
Received 21 March 2024, accepted 20 April 2024, date of publication 25 April 2024, date of current version 8 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3393909

Deep Learning Model for Driver Behavior
Detection in Cyber-Physical System-Based
Intelligent Transport Systems
BRIJ B. GUPTA 1,2,3, (Senior Member, IEEE),
AKSHAT GAURAV 4, (Graduate Student Member, IEEE),
KWOK TAI CHUI 5, (Member, IEEE), AND VARSHA ARYA 6,7
1Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan
2Symbiosis Centre for Information Technology (SCIT), Symbiosis International University, Pune 411004, India
3Center for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India
4Ronin Institute, Montclair, NJ 07043, USA
5Department of Electronic Engineering and Computer Science, Hong Kong Metropolitan University (HKMU), Hong Kong
6Department of Business Administration, Asia University, Taichung 413, Taiwan
7Department of Electrical and Computer Engineering, Lebanese American University, Beirut 1102, Lebanon

Corresponding author: Brij B. Gupta (bbgupta.nitkkr@gmail.com)

The research described in this article is fully supported by a grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (UGC/FDS16/E06/22).

ABSTRACT As Intelligent Transport Systems (ITS) continue to evolve, the quest for improving road safety
and transportation efficiency has gained renewed emphasis.One of the pivotal aspects in this endeavor is
the detection and analysis of driver behavior. Recognizing signs of fatigue, distraction, or inattentiveness is
critical in enhancing road safety and optimizing traffic flow. In this paper, we present a pioneering approach
to driver behavior detection within the realm of ITS using deep learning models in the Cyber-Physical
Systems (CPS) framework. Our research focuses on the discernment of critical behaviors such as eye
closure, open-eye state, yawning, and non-yawning instances. With an unwavering commitment to road
safety and transportation efficiency, we’ve harnessed the power of deep learning to design, develop, and train
an exceptionally accuratemodel. Through rigorous evaluation, we achieved an impressive 94% accuracy. Our
findings unveil the potential of CPS-based solutions for real-time driver behavior monitoring, providing a
foundation for safer roadways and more streamlined traffic management. The proposed deep learning model
offers robust and accurate predictions, enabling timely responses to various driving conditions. This research
significantly advances the field of driver behavior analysis within the context of intelligent transportation
systems, with broad implications for road safety and traffic management.

INDEX TERMS Driver behavior detection, deep learning, cyber-physical systems (CPS), intelligent
transport systems (ITS), road safety, driver monitoring, behavioral analysis, artificial intelligence (AI).

I. INTRODUCTION
Intelligent Transport Systems (ITS) have acted as an efficient
solution for improving the operational performance of traffic
systems in smart cities, reducing traffic congestion, and
increasing safety for travellers [1], [2], [3], [4], [5]. ITS has
benefited from cutting-edge technologies such as artificial
intelligence, the Internet of Things (IoT), and deep learning.
These new-age technologies allow for collecting and ana-

The associate editor coordinating the review of this manuscript and

approving it for publication was Mouquan Shen .

lyzing large amounts of data, which can be used to develop
intelligent algorithms and models for various transportation
applications. Due to the inclusion of these technologies, ITS
can provide various services to end users, including road
safety and accident prediction, traffic prediction and control,
and vehicle control and monitoring [6], [7], [8], [9].

The main components of ITS include advanced sensors,
cameras, computers, electronics, and telecommunication
technologies [10], [11], [12]. These components work
together to collect and analyze data related to traffic
conditions, vehicle movements, and driver behaviors. ITS

62268

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4929-4698
https://orcid.org/0000-0002-5796-9424
https://orcid.org/0000-0001-7992-9901
https://orcid.org/0000-0001-7549-4429
https://orcid.org/0000-0001-6448-4866


B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

FIGURE 1. Smart transport system.

including Road Side Units (RSUs), vehicles, and servers,
as represented in Figure 1. RSUs are deployed along
roads and equipped with sensors to detect road events and
communicate with vehicles equipped with Onboard Units
(OBUs) [13], [14], [15]. These OBUs are powerful nodes
with various sensors, communication modules, and comput-
ing capabilities, enabling the wireless exchange of traffic
information between vehicles and roadside infrastructure,
thereby enhancing road safety and transportation network
efficiency [16], [17], [18]. The integration of RSUs and
OBUs in ITS has attracted attention due to their potential
to enhance road safety, improve traffic management, and
alleviate road accidents [19], [20], [21].Furthermore, the
deployment of RSUs andOBUs facilitates themonitoring and
management of traffic flow, contributing to the development
of advanced traffic management systems [22], [23], [24].
The collaboration between RSUs and OBUs also enables
the implementation of intelligent upgrades in transportation
infrastructure, optimizing communication environments and
deployment methods [25], [26]. This leads to the develop-
ment of new frameworks to analyze the behavior pattern of
the driver.

More than 80% of road accidents happen due to abnormal
driver behavior [27]. Many road safety reports regard human
behavior as the most important factor in the likelihood of
accidents. The detection and classification of aggressive
or abnormal driver behavior is an essential requirement
in the real world to avoid deadly road accidents and to
protect road users [28]. In this context, ITS can effectively

enhance road safety by accurately detecting and analyzing
driver behavior. Due to this, researchers are constantly
working on developing advanced machine learning models
and deep learning techniques for driver behavior detection
in ITS [29], [30]. However, there are many limitations
to detecting driver behaviors using deep learning models,
as the deep learning models need a vast amount of data,
and their training time is also high. In addition to that,
deep learning models also require significant computational
resources for training and inference. Hence, a model that
can effectively detect driver behavior in real-time while
considering these limitations is needed. In this context,
we proposed a deep learning model that efficiently detects
driver behavior in real time. The contribution of our work
is as follows: We conducted an in-depth review of existing
machine learning methods and their application in driver
behavior detection within intelligent transportation systems.
Based on our review, we found that deep learning models
have shown promising results in accurately detecting and
analyzing driver behaviors. To improve the efficiency of
driver behavior detection, we proposed a novel deep learning
model that is based onConvolutional Neural Network (CNN).
This model considers the limitations of deep learning models
by optimizing its architecture for real-time detection and
incorporating techniques such as data augmentation and
transfer learning to improve the model’s performance with
limited training data. To get better understanding of the
readers Table 1 presents tha abbreviations used in the
paper.

