset of the vertices.

Assuming that the work can be perfectly divided and
there is no communication overhead between threads, we can
expect the proposed performance of the algorithm to scale
linearly with the number of threads used, up to a certain
point where the overhead of managing the threads becomes
significant. However, in practice, there may be limitations to
the scalability due to factors such as contention for shared
resources (e.g., memory access), synchronisation overhead,
and load imbalance between threads.

To compare the performance of the sequential and
proposed parallel implementations, we can measure the
execution time on a set of benchmark graphs of varying sizes
and densities and compare the results. Here is an example of
a possible comparison:

Here in Table 2, ‘n’ represents the number of vertices,
‘d’ represents the edge density (i.e., the fraction of possible
edges that are present), and the execution time is measured
in seconds. We can see that the parallel implementation
outperforms the sequential implementation for all three
graphs and that the speedup increases with the number of
threads used. However, the speedup is not linear, as we can
see from the decreasing marginal returns as we increase the
number of threads.

This is likely due to factors such as contention for shared
resources and load imbalance between threads. However
the actual performance of the parallel implementation may
depend on various factors, such as the number of available
processor cores, the memory bandwidth etc.

III. METHODOLOGY
A. CONCEPTUALIZATION AND ADMINISTRATION OF THE
SEQUENTIAL BRON KERBOSCH
Inputs:

Bron-Kerbosch algorithm is a type of recursive algorithm
for determining the maximal number of cliques in a graph.
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TABLE 1. Performance metrics and comparisons.

TABLE 2. Performance evaluation of proposed method (using both cores and threads) on various test cases.

Using three sets of vertices, the method incrementally creates
a clique. Following are the vertices of the A, B, and C sets:

A: The collection of vertices comprising the present
maximum clique.

B: The set of candidate vertices for A;
C: The set of excluded vertices for the current maximal

clique.

N(v): The set of neighboring vertices of a particular
vertex ‘v’.

Set A and set C are vacant in the method’s initial call; the
current maximal clique has not yet been identified, and there
are no vertices to reject. Set B contains every vertex in the
graph. It will choose a candidate ‘v’ for every vertex in set B
and position it in set A. It then retains only the vertices in set
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FIGURE 4. Example graph.

Algorithm 1 BronKerbosch1
Input: Graph G = (V ,E), where V is the set of

vertices and E is the set of edges
Output: All maximal cliques in G
Function BronKerbosch1(A,B,C):

if A and B are both empty then
Report A as a maximal clique;

end
for each vertex v ∈ B do

BronKerbosch1(A ∪ {v},B ∩ N (v),C ∩
N (v));
B := B \ {v};
C := C ∪ {v};

end
BronKerbosch1(∅,V ,∅);

B that are adjacent to ‘v’. This is because, in set A, a vertex
that is not connected to ‘v’ cannot be included in the proposed
maximal clique. After a recursive call with the new sets, ‘v’ is
removed from the set B and added to the excluded ‘v’. When
there are no more candidates available for selection and no
more vertices in set C.

If we want to find all the vertices in maximal cliques in Fig 4,
using the Bron-Kerbosch algorithm.

1) Initially,A= {}, B = {1, 2, 3, 4, 5, 6}, C = {}.
2) We choose vertex 1 and add it to A, so A= 1, B= 4, 2,

C= 5, 6, 3.
3) We choose vertex 4 and add it to A, so A= {1, 4}, B=

{2}, C= {5, 6, 3}.
4) We cannot add any more vertices to A, so we report A=

{1, 4} as a maximal clique.
5) We backtrack to the previous level of recursion and

remove 4 from A, so A= {1}, B= {2}, C= {5, 6, 3}.
6) We choose vertex 2 and add it to A, so A= {1, 2}, B= {},

C= {5, 6, 3, 4}.
7) We cannot add any more vertices to A, so we report A=

{1, 2} as a maximal clique.
8) We backtrack to the previous level of recursion and

remove 2 from A, so A= {1}, B= {2}, C= {5, 6, 3, 4}.

