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ABSTRACT Automatic modulation recognition (AMR) is an essential topic of cognitive radio, which
is of great significance for the analysis of wireless signals and is one of the current research hotspots.
Traditional AMR approaches predominantly utilize raw in-phase/quadrature symbols (I/Q), amplitude/phase
(A/P), or pre-processed data (e.g., high-order cumulates, spectrum images, or constellation diagrams) as
inputs for the recognition model. However, it is difficult to achieve superior performance with only a single
type of data as input. This paper proposes a novel multi-channel hybrid learning framework that integrates
convolutional layers, Long Short-Term Memory (LSTM) layers, fully connected layers and classification
layers. The model is built for modeling spatial-temporal correlations from four signal cues (including
I/Q signals, A/P signals, I, and Q signals), which aims to explore various differences and leverage the
complements from multiple data-form. Two functions employed during the data conversion process further
enhance the non-linear representational capacity of the model, thereby boosting the recognition accuracy
of the model. Experimental results demonstrate that the proposed framework effectively addresses the
classification challenges of QAM16 and QAM64. For the RAML2016A dataset, our model achieves an
impressive recognition accuracy of 95% at an SNR of 0 dB. Extensive experiments indicate that the proposed
framework outperforms other current networks in terms of recognition accuracy.

INDEX TERMS Automatic modulation recognition (AMR), data-driven, hybrid learning, recognition
accuracy.

I. INTRODUCTION
AutomaticModulation Recognition (AMR) enables receivers
to automatically detect the modulation scheme of signals
in non-cooperative communication wireless communication
systems and has a wide range of applications in the fields of
dynamic spectrum access (DSA), cognitive radio (CR), and
signal surveillance (SS). In DSA, knowledge of the presence
of a primary user (PUs) is a prerequisite for CR users to
achieve wireless access without causing harmful interference.
Considering the complex channel environment and other
potential radio emitters, focusing only on the occupancy of
the frequency band of interest is not sufficient to identify
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the PU’s signal from nearby radio interference. Automatic
modulation classification distinguishes the modulation type
of the received radio signals and can be used as a stair
to understand the type of communication scheme and the
presence or absence of the target PU. Due to factors
such as noise, multipath fading, frequency selectivity, and
time-varying channels in real-world environments, AMR is
a significantly challenging task. Traditional AMR methods
are categorized into two types: likelihood theory-based
AMR (LB-AMR) and feature-based AMR (FB-AMR) [1].
The LB-AMR is essentially a composite hypothesis testing
method. It uses the probability density function of a random
signal to establish a hypothesis, thus determining the cost
function, obtaining a test statistic, and then comparing it
with an appropriate threshold to form a verdict criterion.
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The FB-AMR originates from the classical pattern recogni-
tion theory, which is essentially a mapping relationship and
essentially maps the original signal space to the feature space
and then to the target space. However, LB-AMR methods
have high computational complexity, and the performance of
FB-AMR depends on the rationality and completeness of the
manually crafted feature space.

Deep learning-based AMR (DL-AMR), which uses
an end-to-end structure to automatically extract features,
has achieved higher recognition accuracy with reasonable
computational complexity, achieving a revolutionary break-
through. Researchers have recently proposed various
DL-AMR methods that outperform traditional LB-AMR
and FB-AMR. Reference [1] provides a detailed analysis
of AMR research in SISO and MIMO communication
systems, categorizing deep learning frameworks into two
types based on input data: raw I/Q data and pre-processed
data, and presenting the recognition performance of various
neural network structures. Reference [2] proposes a hybrid
deep learning framework that integrates 1D convolution,
2D convolution, and LSTM layers, which achieves promising
performance. Reference [3] proposes an automatic modula-
tion classification model that combines the residual neural
network (ResNet) and the long short-term memory network
(LSTM), achieving 92% classification accuracy on the
RML2016B dataset at 18 dB SNR. Reference [4] presents
a multi-scale network for AMR and proposes a new loss
function combining the center loss and cross entropy loss.
Reference [5] proposes a multi-scale convolutional network
model based on I/Q sequences and five statistical features
called MSNet-SF. Reference [6] proposes a hybrid neural
network based on CNN and GRU using multiple statistical
features as input data. Reference [7] proposes a feed-forward
attention neural network based on ResNet and LSTM called
RLADNN. Reference [8] suggests a CNN-LSTM network
based on signal periodic features called the Intra-InterNet
network (IIN-Net). Reference [9] presents a spectral CNN
model based on a time-frequency attention mechanism for
AMR called TFA-SCNN. Reference [10] proposes a AMR
model based on CNN and spatial self-attention mechanisms.