VOLUME 12, 2024 62269



B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

TABLE 1. Abbreviation table.

The rest of the paper is organized as follows: Section II
provides a comprehensive overview of related work in driver
behavior detection. Section III details the proposed approach
for driver behavior detection using deep learning. Section IV
presents the results and discussion, and finally, section V
concludes the paper.

II. RELATED WORK
Research suggests that deep learning models [31], [32] and
machine learning [33], [34], such as inverse reinforcement
learning (IRL) and recurrent neural networks (RNN), can be
used to predict driver behavior. Wu et al. [35] proposed a
joint IRL-DL framework to predict drivers’ future behavior in
ride-hailing platforms, achieving consistent and remarkable
improvements over models without drivers’ preference
vectors. Wei et al. [36] proposed a hybrid neural network
prediction model based on RNN and a fully connected
neural network (FC) to accurately predict lane-changing
behavior in real traffic scenarios. The proposed model
achieved a prediction accuracy of 93.5% and improved the
prospective time of prediction by about 2.1s on average.
Liu et al. [37] proposed a new algorithm of driver behavior
model based on the whale optimization algorithm-restricted
Boltzmann machine (WOA-RBM) method, which achieved
an accuracy of 90% in MATLAB simulation. Overall, these
papers suggest that deep learning models can be effective in
predicting driver behavior.

Jin et al. [38] proposes a DL framework driven by
automatic vehicle identification (AVI) data to model drivers’
behaviors and incorporate travel time prediction in the
next location prediction problem. Arbabi et al. [39]
embed the Intelligent Driver Model into deep neural
networks to create a transparent and interpretable model
for driver behavior prediction. Abdelrahman et al. [40]
presents a robust data-driven framework for calculating
drivers’ risk profiles using supervised machine learning.
Jiang et al. [41] uses a deep CNN and a long short-term
memory (LSTM)–based model to detect driver inattention
and predict upcoming abnormal operations on the road.
These papers demonstrate the potential of deep learning
models in predicting driver behavior and improving road
safety.

III. PROPOSED MODEL
A. DATA PREPROCESSING
The first step of our proposed approach is data preprocessing.
Algorithm 1 presents the steps of data preprocessing.

Algorithm 1 Data Transformation and DataLoader
Setup

Data: train_data, test_data, BATCH_SIZE
Result: train_dataloader, test_dataloader

1 Function main:
/* Data Transformation */

2 data_transforms← Compose([]);
3 for transform in transforms do
4 if transform is Resize then
5 data_transforms.add(Resize(size=(64,64)));

6 if transform is RandomHorizontalFlip then
7 data_transforms.add(RandomHorizontalFlip

(p=0.5));

8 if transform is ToTensor then
9 data_transforms.add(ToTensor());

/* Convert datasets into data
loaders */

10 train_dataloader←
DataLoader(dataset=train_data,
batch_size=BATCH_SIZE,
num_workers=os.cpu_count(), /* Count
the number of CPUs */

11 shuffle=True) /* Training DataLoader

*/
12 test_dataloader←

DataLoader(dataset=test_data,
batch_size=BATCH_SIZE,
num_workers=os.cpu_count(), /* Count
the number of CPUs */

13 shuffle=False) /* Testing DataLoader

*/
14 return train_dataloader, test_dataloader

• Data Transformation: The first essential step in our
algorithm is data transformation. In this stage, we metic-
ulously process the dataset to ensure its compatibility
with our deep learning model. This entails a series of
critical operations to enhance the dataset’s quality and
suitability. These transformations are defined and stored
within the data_transforms set.

• For Loop Iteration: Subsequently, we employ a for
loop to systematically iterate through a list of trans-
formations. Each transformation in the list is carefully
assessed and applied in sequence, ensuring that the data
is subjected to each defined operation.

62270 VOLUME 12, 2024



B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

FIGURE 2. Model architecture.

• Resize Transformation: The first transformation involves
resizing the images in the dataset to a standardized
64 × 64 resolution. This resizing operation is pivotal,
as it guarantees that all images conform to the same
dimensions, which is essential for consistent input to the
deep learning model.

• Random Horizontal Flip: The next transformation
assesses whether it is a ‘‘RandomHorizontalFlip’’ oper-
ation. If affirmative, it introduces a random horizontal
flip to the images, with a 50% probability. This
augmentation technique enhances dataset diversity and,
in turn, contributes to the model’s robustness.

• ToTensor Transformation: Lastly, if it is a ‘‘ToTensor’’
operation. If so, it converts the images into tensors. Deep
learning models require data in a tensor format, making
this step indispensable for preparing the data for neural
network processing.

• Data Loader Setup - Training: With data transformation
completed, the algorithm proceeds to establish data

loaders, vital for efficiently supplying data to the deep
learningmodel during training and testing. In the context
of training, detailed in Lines 27-37, the training data
loader is configured with various parameters.

• Training Data Loader Configuration: The configuration
of the training data loader includes specifying the dataset
(training data), defining the batch size, leveraging
available central processing unit (CPU) cores for parallel
data loading, and enabling shuffling. Shuffling the data
during training, as described in Line 34, is a crucial
practice to introduce randomness and prevent the model
from memorizing the order of the data, thus mitigating
the risk of overfitting.

• Data Loader Setup - Testing: Similar to the training data
loader, a data loader is set up for testing.

• Testing Data Loader Configuration: The configuration
of the testing data loader involves specifying the
dataset (testing data), defining the batch size, utilizing
CPU cores for data loading, and, crucially, disabling

VOLUME 12, 2024 62271



B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

shuffling. The absence of shuffling in the testing data
loader ensures that the test data remains consistent
during model evaluation.