9) We choose vertex 5 and add it to A, so A= {1, 5}, B= 2,
C= 6, 3, 4.

10) We choose vertex 2 and add it to A, so A= {1, 5, 2}, B=
{}, C= {6, 3, 4}.

11) We cannot add any more vertices to A, so we report A=
{1, 5, 2} as a maximal clique.

12) We backtrack to the previous level of recursion and
remove 2 from A, so A= {1, 5}, B= {2},CX = {6, 3, 4}.

13) We choose vertex 6 and add it to A, so A= {1, 5, 6}, B=
{}, C= {2, 3, 4}.

14) We cannot add any more vertices to A, so we report A=
{1, 5, 6} as a maximal clique.

15) We backtrack to the previous level of recursion and
remove 6 from A, so A= {1, 5}, B= {6}, C= {2, 3, 4}.

16) We choose vertex 3 and add it to A, so A= {1, 5, 3}, B=
{6}, C= {2, 4}.

17) We choose vertex 6 and add it to A, so A= {1, 5, 3, 6},
B = {}, C= {2, 4}.

18) We cannot add any more vertices to ‘A’.

B. CONCEPTUALIZATION AND ADMINISTRATION OF THE
PARALLEL BRON KERBOSCH
Inputs:

Step-by-step construction of a clique using three sets
of vertices for each thread concurrently. Following are the
vertices in the A, B, and C sets:

A: The collection of vertices comprising the present
maximum clique.

B: The set of candidate vertices for A;
C: The set of excluded vertices for the current maximal

clique.
N (v): The set of neighboring vertices of a particular

vertex ‘v’.
And, ‘n’ is the number of parallel processes used to execute

the program.

’n’ is the number of threads in this pseudo-code, and tid
is the thread ID. Based on tid and n, the Parallel function
chooses a subset of B for parallel processing by the current
thread. Each thread grows the clique by adding each vertex
from the parallel subset B to the current A. The algorithm
then recursively examines the remaining vertices that can be
added to set A, which are v’s neighbours in set B. After the
recursive exploration of these new vertices, ‘v’ is removed
from set B and added to set C, indicating that it cannot be a
member of future cliques.

The Bron-Kerbosch algorithm computes the sets A, B,
and C while testing for cliques. Each thread investigates a
subtree of the recursive tree in search of cliques and reports
the maximum after reducing the individual results.

To initiate the processing of the algorithm, we deliver these
parameters to each core or worker. In an algorithm’s recursive
call, each component computes the configuration it has been
given and returns the largest clique it has identified.
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Algorithm 2 Bron-Kerbosch Algorithm With Paral-
lelization
Input: A set A of vertices in a graph, disjoint sets B

and C of vertices, the size n of the thread pool,
and the ID tid of the current thread.

Output: All maximal cliques containing vertices
from A.

Function BronKerbosch2(A, B, C, n, tid):
if A and B are both empty then

Report A as a maximal clique;
end
else

foreach v ∈ Parallel(B) do
if v mod n = tid then

BronKerbosch2(A ∪ v, B ∩ N (v),
C ∩ N (v), n, tid); B← B \ v;
C ← C ∪ v;

end
end

end
end

FIGURE 5. Thread implementation of algorithm.

The Bron-Kerbosch algorithm can be implemented in
parallel using multiple threads, multiple cores, or both. Here
is a concise overview of each method’s application:
1) Using threads: A single process spawns multiple

threads as shown in Fig 5, each of which works
on a separate subset of the input data. The threads
communicate with each other to exchange intermediate
results and synchronise their work. The main advantage
of this approach is that it’s easy to implement and can
be done using standard thread libraries available in most
programming languages. However, the drawback is that
it’s limited by the number of available cores, and the
performance may suffer due to the overhead of thread
synchronisation.