The above studies utilize raw in-phase/quadrature data
or original I/Q data combined with statistical features as
inputs. Additionally, many researchers have proposed using
amplitude and phase as inputs for recognition models.
Reference [11] proposes an auto-encoder recognition model
that uses standardized amplitude and phase data as inputs.
Its encoder consists of a 2-layer LSTM that transforms
inputs into hidden state vectors, and its decoder is a shared
dense layer. The model employs mean squared error as
the reconstruction loss and classification cross-entropy as
the classification loss, combining both as the loss function.
Reference [15] presents an AMC model based on a 2-layer
LSTM structure, with L2-normalized amplitude data and
normalized phase data as inputs. Experiments show that
even a simple LSTM structure can achieve satisfactory

recognition accuracy using amplitude and phase instead of
IQ samples. Reference [16] notes that models using A/P as
input data significantly outperform those using I/Q when
SNR is high, while the results are reversed when SNR is low.
Therefore, A/P data and I/Q data complement each other well.
Consequently, a multi-task deep neural network (MLDNN)
fusing A/P and I/Q is proposed. The MLDNN has a novel
backbone, which is comprised of CNNmodules, bidirectional
gated recurrent unit modules (BiGRU), and single-step
attention fusion modules. Unlike the traditional one, which
only uses the output of the last step of the RNN, the MLDNN
can fully utilize the output information of all BiGRU layers.
To fully extract features from A/P and I/Q data, [17] proposes
a dual-stream fusion network structure with two channels,
each inputting A/P or I/Q data and using a cascade structure
of 3-layer CNN and 2-layer LSTM. The outputs of both
channels are fused through a fully connected layer, and
the classification results are generated through a Softmax
classification layer. Reference [18] introduces a complex
CNN structure based on residual attention. The input to this
structure is A/P and I/Q data, cascaded with five residual
attention-based convolutional layers after preprocessing the
convolutional module, followed by a gap layer, a fully
connected layer, and a softmax classification layer. Although
these models achieve commendable recognition accuracy,
they exhibit high time and space complexity due to their
overcomplexity.

Inspired by the above studies, we draw the following con-
clusions. First, for AMC, the simple CNN structure is inferior
to LSTM, while the well-designed CNN-LSTM structure
outperforms the CNN and LSTM structures. Second, in terms
of input data formats, A/P is superior to I/Q, whereas the
combination of I/Q and A/P with a well-designed network
structure may yield even better performance. Therefore,
this paper proposes a novel multi-channel neural network
structure that combines CNN and LSTM, denoted as
DMHNN. The convolutional layers can fully explore features
in adjacent spatial dimensions of the data, while LSTM
can effectively extract temporal features from sequential
data. The model includes a data converter that is capable
of transforming raw I/Q signals into A/P signals. The two
functions used in the data conversion process further increase
the nonlinear characterization capability of the whole model,
which in turn improves the recognition accuracy of the
model.

The arrangement of the other sections in this paper is
as follows. Section II contains a detailed description of the
proposed multi-channel neural network structure DMHNN,
including the data converter, multi-channel CNN layers,
dual-layer LSTM, and fully connected layers, along with
the parameter settings for DMHNN. Section III briefly
introduces the experimental environment, such as the dataset,
benchmark algorithms, and software and hardware environ-
ments. Section IV details the recognition accuracy and confu-
sion matrix of DMHNN and other models, conducts ablation
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FIGURE 1. Structure of DMHNN.

experiments and cross-dataset validation and compares the
time and space complexity of the models.

II. DATA-TRANSFORM MULTI-CHANNEL HYBRID DEEP
LEARNING
The deep learning framework proposed in this paper is
called the data-driven Multi-channel Hybrid Neural Network
(DMHNN), as shown in Fig. 1. It contains a data con-
verter that transforms raw in-phase/quadrature signals into
Amplitude/Phase signals, and the subsequent network layers
are all driven by either the I/Q signal or the A/P signal.
DMHNN mainly consists of three parts: the CNN segment
(Part-A), the RNN segment (Part-B), and the DNN segment
(Part-C). Part-A consists of two channels, one channel is
driven by I/Q signal and the other channel is driven by A/P
signal. Part-B consists of two LSTM layers. Part-C consists of
2 layers of fully connected network and one layer of Softmax
classification layer.