B. MODEL ARCHITECTURE
The proposed model forms the cornerstone of our deep
learning-based driver behavior prediction system, as repre-
sented in Figure 2 and algorithm 2. Below is a detailed
overview of the architecture, depicted layer by layer, along
with their respective dimensions and parameter counts:

Algorithm 2 Deep Learning Model Architecture
Data: input_shape, hidden_shape, output_shape
Result: TinyVGG Model Architecture

1 Function main:
/* Initialize the model */

2 TinyVGG← class TinyVGG(nn.Module) ;
3 TinyVGG.__init__(self, input_shape,

hidden_shape, output_shape) ;

/* Initialize Convolutional
Blocks */

4 conv_blocks← [] ;
5 for layer in [1, 2, 3] do
6 conv_block← nn.Sequential(. . . ) ;
7 conv_blocks.add(conv_block) ;

/* Initialize Classifier */

8 classifier← nn.Sequential(. . . ) ;

/* Forward Pass */

9 def forward(self, x) ;
10 for block in conv_blocks do
11 x← block(x) ;

12 x← classifier(x) ;
13 return x ;

• Input Layer: The input layer of the model receives
images of size 64× 64 pixels.

• Sequential Block 1:
– Convolutional Layer 1: Applies a 2D convolution

operation with 10 filters, a kernel size of 3× 3, and
ReLU activation.

– Convolutional Layer 2: Another 2D convolution
with 10 filters, a kernel size of 3 × 3, and ReLU
activation.

– MaxPooling Layer: Reduces the spatial dimensions
by performing max-pooling with a pool size of
2× 2.

• Sequential Block 2:
– Convolutional Layer 3: Performs a 2D convolution

with 10 filters, a kernel size of 3 × 3, and ReLU
activation.

– Convolutional Layer 4: Another 2D convolution
with 10 filters, a kernel size of 3 × 3, and ReLU
activation.

– MaxPooling Layer: Further reduces spatial dimen-
sions with a 2× 2 pool size.

• Sequential Block 3:
– Convolutional Layer 5: Carries out a 2D convolu-

tion with 10 filters, and ReLU activation.
– Convolutional Layer 6: Another 2D convolution

with 10 filters and ReLU activation.
• Sequential Block 4:

– Flatten Layer: Converts the dimensionality of the
input data

– Linear Layer: A fully connected layer that maps the
flattened features to output representing the classes.

C. MODEL TRANING STAGE
The algorithm 3 represents the model training process.
During model training, we first store the data in different
batches. After that, we set the optimizer and loss functions.
Then, finally, we start training our model. The details of the
algorithm are as follows:

Algorithm 3Model Training Procedure
Data: model, dataLoader, lossFunction, optimizer,

computingDevice
Result: Average Training Loss and Accuracy

1 Function Main:
2 model.train() ;

3 trainingLoss, trainingAccuracy← 0, 0 ;

4 for batch in dataLoader do
5 inputs, targets← PrepareData(batch,

computingDevice) ;

6 predictions← model(inputs) ;

7 loss← lossFunction(predictions, targets) ;
8 trainingLoss + = loss.item() ;

9 optimizer.zero_grad() ;

10 loss.backward() ;

11 optimizer.step() ;

12 correctPredictions←
CalculateAccuracy(predictions, targets) ;

13 trainingAccuracy + = correctPredictions ;

14 trainingLoss← trainingLoss /
NumberOfBatches(dataLoader) ;

15 trainingAccuracy← trainingAccuracy /
NumberOfBatches(dataLoader) ;

16 return trainingLoss, trainingAccuracy ;

• Setting the Model for Training: The ‘‘train_step’’ begins
by setting the deep learning model to training mode.

62272 VOLUME 12, 2024



B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

This step is essential as it notifies the model to adjust its
behavior for training, including operations like dropout
and batch normalization. The model is then initialized,
and we start with zero values for the training loss and
accuracy metrics (Line 4). These metrics will be updated
as the model processes the data.

• Iterating Through Data Batches: The core of the
‘‘train_step’’ involves a loop that iterates through the
data batches in the provided data loader. In each iteration
(Line 7), we fetch a batch of data, including input
features (X) and corresponding labels (y), and ensure
these data points are on the target device, which is often
a GPU for faster computation (Line 10).

• Forward Pass: Predictions: Next, the algorithm proceeds
with the forward pass, where the input features (X) are
passed through the deep learning model (Line 13). This
generates predictions (y_pred) for the given data batch.
These predictions are essential for calculating the loss.

• Calculating the Loss: The loss measures how far off
our model’s predictions are from the actual labels. This
difference is quantified by a loss function (loss_fn). The
computed loss is added to the ongoing training loss,
allowing us to monitor how well the model is learning
from the data.

• Optimizer and Backpropagation: After calculating the
loss, the algorithm prepares for the backpropagation step
by zeroing out the gradients of the model’s parameters to
avoid accumulating gradients from previous iterations.
Then, it performs backpropagation to compute gradients
with respect to the loss. These gradients guide the
optimization process. The final step involves optimizing
the model’s parameters using the optimizer, effectively
updating the model’s weights to minimize the loss.

• Evaluating Accuracy: Additionally, the algorithm eval-
uates the model’s accuracy for the current batch.
It calculates the predicted class by taking the maximum
probability from the softmax output and comparing it to
the true labels. This process provides insights into how
well the model is classifying the data.

• Adjusting Metrics: Finally, the algorithm adjusts the
metrics to represent the average loss and accuracy
per batch. Dividing the accumulated loss and accuracy
values by the number of batches (data points processed)
ensures that thesemetrics are interpretable and useful for
tracking the model’s performance over time.