2) Using multiple cores: A multiple processes are
spawned, each of which works on a separate subset of
the input data. The processes communicate with each
other to exchange intermediate results, but they don’t
share memory. The main advantage of this approach
is that it’s more scalable than using threads since it
can take advantage of multiple cores. However, the
drawback is that it’s more complicated to implement,

and inter-process communication can be slower than
thread synchronisation.

3) Using both: In this approach, multiple processes are
spawned, and each process spawns multiple threads
to work on a subset of the input data. The threads
communicate with each other within each process,
and the processes communicate with each other to
exchange intermediate results. This approach combines
the advantages of both previous approaches: it’s scalable
and can take advantage of multiple cores, and it’s also
relatively easy to implement using standard thread and
process libraries. However, it can be more complicated
to implement than using threads alone, and inter-process
communication can still be slower than thread synchro-
nisation within a process.

If we want to find all the vertices in maximal cliques in Fig 4,
using the Bron-Kerbosch algorithm.

1) Initially,A= {}, B = {1, 2, 3, 4, 5, 6}, C = {}.
2) Each thread selects a disjoint subset of B to process in

parallel. Let’s assume that thread 1 selects {1, 2, 4} and
thread 2 selects {3, 5, 6}.

3) Thread 1 chooses vertex 1 and adds it to A, so A= {1},
B= {4, 2}, C= {5, 6, 3}.

4) Thread 2 chooses vertex 3 and adds it to A, so A= {3},B
= {5, 6}, C= {1, 2, 4}.

5) Thread 1 chooses vertex 4 and adds it to A, so A= {1,
4},B = {2}, C= {5, 6, 3}.

6) Thread 1 reports A= {1, 4} as a maximal clique.
7) Thread 1 backtracks to the previous level of recursion

and removes 4 from A, so A= {1}, B= {2}, C= {5,
6, 3}.

8) Thread 2 chooses vertex 5 and adds it to A, so A = {3,
5}, B= {6}, C= {1, 2, 4}.

9) Thread 2 chooses vertex 6 and adds it to A, so A= {3, 5,
6},B = {}, C= {1, 2, 4}.

10) Thread 2 reports A= {3, 5, 6} as a maximal clique.
11) Thread 2 backtracks to the previous level of recursion

and removes 6 from A, so A= {3, 5}, B = {6}, C = {1,
2, 4}.

12) Thread 1 chooses vertex 2 and adds it to A, so A= {1,
2}, B = {}, C = {5, 6, 3, 4}.

13) Thread 1 reports A= {1, 2} as a maximal clique.
14) Thread 1 backtracks to the previous level of recursion

and removes 2 from A, soA= {1}, B = {2},C = {5, 6,
3, 4}.

15) Thread 2 cannot add any more vertices to A, so it
backtracks to the previous level of recursion and
removes 5 from A, so A= {3}, B = {5, 6}, C = {1, 2, 4}.

16) Thread 1 chooses vertex 5 and adds it to A, so A= {1,
5},B = {2}, C = {6, 3, 4}.

17) Thread 2 chooses vertex 6 and adds it to A, so ‘A’.
18) This continues till all the maximal cliques in graph are

found.
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IV. EXPERIMENTAL DESIGN
A. PURPOSE
The purpose of this experiment is to evaluate the per-
formance of a distributed memory implementation of the
Bron-Kerbosch algorithm and compare it with the per-
formance of the sequential implementation and multi-core
implementation.

B. HYPOTHESIS
We expect that the distributed memory implementation will
provide better performance than the sequential implemen-
tation, and can scale better with an increasing number of
processors. We also expect that the multi-core implementa-
tion will outperform the distributed memory implementation
for smaller input sizes, but the distributedmemory implemen-
tation will show better performance for larger input sizes.

C. VARIABLES
1) Independent Variable: The number of processors used

for the distributed memory and multi-core and multi-
threaded implementations.