A. DATA CONVERTER
This paper concentrates on single-input single-output com-
munication systems, where one antenna is used for the
transmitter and another for the receiver. For the receiver, it is
assumed that the low-pass equivalent of the bandpass signal
is a complex signal xl(t) = xi(t) + xq(t), where the real part
xi(t) is referred to as the I signal and the imaginary part as the
Q signal xq(t). I/Q signals are the input data for DMHNN.
The data converter converts I/Q signals in Cartesian

coordinates into A/P signals in polar coordinates (r, θ), it can
be expressed by

r(t) =

√
xi2(t) + xq2(t), (1)

θ (t) = arctan(
xq(t)
xi(t)

), (2)

According to the above equation, r(t) and θ (t) are obtained
from the I signal and Q signal as independent variables.
Conversely, the I signal and Q signal can also be obtained
from r(t) and θ (t). Hence, the two representations are
equivalent. It is worth mentioning that although the data
converter module is within the DMHNN model, it has
no learnable parameters and will be set as non-trainable

and prohibited from participating during the process of
backpropagation. Moreover, we recommend that it be placed
outside the DMHNNmodel when training the model and then
inside the model when deploying it. This approach not only
saves training time but also maintains the model’s traditional
form, i.e., using only traditional I/Q signals as input data.

B. PART-A: MULTI-CHANNEL CNN LAYERS
CNNs exploit convolutional kernels to explore features in
the spatial dimensions of data fully. Part A primarily uses
convolutional operations to extract spatial features adjacent
to each other between the data, consisting of four channels:
Channel-A, Channel-B, Channel-C, and Channel-D. Among
them, the inputs of Channel-A and Channel-B are I/Q signals
and A/P signals, respectively. They used two-dimensional
convolutional operations to extract the spatial features inside
two types, respectively, and their output feature maps are
denoted as MapA and MapB. The inputs of Channel-C
and Channel-D are I and Q signals, respectively, and a 1D
convolutional operation is used to extract unique spatial
features of the I and Q signals. After completing 1D
convolution, Channel-C and Channel-D are concatenated into
a 2-dimensional vector, and then 2D convolution is performed
to output the feature map, denoted as MapCD. This structure
is conducive to fully extracting features between I and
Q signals. Finally, the three channels, MapA, MapB, and
MapCD, are combined and concatenated to form a new
2D vector, and then 2D convolution is performed, and the
output feature map is recorded as Map4. At this point,
all channels are aggregated. All convolutional modules are
equipped with ReLU activation functions.

C. PART-B: TWO-LSTM LAYERS
The advantage of RNNs lies in their ability to exploit the
chain-like connections between nodes to extract temporal
features from sequence data. LSTM is a classical RNNmodel
that can effectively capture temporal characteristics of time-
series data, as shown in Fig. 2. Each LSTM unit consists of
forget gates, input gates, and output gates. The formulae for
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FIGURE 2. LSTM unit structure.

the three gates are given by

f t = σ (Wf · [x t , ht−1] + bf ) (3)

it = σ (Wi · [x t , ht−1] + bi) (4)

ot = σ (Wo · [x t , ht−1] + bo) (5)

where σ () represents the sigmoid activation function,
W represents the weight, b represents the bias, x t represents
the input at moment t, ht−1 represents the output at moment
t-1. Using f t and it updating the memory cells C t−1 to obtain
C t , the specific formula for the output ht are given by

C̃ t
= tanh(Wc · [x t , ht−1] + bc) (6)

C t
= f t · C t−1

+ it · C̃ t (7)

ht = tanh(C t ) · ot (8)

D. PART-C: FULLY-CONNECTED LAYERS
Fully connected DNNs can use dense connections to
extract individual features from data, typically employed in
the classification layer. Part-C consists of a 3-layer fully
connected network, with 10 and 11 nodes in the final layer for
RML2016.10a and RML2016.10b, respectively, depending
on the number of modulation types. To better characterize
the nonlinear characteristics of the target, the first two fully
connected layers employ a variant of ReLU called the SELU
function, given as

SELU (x) = λ

{
x x > 0
αex − α x ≤ 0

(9)

To avoid overfitting, dropout layers have been added to
the first two fully linked layers. When the neural network is
trained, a random subset of neurons is chosen, and during that
iteration, they are not allowed to take part in either forward
inference or backward propagation. In this paper, we set the
dropout to 0.2, i.e., 20% of neurons are prohibited at each
iteration.