D. MODEL TESTING STAGE
Algorithm 4 represents the model testing process. During
model testing, we calculate the model output and then update
the optimizer. Finally, we calculate the accuracy for each
batch. The steps of model testing as follows:
• Evaluating Model Performance through Testing Phase:
In the realm of deep learning, ensuring that a trained
model performs well on unseen data is paramount.
This is where the ‘‘test_step’’ algorithm comes into
play, helping us to assess the model’s capabilities and

Algorithm 4Model Testing Procedure
Data: model, testDataLoader, evaluationMetric,

computingDevice
Result: Average Test Loss and Accuracy

1 Function Main:
2 model.SetToEvaluationMode() ;

3 testLoss, testAccuracy← 0, 0 ;

4 EnterInferenceMode ;

5 for batch in testDataLoader do
6 inputs, targets← PrepareBatch(batch,

computingDevice) ;

7 predictions← model(inputs) ;

8 loss← evaluationMetric(predictions,
targets) ;

9 testLoss + = ExtractLossValue(loss) ;

10 correctPredictions←
CalculateCorrectPredictions(predictions,
targets) ;

11 testAccuracy + = correctPredictions /
TotalPredictions(predictions) ;

12 testLoss← testLoss /
TotalBatches(testDataLoader) ;

13 testAccuracy← testAccuracy /
TotalBatches(testDataLoader) ;

14 return testLoss, testAccuracy ;

generalization on data it has not encountered during
training.

• Preparing the Model for Evaluation: The ‘‘test_step’’
begins by setting the deep learning model to evaluation
mode. This mode adjusts the model’s behavior to ensure
that it doesn’t perform training-related operations like
weight updates. Following this, the algorithm initializes
the test loss and accuracy metrics to zero, which will be
used to track the model’s performance.

• Switching to Inference Mode: During the testing phase,
themodel must operate in inferencemode, ensuring con-
sistent behavior. This mode is enabled using the ‘‘with
torch.inference_mode()’’ construct. Within this context,
the algorithm can assess the model’s performance on the
test data.

• Iterating Through Test Data Batches: The heart of the
‘‘test_step’’ is a loop that iterates through the test data
batches provided by the data loader. For each batch,
the algorithm retrieves the input features (X) and their
corresponding labels (y) and ensures they are on the
designated device, typically a GPU.

– Forward Pass: Generating Predictions: The model
performs a forward pass with the input fea-
tures, generating predictions in the form of logits

VOLUME 12, 2024 62273



B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

(raw scores) for each class. These logits reflect the
model’s confidence in each possible classification.

– Calculating Loss: To evaluate the quality of predic-
tions, the algorithm calculates the loss, which quan-
tifies how different the predicted logits are from the
actual labels. The chosen loss function (loss_fn) is
employed for this purpose. The computed loss is
added to the test loss, which accumulates the loss
across all batches.

• Evaluating Model Accuracy: The model’s accuracy is
also assessed during the testing phase. The algorithm
identifies the predicted class by selecting the class with
the highest probability. It then compares this predicted
class to the true labels to check how well the model
classifies the data. This accuracy measurement is added
to the test accuracy metric.

• Adjusting Metrics for Averaging: To provide inter-
pretable and useful metrics, the algorithm divides the
accumulated test loss and test accuracy values by the
number of batches processed, resulting in the average
loss and accuracy per batch.

E. OPTIMIZER
The Adam optimizer is a robust and adaptive optimization
algorithm that efficiently adjusts deep learning model param-
eters during the training process. It balances the momentum
and scale of gradients, facilitating quicker convergence and
improved training dynamics. Theworking of Adam optimizer
is presented in algorithm 5.

Algorithm 5 Adam Optimizer
Data: Initial model parameters θ0, learning rate α,

β1, β2, and ε

Result: Updated model parameters θt
1 Function main:

/* Initialize time step and
first and second moment
estimates */

2 t ← 0 ;
3 m0← 0 ;
4 v0← 0 ;
5 while stopping criteria not met do
6 t ← t + 1 ;
7 gt ← ∇f (θt−1) ;
8 mt ← β1 · mt−1 + (1− β1) · gt ;
9 vt ← β2 · vt−1 + (1− β2) · (gt ⊙ gt ) ;
10 m̂t ←

mt
1−β t1

;

11 v̂t ←
vt

1−β t2
;

12 θt ← θt−1 − α · m̂t√
v̂t+ε

;

13 return θt ;

• Initialization and Setting Parameters: The Adam opti-
mizer begins by initializing several important variables.

It sets the time step (t) to 0 and initializes the first and
second-moment estimates (m and v) to zero. Addition-
ally, the algorithm takes in essential hyperparameters:
the learning rate (α) and two exponential decay rates
(β1 and β2).

• Main Optimization Loop: The heart of the Adam
optimizer is the main optimization loop. It iterates
through a series of steps until certain stopping criteria are
met. In each iteration, the following operations occur:
– Incrementing Time Step: The time step (k) is

incremented to keep track of the progress through
the optimization process.

– Calculating Gradient: The gradient of the loss
function with respect to the model parameters is
computed (gt ). This gradient information guides the
optimizer in updating the model.

– Updating First Moment Estimate: The algorithm
updates the first-moment estimate (mt ) using an
exponentially moving average. This estimate accu-
mulates information about the gradient’s direction,
incorporating past gradient information.

– Updating the Second Moment Estimate: The
second-moment estimate (vt ) is updated. This
estimate keeps track of the square of the gradi-
ents, providing information about the scale of the
gradient.

– Bias Correction: The algorithm performs bias
correction on both the first and second-moment
estimates to address bias introduced in the initial
time steps, yielding m̂t and v̂t .

– Updating Model Parameters: The critical step in
optimization is updating the model parameters (θt ).
This update depends on the learning rateα, the
bias-corrected first-moment estimate (m̂t ), and the
square root of the bias-corrected second-moment
estimate (v̂t ). The parameter update helps the model
move towards the optimal configuration.

• Stopping Criteria: The algorithm stops when specific
criteria, such as reaching a certain number of iterations
or achieving a desired level of accuracy, are met.

IV. RESULT AND DISCUSSION
A. SIMULATION ENVIRONMENT
Our experimentation was conducted within a controlled
simulation environment, represented in Figure 3, utilizing
the Google Colab platform for execution. The system
specifications of the environment are as follows:
• PyTorch Version: 2.0.1+cu118
• CUDA Version: 12.0
• GPU: NVIDIA Tesla T4

B. DATA PREPROCESSING
In our study, we employed a series of preprocessing steps
to handle the Kaggle dataset containing four distinct classes:
‘‘eyes open,’’ ‘‘eyes closed,’’ ‘‘yawn,’’ and ‘‘not yawn.’’