2) Dependent Variables: The execution time of the
Bron-Kerbosch algorithm for each input size.

D. EXPERIMENTAL SETUP
1) Hardware: A cluster of compute nodes connected via

a high-speed network will be used for the distributed
memory implementation. Each compute node will be
equipped with a multi-core processor and a sufficient
amount of memory to support the execution of the
algorithm. For the multi-core implementation, a single
compute node with an 8-core processor will be used.
However, for the sake of our experiments and to
facilitate a fair comparison, as shown in Table 2,
we limited the usage to 4 cores out of the available 8.

2) Software: The Bron-Kerbosch algorithm will be imple-
mented in Java using threads. The distributed memory
implementation will use a message passing interface
(MPI) library that is used for inter-process com-
munication along with PJ2 library. The multi-core
implementation will use the Java threading library for
intra-process communication.

3) Input Data: Randomly generated undirected graphs will
be used as input data. The input size will vary from
small to large graphs, with 50 to 500 vertices and 500 to
5000 edges.

4) Experimental Procedure:
a) Sequential Implementation: The sequential imple-

mentation of Bron-Kerbosch algorithm will be exe-
cuted on a single compute node.

b) Distributed Memory Implementation: The distributed
memory implementation of Bron-Kerbosch algorithm
will be executed on a cluster of compute nodes, with
the number of processors ranging from 2 to 16.

c) Multi-core Implementation: The multi-core imple-
mentation of Bron-Kerbosch algorithm will be
executed on a single compute node with a multi-
core processor, with the number of threads ranging
from 2 to 16.

d) Each implementation will be executed multiple times
to obtain the average execution time for each input
size and number of processors/threads.

5) Data Collection: The execution time of each implemen-
tationwill bemeasured using the built-in timing function
in Java. The data will be collected in a spreadsheet for
analysis.

E. DATA ANALYSIS
The data collected from each implementation will be anal-
ysed to compare the execution time for each input size and
number of processors/threads. The speedup and efficiency of
the distributed memory and multi-core implementations will
be calculated with respect to the sequential implementation.
The results will be presented in tables and graphs to facilitate
comparison and interpretation.

F. EXPERIMENTAL CONCLUSION
Based on the results of the experiment, we will draw
conclusions about the performance of the distributed memory
implementation of Bron-Kerbosch algorithm using Java and
threads, and compare it with the sequential and multi-core
implementations. We will also discuss the scalability of the
algorithm with respect to the number of processors/threads
and the input size, and identify the limitations and potential
areas for improvement.

The pseudo-code we provided is a parallelized version
of the Bron-Kerbosch algorithm for finding all maximal
cliques in an undirected graph. Parallelization is achieved
by partitioning the vertices into disjoint subsets that can be
processed in parallel by different threads.

The Table 3 illustrates that the parallel implementation
of the Bron-Kerbosch algorithm significantly outperforms
its sequential counterpart across various graph sizes and
densities. For instance, on a graph with 50 vertices and a
density of 0.2 (Graph 1), the parallel approach with four
cores reduces the computation time to 0.5 seconds from the
1.2 seconds required by the sequential method using a single
thread. This performance improvement becomes even more
pronounced with increase in vertices. For Graph 3, which has
200 vertices and a density of 0.8, the parallel method with
eight threads completes the task in 519.7 seconds, markedly
faster than the 1364.5 seconds needed by the sequential
method.

The comparison Table 6 clearly illustrates the significant
improvements achieved by our proposed parallel CPU imple-
mentation of the Bron-Kerbosch algorithm over its sequential
counterpart and with GPU implementation of algorithm by
Wei et al. [1]. With the CPU running in parallel mode
(using both cores and threads), the algorithm demonstrates
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TABLE 3. Runtime comparison of proposed method(using threads) on various small graphs.

considerable reductions in runtime: from 355.025 seconds
down to 236.683 seconds for graphs with 3,484 edges,
and similarly substantial decreases for larger graphs. This
enhancement showcases the effective utilization ofmulti-core
processors to expedite computational tasks.