The activation function for the third fully connected layer
is Softmax, given as

Soft max(x) =
exi∑
i
exi

. (10)

Categorical cross-entropy is used as the loss function,
given as

Loss = −

∑K

k=1
yi log ŷi, (11)

where yi represents the true label value, which is in the
range 0,1, when yi equals 1, it indicates that the current
sample belongs to the ith class. ŷi is the ith component of
the output value of the Softmax classification layer of the
model, which ranges from 0 to 1, representing the probability
that the model predicts that the current sample belongs to the
ith class.

E. PARAMETER SETTINGS
Fig. 1 illustrates the number of convolutional kernels in
the CNN layers, the number of units in the LSTM layers,
and the number of nodes in the FC layers. The number
of convolutional kernels is β1=25, except for the last 2D
convolutional module, which has β2=50, and the number
of cells in the two LSTM layers are β3=100 and β4=64,
respectively, and the number of junctions in the first two
fully-connected layers are β5=64 and β6=64, respectively.
In ablation experiments, we increase or decrease the value
of β to compare model performance across various sizes
and identify the model with the best cost-performance
ratio.

We set the kernel dimensions of the two 1D convolutional
modules and the 2D convolution modules that follow them to
(1,8). The convolutional kernels for the two 2D convolutional
modules are set to (2,8), and the final 2D convolutional
kernels are set to (2,5). For all the convolution modules, the
default step size is used, i.e., (1, 1) for 2D convolution and
1 for 1D convolution. Padding is used in all convolutional
modules to maintain the output size. Additionally, a glorot
uniform was used to initialize the weight matrix of the con-
volution modules. The model employs the Adam optimizer,
which is one of the most widely used optimizers.

III. DATA-TRANSFORM MULTI-CHANNEL HYBRID DEEP
LEARNING
To verify the effectiveness of the DMHNN architecture,
we trained and tested it on various datasets and compared it
with the current state-of-the-art AMR network.

A. DATASETS
The experiments in this paper used two open-source
datasets: RadioML2016.10a and RadioML2016.10b.
RadioML2016.10a is a synthetic dataset developed by the
Institute of Radio Communications of the Italian National
Research Council for wireless signal modulation recognition.
It contains 11 modulations (8 digital and 3 analogue) over
20 signal samples with signal-to-noise ratios (SNRs) that vary
by 2 dB, from -20 dB to 18 dB, with noise signals sourced
from additive white Gaussian noise (AWGN). For a total of
220,000 signal samples, each modulation type includes 1,000
signal samples with different SNRs. RadioML2016.10b
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TABLE 1. Division of the data set.

TABLE 2. Recognition accuracy of common recognition models at 0 dB SNR on RML2016.10a dataset.

is a wireless communication signal classification dataset
funded by the Defense Advanced Research Projects Agency
(DARPA) of the United States, containing 10 modulation
types with 20 different SNRs. Each modulation type contain
6,000 signal samples at different SNRs, totaling 1.2 million
signal samples. All samples are randomly divided into
training set, validation set and test set in a 6:2:2 ratio based
on the modulation styles and SNR. To ensure fairness, we set
a random seed (default value of 2016) to ensure the certainty
of the dataset division.

B. SOFTWARE AND HARDWARE ENVIRONMENT
The experimental host runs on the Windows 10 operating
system, equipped with an I7-10700K CPU, DDR4 16GB
RAM, and an RTX 3060 graphics card with 12GB of VRAM.
It has installed software such as CUDA (version 12.2.79),
CUDNN (version 11.4), and Anaconda (version 1.10), with
modules like Spyder (version 5.3.3) and Keras (version 2.10)
installed within the Anaconda environment.

C. TRAINING PROCESS
In order to obtain the optimal model, we maintain the
model with the lowest validation loss as the current optimal
model. Furthermore, we set the number of training epochs
to a relatively large number and employ an early stopping
mechanism. The early stopping mechanism means that when
themodel satisfies certain conditions, themodel is considered
to have converged, the model training is ended, and the model
is saved. In all the experiments in this paper, the training
will end when the validation loss still does not decrease
after 30 epochs. Additionally, the initial learning rate is
set to 0.001, which is changed by the validation loss. The
learning rate is 80% lower if, after five epochs, there is no
improvement in performance. The minimum learning rate is
set to 10−7.The batch size is set to 400.