62274 VOLUME 12, 2024



B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

FIGURE 3. Simulation environment.

• Dataset Distribution: Our dataset comprises four
classes, each with various images. Specifically, there are
579 images in ‘‘yawn,’’ 581 images in ‘‘eyes closed,’’
580 images in ‘‘no_yawn,’’ and 581 images in ‘‘eyes
open’’ for training. Additionally, for testing, there are
144 images in ‘‘yawn,’’ 145 images in ‘‘eyes closed,’’
145 images in ‘‘no_yawn,’’ and 145 images in ‘‘eyes
open.’’

• Data Loaders and Batch Size: To efficiently handle the
dataset, we utilized Python’s data loader functionality,
which enables us to load and preprocess data in batches.
We configured a batch size of 32 for both training and
testing data. This batch size helps in optimizing memory
usage and accelerates training by processing a subset of
data at a time.

• Data Transformation: To enhance the randomness
of the data and promote generalization, we applied
data transformations with a probability of 0.5. These
transformations include random horizontal flips, rota-
tions, and adjustments in brightness and contrast. The
use of random transformations enriches the dataset by
presenting the model with a diverse range of inputs
during training, making it more robust to variations in
real-world scenarios. Figure 4 and Figure 5 presents the
original and transformed images.

• Image Resizing: To make the model more lightweight
and efficient, we resized the images to a common
dimension of 64 × 64 pixels. This reduction in image
size not only conserves computational resources but
also helps accelerate the training process without
significantly compromising the model’s ability to learn
meaningful features.

By implementing these data preprocessing steps, we ensure
that our model receives appropriately formatted and diverse
inputs during training and testing. This, in turn, contributes to
the model’s ability to generalize well to real-world scenarios
and accurately predict driver behavior, ultimately bolstering
the efficacy of our proposed deep learning-based approach
within the 6G Vehicular Network context.

C. RESULT PRESENTATION
In our experimentation, the developed deep learning model
exhibited a commendable level of performance, both in
terms of accuracy and training dynamics. The model took
approximately 18 seconds per iteration during the training
phase, carried out over a span of 50 epochs, resulting in

FIGURE 4. Sample traning image.

FIGURE 5. Image transformation.

FIGURE 6. Accuracy and loss curve.

a total running time of approximately 419.690601 seconds.
This runtime indicates efficient model training, taking into
consideration the computational complexity involved in
processing the dataset.

The accuracy and loss curves (Figure 6) plotted for both
the training and test phases further substantiate the model’s
efficacy. The curves demonstrate that the model trains accu-
rately, without apparent signs of overfitting or underfitting.
As represented in Figure 6, our model generalizes well to
unseen data.

Furthermore, the classification report (Figure 7) and
confusion matrix (Figure 8) provides a comprehensive
overview of the model’s performance. The precision, recall,
and F1-score metrics for each class reflect high levels of
accuracy in classification. The model’s ability to accurately
distinguish between ‘‘Closed’’ and ‘‘Open’’ classes is

VOLUME 12, 2024 62275



B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

FIGURE 7. Classification report.

FIGURE 8. Confusion matrix.

relatively high. In addition to that, our model achieved
an impressive F1-score of 0.99. The ‘‘Yawn’’ and ‘‘No
Yawn’’ classes demonstrate respectable performance with an
F1-score of 0.89.

Our model achieved an overall accuracy of 94%. The
macro andweighted average F1-scores of 0.94 underscore the
model’s consistency in delivering accurate class predictions.
These performance metrics, in combination with the other
assessment results, point towards the model’s reliability and
its potential to be employed as a viable solution in real-world
applications.

D. RESULT COMPARISION
In this section, we conducted a comprehensive comparative
analysis to benchmark the performance of our proposed
CNN-based approach against a spectrum of existing methods
in the field (Table 2). The analysis encompassed a variety
of techniques and their associated performance metrics,
primarily focusing on accuracy or F1 scores.

The work of Liu et al. [37] adopted a whale optimiza-
tion algorithm-restricted Boltzmann machine, achieving an
accuracy of 90%. In contrast, conventional deep learning
models like ResNET50 and Inception V3, which both utilize

TABLE 2. Comparative analysis.

Convolutional Neural Networks (CNNs), reported higher
accuracies of 92.76% and 92.26%, respectively. Similarly,
studies conducted by Seong et al. [42] and Sahoo et al. [43]
employed CNN frameworks, yielding accuracies of 91.12%
and 92%, respectively.

Exploring recurrent neural network architectures,
Saleh et al. [44] and Xie et al. [45] implemented LSTM-based
methods, recording an F1 score of 91% and an accuracy of
87.26%, respectively. Additionally, Xie and Zhu [46] utilized
a Random Forest approach, albeit with a notably lower F1
score of 70.47%

In stark contrast, our proposed work, leveraging an
advanced CNN methodology, has demonstrated a superior
performance, achieving an accuracy of 94%. This result
not only highlights the robustness and efficacy of our
approach but also positions it as a leading methodology in
this domain, outstripping the performance metrics of the
previously established methods.

V. CONCLUSION
Due to the development in the field of ITS, there is a need
for updated protocols and standards that fulfil the current
requirements. In this context, we proposed a deep-learning
framework that efficiently identifies drivers’ behavior in
ITS. Our research has led to promising results in driver
behavior detection within the framework of Intelligent ITS
and CPS. Through the development and training of our deep
learning model, we achieved an impressive accuracy rate
of 94% in recognizing critical driver behaviors, including
eye closure, open-eye states, yawning, and non-yawning
instances. These results are not only a testament to the
capabilities of deep learning within CPS-based ITS but also
point toward a brighter future for road safety and trans-
portation efficiency. By harnessing the power of artificial
intelligence, our system can provide real-time monitoring
of driver behaviors, thereby enhancing the safety of our
roadways. The practical implications of these results are
substantial. The high accuracy and robustness of our model
pave the way for its real-world implementation. Such a
system has the potential to respond effectively to dynamic and
diverse driving conditions, significantly reducing the risks
associated with distracted or fatigued drivers. This, in turn,

62276 VOLUME 12, 2024



B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

contributes to a safer and more optimized transportation
network. For future work, we plan to add more real-time
datasets and test our model in real-time. Also, in the future,
we will include more parameters and data such as vehicle
telemetry data, environmental sensors data, etc.