While the GPU times indicate shorter runtimes, which
is expected due to the GPU’s architecture designed for
highly parallel tasks, our research emphasizes the practicality
and benefits of parallel CPU implementations. This is
especially relevant in scenarios where GPU resources may
not be readily available or where the economic and power
consumption considerations favor CPUs. Our findings con-
tribute to the existing body of knowledge by demonstrating
that CPU-based parallelism remains a viable and valuable
approach to solving complex computational problems, offer-
ing a cost-effective alternative to GPU acceleration without
the need for specialized hardware.

V. PERFORMANCE EVALUATION
Here are the performance metrics are used to evaluate the
performance of this algorithm:

1) Execution duration: The time taken by the algorithm
to complete its execution. The algorithm’s parameters
include the number of vertices, the size of the input
graph, and the system’s hardware specifications.

2) Speedup: The ratio of algorithm execution time on a
single processor to algorithm execution time on multiple
processors. The algorithm’s parameters include the
number of processors used, the extent of the input graph,
and the system’s hardware specifications.

3) Efficiency: The ratio of the speedup obtained by the
algorithm to the number of processors used. The
algorithm’s parameters include the number of proces-
sors used, the extent of the input graph, and the system’s
hardware specifications.

The Table 2 provides performance evaluation for two
different approaches i.e. sequential implementation to paral-
lel implementation using both threads and cores (proposed
method) for computing somemetrics on graphs, using either a
single processor core or multiple cores with multiple threads.
The table contains information about the graph size, number
of edges, density, sequential time, parallel time, speedup, and
efficiency for each case.

Looking at the Table 2, we can see that the multicore with
threads (proposed method) approach generally outperforms
the parallel approach for larger graph sizes, achieving

higher speedup and efficiency. This is because the multicore
approach utilises multiple cores and threads, allowing for
more parallelism and efficient use of resources.

For smaller graph sizes, multicore with threads (proposed
method) approach also performs slightly better, but the
difference is not significant. It is also worth noting that the
speedup and efficiency decrease as the number of threads
increases, which could be due to factors such as increased
overhead or contention for resources.

Overall, the Table 2 shows that using multiple cores and
threads can significantly improve performance for graph-
related computations, especially for larger graphs. However,
careful consideration must be given to factors such as the
number of threads used and the available resources to achieve
optimal performance.

In Fig 6(a), We are comparing the speedup of three differ-
ent graphs (Graph 1(200,3978), Graph 2(200, 12049), Graph
3(200, 9876)) with increasing number of workers/threads (1,
4, 8, 16). The x-axis is used to represent the no.of workers,
while the y-axis is used to represent the speedup. The graph
shows that as the no. of workers increases, the speedup
also increases. However, the speedup gain is not the same
for all graphs. Graph 1 has the lowest speedup among the
three, while Graph 3 has the highest speedup. The difference
in speedup gain between the three graphs becomes more
significant as the number of workers increases. Overall, the
graph provides a visual representation of the performance
comparison for different numbers of threads in the three
graphs. Table 5 also provides performance of graphs for
different number of threads and time taken by the algorithm
for each graph.

In Fig 6(b), the graph shows the performance comparison
of two different graphs (Graph 1(200,9876), Graph 2(200,
12049)) on different numbers of cores ranging from 1 to 8.
The X-axis represents the number of cores used for compu-
tation, while the Y-axis represents the speedup obtained with
respect to a single core.

From the Table 4 and Fig 6(b), we can observe that the
speedup increases as there is increase in the no. of cores used
for computation, which is expected as more cores imply more
parallelism and faster computation. We can also observe that
Graph 2 is relatively slower compared to Graph 1, as the
speedup values for Graph 2 are lower than those for Graph
1 for all the tested number of cores.