IV. ANALYSIS OF EXPERIMENTAL RESULTS
A. PERFORMANCE COMPARISON USING THE
RML2016.10a DATASET
In this section, we compare the recognition accuracy of
DMHNN and other recognition models on the RML2016.10a
dataset. Fig. 3 presents the recognition accuracy of our
proposed model DMHNN and the current state-of-the-art
models on the RML2016.10a dataset as SNR changes. The
experimental results are all tested in the runtime environment
described in Section III. As the same environment is used,
such as the same dataset split, the same optimal model saving
mechanism, and the same learning rate decreasing method,
Table 2 intuitively compares the recognition efficiency of
DMHNN and other models. It is worth mentioning that there
are certain differences between the running results under the
current configuration and the data provided in the original
papers, which may be due to differences in the running
environment, parameter configuration, random seeds, etc.
Moreover, all data in Table 2 are rounded to retain only
2 digits after the decimal point. When calculating the average
recognition accuracy, the original data were first summed and
then rounded.

As can be seen fromFig. 3, DMHNNachieves significantly
better recognition performance than the other models both
at low SNR and at high SNR. Except for SNR of -
18 dB, LSTMDAE achieves slightly higher performance
than DMHNN. The recognition accuracy of DMHNN is
the highest of all other SNRs. The recognition accuracy of
DMHNN is no less than 91.91% at SNR not less than 0 dB
and as high as 93.56% at SNR 16 dB. Under different SNRs,
DMHNN achieved an average recognition accuracy of up to
64.94%, which is 4.09%, 4.66%, 4.97%, 8.18%, and 9.12%
higher than LSTMDAE, MCLDNN, PET-CGDNN, MCNet,
and CGDNet, respectively. Table 2 shows the recognition
accuracies of our proposed model DMHNN with the current
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TABLE 3. Average recognition accuracy of DMHNN with other recognition models on RML2016.10b dataset.

FIGURE 3. Recognition accuracy of common recognition models at
different SNRs on RML2016.10a dataset.

highest-level model for different modulation types at 0 dB
SNR for the RML2016.10a dataset. It should be noted in
particular that although some papers provide source code,
even if the network structure is easily reproducible without
disclosing the source code, most of the data we obtained
are slightly worse than those provided by the original
papers, considering that many factors, such as random seeds,
hyperparameters, initialization methods, etc., can affect the
recognition accuracy. For fairness, Table 2 uses data provided
in the original papers as much as possible if they are available.

As can be seen from Table 2, DMHNN has significantly
better recognition accuracy than other models for different
modulation types at 0 dB SNR on the RML2016.10a dataset.
The model achieves the highest recognition accuracy in
seven modulation types: 8PSK, CPFSK, GFSK, PAM4,
QAM16, QAM64, and QPSK. In particular, the recognition
accuracy for CPFSK and GFSK reaches as high as 100%.
For QAM16 and QAM64, the model has made a new
breakthrough, with accuracies as high as 95% and 98%,
respectively, which are significantly better than those of
MCLDNN and RLADNN. In terms of average accuracy,
DMHNN is as high as 91.9%, which is 1.86%, 4.35%, 2.26%,
8.23%, 13.27%, and 13.45% higher than RLADNN, LST-
MDAE, MCLDNN, PET-CGDNN, MCNet, and CGDNet,
respectively. The confusion matrices of DMHNN and other
recognition models at -2 dB SNR on the RML2016.10a
dataset are shown in Fig. 4. Overall, DMHNN’s recognition
accuracy is significantly better than other models. Analysis of
the confusion matrices given in Fig. 4 shows that CGDNet,
MCNet, and PET-CGDNN have difficulty in distinguishing
between QAM16 and QAM64 modulations when the SNR is
−2dB and MCLDNN and LSTMDAE significantly improve

the ability to classify QAM16 and QAM64. Compared to
other recognition models, DMHNN further enhances the
ability to classify QAM16 and QAM64. The recognition
accuracy of DMHNN is acceptable for all other modulation
types except WBFM. It is important to note that the
recognition accuracy of all current models for WBFM needs
to be improved, and many WBFM samples are incorrectly
classified as AM-DSB signals.

B. PERFORMANCE COMPARISON USING THE
RML2016.10b DATASET
To thoroughly evaluate the performance of our model,
we compared the recognition accuracy ofDMHNNwith other
recognition models on the RML2016.10b dataset. All models
were run in the environment described in Section III.