REFERENCES
[1] R. Nasim and A. Kassler, ‘‘Distributed architectures for intelligent

transport systems: A survey,’’ in Proc. 2nd Symp. Netw. Cloud Comput.
Appl., Dec. 2012, pp. 130–136.

[2] R. K. D. R. K. Dhanaraj, S. K. R. K. Dhanaraj, B.-G.-K. S. Kadry,
and Y. N. B.-G. Kang, ‘‘Probit cryptographic blockchain for secure data
transmission in intelligent transportation systems,’’ J. Internet Technol.,
vol. 23, no. 6, pp. 1303–1313, Nov. 2022.

[3] Z. Zhou et al., ‘‘GAN-Siamese network for cross-domain vehicle
re-identification in intelligent transport systems,’’ IEEE Trans. Netw.
Sci. Eng., vol. 10, no. 5, pp. 2779–2790, Sep./Oct. 2023, doi:
10.1109/TNSE.2022.3199919.

[4] A. M. Srivastava, P. A. Rotte, A. Jain, and S. Prakash, ‘‘Handling data
scarcity through data augmentation in training of deep neural networks for
3D data processing,’’ Int. J. SemanticWeb Inf. Syst., vol. 18, no. 1, pp. 1–16,
Apr. 2022.

[5] W. Qian, H. Li, and H. Mu, ‘‘Circular LBP prior-based enhanced GAN
for image style transfer,’’ Int. J. Semantic Web Inf. Syst., vol. 18, no. 2,
pp. 1–15, Dec. 2022.

[6] S. Anbukkarasi and C. Dhivyaa, ‘‘Ai techniques for future smart trans-
portation,’’ in Artificial Intelligence for Future Intelligent Transportation.
New York, NY, USA: Academic, 2024, pp. 243–268.

[7] W. Al-Shaar, N. Nehme, O. Bonin, J. Adjizian-Gérard, and M. Al-Shaar,
‘‘Passengers receptivity of a new public transport mode: Case of a BRT
project in Lebanon,’’ Comput. Urban Sci., vol. 2, no. 1, p. 25, Aug. 2022.

[8] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, and B. B. Gupta,
‘‘Personal mobility in metaverse with autonomous vehicles using Q-rung
orthopair fuzzy sets based OPA-RAFSI model,’’ IEEE Trans. Intell.
Transp. Syst., vol. 24, no. 12, pp. 15642–15651, Dec. 2023, doi:
10.1109/TITS.2022.3186294.

[9] N. T. U. Nhi, T. M. Le, and T. The Van, ‘‘A model of semantic-based image
retrieval using C-tree and neighbor graph,’’ Int. J. Semantic Web Inf. Syst.,
vol. 18, no. 1, pp. 1–23, Feb. 2022.

[10] A. Samson, P. Akinlolu, and O. Olugbenga, ‘‘Smart traffic signal
control system for two inter-dependent intersections in Akure, Nige-
ria,’’ J. Eng. Stud. Res., vol. 28, no. 3, pp. 82–92, Oct. 2022, doi:
10.29081/jesr.v28i3.010.

[11] M. Haddad and C. Mansour, ‘‘Energy and emission modelling for climate
change mitigation from road transportation in the middle east: A case
study from Lebanon,’’ in Climate Change and Energy Dynamics in
the Middle East (Understanding Complex Systems), H. Qudrat-Ullah
and A. Kayal, Eds. Cham, Switzerland: Springer, 2019, doi: 10.1007/
978-3-030-11202-8_3.

[12] F. J. G. Peñalvo, A. Sharma, A. Chhabra, S. K. Singh, S. Kumar, V. Arya,
and A. Gaurav, ‘‘Mobile cloud computing and sustainable development:
Opportunities, challenges, and future directions,’’ Int. J. Cloud Appl.
Comput., vol. 12, no. 1, pp. 1–20, Oct. 2022.

[13] J. Radak, B. Ducourthial, V. Cherfaoui, and S. Bonnet, ‘‘Detecting road
events using distributed data fusion: Experimental evaluation for the icy
roads case,’’ IEEE Trans. Intell. Transp. Syst., vol. 17, no. 1, pp. 184–194,
Jan. 2016.

[14] G. Salloum and J. Tekli, ‘‘Automated and personalized meal plan
generation and relevance scoring using a multi-factor adaptation of the
transportation problem,’’ Soft Comput., vol. 26, no. 5, pp. 2561–2585,
Mar. 2022.

[15] R. K. S. Rajput, D. Goyal, A. Pant, G. Sharma, V. Arya, and
M. K. Rafsanjani, ‘‘Cloud data centre energy utilization estimation:
Simulation and modelling with iDR,’’ Int. J. Cloud Appl. Comput., vol. 12,
no. 1, pp. 1–16, Oct. 2022.

[16] E. Eso, Z. Ghassemlooy, S. Zvanovec, J. Sathian, and A. Gholami,
‘‘Fundamental analysis of vehicular light communications and the
mitigation of sunlight noise,’’ IEEE Trans. Veh. Technol., vol. 70, no. 6,
pp. 5932–5943, Jun. 2021.

[17] J. Zhang and K. B. Letaief, ‘‘Mobile edge intelligence and computing
for the Internet of Vehicles,’’ Proc. IEEE, vol. 108, no. 2, pp. 246–261,
Feb. 2020.