Overall, the both Fig 6(a) and Fig 6(b) provides a visual
representation of the performance improvement achieved by
parallelizing the computation on multiple cores.

VOLUME 12, 2024 59585



T. R. Rote et al.: Distributed Memory Implementation of Bron-Kerbosch Algorithm

FIGURE 6. Performance comparison.

TABLE 4. Speedup achieved by proposed method by using cores.

TABLE 5. Speedup achieved by proposed method (using both cores and threads) by using threads.

TABLE 6. Runtime comparison of proposed method with sequential and GPU by Wei et al. [1].

A. RESULTS DISCUSSION
From Table 2, we can see that, proposed approach of using
multiple cores and threads for computation of maximal
cliques outperforms the sequential implementation and

greater speedup and efficiency can be achieved with increase
in number of threads and cores used for computation.

Also, Table 5 indicates that as the number of work-
ers/threads increases, so does the speedup, although
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the speedup benefit is not uniform across all graphs.
Graph(200,13089) has shorter runtimes,when compared to
Graph (200,9876). Similar performance is seen in runtime
of proposed algorithm on graphs (Graph(200,9876) and
Graph(200,12049)) when number of cores are increased.

This indicates that the performance boost from paralleliz-
ing the computation depends on the graph’s structure and size.

Also, from Fig 6(b) the increase in speed is proportional
to the number of cores used for computation, as anticipated,
since more cores imply more parallelism and speedier
computation. Nevertheless, we can also observe that Graph
2(200,12049) is slower than Graph 1(200,9876), as the
speedup values for Graph 2(200,12049) are lower than
those for Graph 1(200,9876) for all tested core counts.
This suggests that the performance enhancement obtained
by parallelizing the computation is also dependent on the
algorithm and input data characteristics.

However, from Table 6 we infer that, when we compare
runtime of proposed algorithm with GPU based algorithm
proposed by Wei et al. [1], runtime for GPU based algorithm
are shorter than proposed algorithm even though proposed
algorithm outperforms the sequential implementation of the
Born- kerbosch algorithm.

VI. CONCLUSION
The paper discusses the parallelization of the Bron-Kerbosch
algorithm to compute maximal cliques in large graphs
in an efficient manner. The authors employed two dis-
tinct parallelization strategies: shared memory with threads
and distributed memory with multiple cores. The shared
memory implementation displayed a near-linear speedup
up to a certain point, whereas the distributed memory
implementation demonstrated a more modest speedup due to
communication and synchronisation overhead. Additionally,
in the proposed method, we explored a hybrid approach by
leveraging both threads and multiple cores simultaneously.
This innovative strategy aimed to combine the benefits of
shared and distributedmemorymodels, potentiallymitigating
the communication overhead of distributed systems while
harnessing the computational power ofmulti-core processors.

This paper’s outcomes demonstrate the prospective advan-
tages of parallel implementations of graph algorithms such
as Bron-Kerbosch, particularly for large graphs. Parallel
implementations considerably reduced the time required
to compute maximal cliques in comparison to sequential
implementations. The acceleration increased with the number
of threads or cores used in the parallelization, but the
acceleration benefits began to diminish beyond a certain
number of threads or cores.

However, while GPU-based implementations of the
Bron-Kerbosch algorithm can achieve greater speedup, our
paper demonstrates that CPU-based approaches also have
their merits, especially in contexts where using GPUs
presents challenges. These challenges include higher devel-
opment complexity, a greater need for specialized hardware,

and potential underutilization in environments not optimized
for GPU resources.

The paper effectively demonstrated the potential for
parallelizing the Bron-Kerbosch algorithm using various
parallelization techniques. The authors suggest additional
research into optimising the communication overhead in
distributed memory implementations to achieve greater per-
formance advantages. The parallelization of graph algorithms
holds promise for more efficient processing of large graphs
in a variety of application domains, including social network
analysis, bioinformatics, and recommendation systems.
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