Analysing Fig. 5, it is clear that DMHNN consistently
exhibits superior recognition accuracy across different SNR
levels, outperforming other recognition models. When SNR
is greater than or equal to 0 dB, the recognition accuracy
of DMHNN is much higher than PET-CGDNN, CGDNet,
and MCNet, and marginally higher than MCLDNN and
LSTMDAE. Between -8dB and 0dB SNR, the recognition
accuracy of DMHNN is significantly higher than the other
five models. This indicates that the DMHNNmodel performs
well for low SNR.

Table 3 compares the average recognition accuracy
of DMHNN with other recognition models on the
RML2016.10b dataset. The average recognition accuracy of
DMHNN is significantly higher than all other models, which
is 2.72%, 4.63%, 1.44%, 0.72%, and 5.23% higher than
CGDNet, MCNet, PET-CGDNN, MCLDNN, and LSTM-
DAE, respectively. Combining the experimental results on the
RML2016.10a dataset, it is clear that the average recognition
accuracy of DMHNN on the RML2016.10b dataset is slightly
better than MCLDNN. However, the recognition accuracy
of DMHNN on the RML2016.10a dataset is significantly
better than MCLDNN. Therefore, DMHNN exhibits better
generalization performance.

C. ABLATION EXPERIMENTS
We compressed and amplified βi, i=1, 2, 3, 4, 5, 6 based
on the structure of DMHNN, and obtained four compressed
networks (DMHNN-Ti, i=1, 2, 3, 4) and three amplified
networks (DMHNN-Fi, i=1, 2, 3), respectively. The eight
network sizes of DMHNN and its compressed and amplified
networks are shown in Table 4.
The results of the ablation experiments are given in

Fig. 6. Fig. 6 (a) shows that, for the RML2016.10a dataset,
DMHNNperforms better than compressed networks, and that
performance decreases noticeably as network size is reduced.
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FIGURE 4. Confusion matrix of DMHNN and other recognition models at −2 dB SNR on RML2016.10a dataset.

FIGURE 5. Recognition accuracy with SNR for DMHNN and other
recognition models on RML2016.10b dataset.

At SNR greater than or equal to −8 dB, DMHNN performs
slightly better than DMHNN-F1 and significantly better than
DMHNN-F2 and DMHNN-F3. At SNR less than or equal to
−10 dB, DMHNN is slightly worse than DMHNN-F1 and
DMHNN-F2, but better than DMHNN-F3. Thus, reducing
network size results in significant performance degradation,
while increasing network size does not achieve significant

TABLE 4. Network dimensions.

performance improvements. For the RML2016.10b dataset,
as shown in Fig. 6 (b), DMHNN performs similarly to the
compressed networks such as DMHNN-T1, DMHNN-T2,
and DMHNN-T3, and significantly better than DMHNN-T4.
DMHNN also outperforms all the expanded networks. These
findings indicate that DMHNN is the optimal network
size, with comprehensive performance that surpasses other
network sizes.

D. COMPUTATIONAL COMPLEXITY
Table 5 compares the computational complexity of DMHNN
with other recognition models. We used three metrics to
reflect computational complexity, which is the number of
trainable parameters, the training duration per epoch, and
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FIGURE 6. Ablation experiments.

TABLE 5. Computation complexity.

the inference time per sample. Regarding the quantity of
parameters that can be trained, DMHNN has only 38%
of the parameters of MCLDNN. Compared to CGDNet
and MCNet, DMHNN has approximately 25.3% and 28.9%
more parameters, respectively. PET-CGDNN has the smallest
parameters. In terms of training duration, the difference
in training duration between DMHNN and other models
is not significant. In terms of inference time, DMHNN
is significantly lower than other models. Because it has
a relatively small amount of parameters and a relatively
low network depth. Therefore, DMHNN is better suited
for deployment in resource-constrained environments with
limited inference capabilities than other recognition models.

V. CONCLUSION
In this paper, we propose a novel hybrid multi-channel
neural network structure of CNN and LSTM, referred to
as DMHNN. The convolutional layers are able to fully
exploit the features of spatial dimensions of neighboring

data, while LSTM is able to extract temporal features
from sequential data efficiently. The model includes a data
converter that transforms raw in-phase/quadrature input into
amplitude/phase data. The two functions used in the data
conversion process further enhance the nonlinear charac-
terization capability of the whole model, thereby improv-
ing its recognition accuracy. The experimental simulation
results demonstrate that our model solves the classifica-
tion challenges associated with QAM16 and QAM64. For
RAML2016A, the classification accuracy of both is as high as
95% at an SNR of 0 dB. Extensive experiments show that the
network structure proposed in this paper outperforms other
current networks in terms of recognition accuracy.
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