[18] M. A. Khoudja,M. Fareh, andH. Bouarfa, ‘‘Deep embedding learningwith
auto-encoder for large-scale ontology matching,’’ Int. J. Semantic Web Inf.
Syst., vol. 18, no. 1, pp. 1–18, Apr. 2022.

[19] Q. Ali, N. Ahmad, A. Malik, G. Ali, and W. Rehman, ‘‘Issues, challenges,
and research opportunities in intelligent transport system for security and
privacy,’’ Appl. Sci., vol. 8, no. 10, p. 1964, Oct. 2018.

[20] J. Mwiti, E. Abande, and M. Stephen, ‘‘Role of intelligence transport
system in the fight against road accidents in Kenya,’’ Int. J. Comput. Appl.,
vol. 178, no. 11, pp. 17–22, May 2019.

[21] R. W. Liu, Y. Guo, Y. Lu, K. T. Chui, and B. B. Gupta, ‘‘Deep network-
enabled haze visibility enhancement for visual IoT-driven intelligent
transportation systems,’’ IEEE Trans. Ind. Informat., vol. 19, no. 2,
pp. 1581–1591, Feb. 2023.

[22] S. C. Rajkumar and L. J. Deborah, ‘‘An improved public transportation
system for effective usage of vehicles in intelligent transportation system,’’
Int. J. Commun. Syst., vol. 34, no. 13, 2021, Art. no. e4910.

[23] B. Tian, B. T. Morris, M. Tang, Y. Liu, Y. Yao, C. Gou, D. Shen,
and S. Tang, ‘‘Hierarchical and networked vehicle surveillance in ITS:
A survey,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 1, pp. 25–48,
Jan. 2017.

[24] Q. Zhang, Z. Guo, Y. Zhu, P. Vijayakumar, A. Castiglione, andB. B. Gupta,
‘‘A deep learning-based fast fake news detection model for cyber-physical
social services,’’ Pattern Recognit. Lett., vol. 168, pp. 31–38, Apr. 2023.

[25] Z. Liu, H. Song, H. Tan, H. Hao, and F. Zhao, ‘‘Evaluation of the
cost of intelligent upgrades of transportation infrastructure for intelligent
connected vehicles,’’ J. Adv. Transp., vol. 2022, pp. 1–15, Jan. 2022.

[26] G. N. Nguyen, N. H. L. Viet, M. Elhoseny, K. Shankar, B. B. Gupta, and
A. A. A. El-Latif, ‘‘Secure blockchain enabled cyber–physical systems in
healthcare using deep belief network with ResNet model,’’ J. Parallel
Distrib. Comput., vol. 153, pp. 150–160, Jul. 2021.

[27] S. Balasubramani and D. J. Arvindhar, ‘‘A predictive decision model for
an efficient detection of abnormal driver behavior in intelligent transport
system,’’ J. Manage. Inf. Decis. Sci., vol. 24, pp. 1–10, Jan. 2021.

[28] S. Bouhsissin, N. Sael, and F. Benabbou, ‘‘Driver behavior clas-
sification: A systematic literature review,’’ IEEE Access, vol. 11,
pp. 14128–14153, 2023.

[29] Z. Li, C. Lu, G. Cheng, J. Gong, J. Li, and L. Wei, ‘‘Driver behavior
modelling at the urban intersection via canonical correlation analysis,’’
in Proc. 3rd Int. Conf. Unmanned Syst., Nov. 2020, pp. 564–569, doi:
10.1109/icus50048.2020.9274914.

[30] Q. Hou and J. Dong, ‘‘Robust adaptive event-triggered fault-tolerant
consensus control of multiagent systems with a positive minimum
interevent time,’’ IEEE Trans. Syst., Man, Cybern., Syst., 2023.

[31] J. V. Tembhurne, M. M. Almin, and T. Diwan, ‘‘Mc-DNN: Fake news
detection using multi-channel deep neural networks,’’ Int. J. Semantic Web
Inf. Syst., vol. 18, no. 1, pp. 1–20, Feb. 2022.

[32] S. Li, D. Qin, X. Wu, J. Li, B. Li, and W. Han, ‘‘False alert detection based
on deep learning and machine learning,’’ Int. J. Semantic Web Inf. Syst.,
vol. 18, no. 1, pp. 1–21, Apr. 2022.

[33] A. Gaurav, K. Psannis, andD. Peraković, ‘‘Security of cloud-basedmedical
Internet of Things (MIoTs): A survey,’’ Int. J. Softw. Sci. Comput. Intell.,
vol. 14, no. 1, pp. 1–16, Nov. 2021.

[34] M. Alauthman, A. Al-Qerem, S. Alangari, A. M. Ali, A. Nabo, A.
Aldweesh, I. Jebreen, A. Almomani, and B. B. Gupta, ‘‘Machine learning
for accurate software development cost estimation in economically and
technically limited environments,’’ Int. J. Softw. Sci. Comput. Intell.,
vol. 15, no. 1, pp. 1–24, Oct. 2023.

[35] G. Wu, Y. Li, S. Luo, G. Song, Q. Wang, J. He, J. Ye, X. Qie, and H. Zhu,
‘‘A joint inverse reinforcement learning and deep learning model for
drivers’ behavioral prediction,’’ in Proc. 29th ACM Int. Conf. Inf. Knowl.
Manage., Oct. 2020, pp. 2805–2812.

[36] C. Wei, F. Hui, and A. J. Khattak, ‘‘Driver lane-changing behavior
prediction based on deep learning,’’ J. Adv. Transp., vol. 2021, pp. 1–15,
Apr. 2021.

[37] J. Liu, Y. Jia, Y. Wang, and P. Dolezel, ‘‘Development of driver-behavior
model based onWOA-RBM deep learning network,’’ J. Adv. Transp.,
vol. 2020, pp. 1–11, Sep. 2020.

[38] K. Jin, X. Li, W. Wang, X. Hua, and S. Qin, ‘‘When and where to go next:
Deep learning framework for modeling drivers’ behaviors using automatic
vehicle identification data,’’ Transp. Res. Rec., J. Transp. Res. Board,
vol. 2676, no. 6, pp. 387–398, Jun. 2022.

[39] S. Arbabi, D. Tavernini, S. Fallah, and R. Bowden, ‘‘Learning an
interpretable model for driver behavior prediction with inductive biases,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2022,
pp. 3940–3947.

VOLUME 12, 2024 62277

http://dx.doi.org/10.1109/TNSE.2022.3199919
http://dx.doi.org/10.1109/TITS.2022.3186294
http://dx.doi.org/10.29081/jesr.v28i3.010
http://dx.doi.org/10.1007/978-3-030-11202-8_3
http://dx.doi.org/10.1007/978-3-030-11202-8_3
http://dx.doi.org/10.1109/icus50048.2020.9274914


B. B. Gupta et al.: Deep Learning Model for Driver Behavior Detection in CPS-Based ITS

[40] A. E. Abdelrahman, H. S. Hassanein, and N. Abu-Ali, ‘‘Robust data-
driven framework for driver behavior profiling using supervised machine
learning,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 4, pp. 3336–3350,
Apr. 2022.

[41] L. Jiang, W. Xie, D. Zhang, and T. Gu, ‘‘Smart diagnosis: Deep learning
boosted driver inattention detection and abnormal driving prediction,’’
IEEE Internet Things J., vol. 9, no. 6, pp. 4076–4089, Mar. 2022.

[42] J. Seong, C. Lee, and D. S. Han, ‘‘Neural architecture search for real-time
driver behavior recognition,’’ in Proc. Int. Conf. Artif. Intell. Inf. Commun.
(ICAIIC), Feb. 2022, pp. 104–108.

[43] G. K. Sahoo, S. K. Das, and P. Singh, ‘‘Two layered gated recurrent
stacked long short-term memory networks for driver’s behavior analysis,’’
Sādhanā, vol. 48, no. 2, pp. 1–18, Apr. 2023.

[44] K. Saleh, M. Hossny, and S. Nahavandi, ‘‘Driving behavior classification
based on sensor data fusion using LSTM recurrent neural networks,’’
in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC), Oct. 2017,
pp. 1–6.

[45] J. Xie, A. R. Hilal, and D. Kulic, ‘‘Driving maneuver classification:
A comparison of feature extraction methods,’’ IEEE Sensors J., vol. 18,
no. 12, pp. 4777–4784, Jun. 2018.

[46] J. Xie and M. Zhu, ‘‘Maneuver-based driving behavior classification
based on random forest,’’ IEEE Sensors Lett., vol. 3, no. 11, pp. 1–4,
Nov. 2019.

BRIJ B. GUPTA (Senior Member, IEEE) received
the Ph.D. degree in computer science and engi-
neering from the Indian Institute of Technology
Roorkee, India, in 2011. He is a Visiting/Adjunct
Professor at several universities worldwide. He
serves as the Director of the International Cen-
ter for AI and Cyber Security Research and
Innovations (CCRI) and holds the position of
Distinguished Professor in the Department of
Computer Science and Information Engineering

(CSIE) at Asia University, Taiwan. With over 18 years of professional
experience, he has authored over 500 papers in journals and conferences,
including 35 books and 12 patents, with over 29,000 citations. His
research interests include information security, cyber-physical systems,
cloud computing, blockchain technologies, intrusion detection, AI, social
media, and networking. He serves as a Member-in-Large on the Board of
Governors of the IEEE Consumer Technology Society (2022–2024). He has
received numerous national and international awards, including the Canadian
Commonwealth Scholarship (2009), Faculty Research Fellowship Award
(2017) from MeitY, Government of India, IEEE GCCE Outstanding and
WIE Paper Awards, and the Best Faculty Award (2018 and 2019) from
NIT KKR, respectively. He has been recognized as a Clarivate Web of
Science Highly Cited Researcher in Computer Science (top 0.1% researchers
globally) consecutively in 2022 and 2023, and has been included in Stanford
University’s ranking of the world’s top 2% scientists consecutively in 2020,
2021, 2022, and 2023. He was selected as the 2021 Distinguished Lecturer in
IEEE CTSoc. He currently serves as the Editor-in-Chief of IJSWIS, IJSSCI,
STE, and IJCAC and leads a Book Series with CRC and IET press. He has
also served as a TPC member for over 150 international conferences and as
an Associate/Guest Editor for various journals and transactions.

AKSHAT GAURAV (Graduate Student Member,
IEEE) received the master’s degree in computer
engineering (cyber security) from the National
Institute of Technology Kurukshetra, Haryana,
India. He is currently a Ph.D. Researcher with Asia
University, Taiwan, and a Researcher with Ronin
Institute, Montclair, NJ, USA. He is also working
on the projects related to DDoS attack detection,
intrusion detection, IoT security, cloud/fog com-
puting, cryptography, etc.

KWOK TAI CHUI (Member, IEEE) received the
B.Eng. degree in electronic and communication
engineering (business intelligence minor) and the
Ph.D. degree in electronic engineering from the
City University of Hong Kong, Hong Kong, in
2013 and 2018, respectively. He had industry
experience as a Senior Data Scientist with Inter-
net of Things (IoT) Company. He is with the
Department of Technology, School of Science and
Technology, Hong Kong Metropolitan University,

as an Assistant Professor. He has more than 90 research publications,
including edited books, book chapters, journal articles, and conference
papers. His research interests include computational intelligence, data
science, energy monitoring and management, intelligent transportation,
smart metering, health care, machine learning algorithms, and optimization.
He has served in various editorial position in ESCI/SCIE-listed journals,
including the Managing Editor for International Journal on Semantic Web
and Information Systems, a Topic Editor for Sensors, an Associate Editor for
International Journal of Energy Optimization and Engineering.

VARSHA ARYA received the M.S. degree from
Rajasthan University, India, in 2015. She has been
a Researcher for the last seven years. She has
published more than 20 papers in top journals
and conferences. Her research interests include
business administration, technology management,
cyber-physical systems, cloud computing, health-
care, and networking.

62278 VOLUME 12, 2024


