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ABSTRACT In the field of deep learning, understanding the rationale behind an automatic system’s
decisions is essential for building users’ trust and ensuring accountability. In this regard, explainable artificial
intelligence (XAI) recently emerged as a valuable tool to offer insights into a model behavior. The present
study focuses on vein-based biometric recognition, investigating techniques allowing to identify which
regions of a wrist-vein image are mostly exploited to carry out a verification process. Toward this aim, our
research exploits vision transformers (ViTs), which rely on self-attentionmechanisms to automatically detect
and exploit the input parts with the content deemed most relevant for its further processing. Two distinct
wrist-vein pattern datasets, namely PUT-wrist and FYO-wrist, are employed to fine-tune the considered
models. Their behavior is interpreted by analyzing the attention maps generated when applying the trained
networks to vein-pattern images, investigating which regions are exploited to decide a user’s identity. The
proposed approach testifies that the performed recognition process can improve when a ViT focuses on areas
with significant vein pattern content, achieving verification performance surpassing state-of-the-art methods
in open-set scenarios, while promoting transparency through explainability.

INDEX TERMS Biometric recognition, vein biometrics, wrist vein biometrics, explainable AI, vision
transformers.

I. INTRODUCTION
Biometric recognition systems leverage individuals’ unique
physiological or behavioral attributes to perform people
identification or verification, revolutionizing several appli-
cations with security-related requirements [1]. One notable
sub-domain of this research field regards hand vein patterns
that can be captured by exposing palms, wrists, or fingers to
imaging systems relying on infrared radiation and allow the
recognition of individuals based on the unique characteristics
of the acquired subcutaneous traits [2], [3]. Renowned for
its robustness against spoofing attacks [4], vein recognition
stands out as a highly secure biometric modality [5].
Traditionally, vein recognition has been dominated by feature
engineering and conventional algorithms like local binary
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pattern (LBP) and Gabor filters [6], [7], [8], [9]. The advent
of deep learning pushed the performance of vein-based
biometric recognition systems, making convolutional neu-
ral networks (CNNs) the standard choice for extracting
hierarchical features from raw vein images [10], [11],
[12]. However, the black-box nature of these models still
represents a downside affecting their reliability. Nowadays,
there is a growing demand for transparent systems that may
empower users to comprehend why specific decisions are
made, thereby fostering confidence in their fairness and
unbiasedness [13], [14], [15].

Within the context of vein pattern recognition, the need
to gain insights into the aspects considered by deep learning
approaches when producing their decisions is highly relevant.
Traditional approaches commonly relied on segmentation
processes to generate vessel skeletons that were then
employed for recognition, thus offering a solid basis for
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which characteristics were used for recognition. Given the
lack of investigations on their interpretability, an analogous
awareness still needs to be made available for deep learning
approaches. Here, we analyze these aspects, prioritizing
explainability as a path towards interpretability and trying
to shed some light on the features that mainly contribute
to producing a decision in vein-based recognition systems
relying on deep learning approaches.

Inmore detail, we here resort to vision transformers (ViTs),
a key paradigm that recently emerged within the landscape
of deep learning architectures [16], to reach the desired goal.
Differently from CNNs, ViTs perform vision tasks by divid-
ing images into sequences of non-overlapping patches, which
are then fed into transformer blocks [17]. In addition to being
often able to learn more discriminative features compared
to alternatives such as CNNs, ViTs represent an approach
allowing in-model explainability, that is, integrating explain-
ability mechanisms within the learning process by resorting
to attention-based processes [18]. Such an approach differs
from post-model explainability, which involves analyzing the
model after it has been trained, with in-model paradigms pro-
viding end-to-end transparency, allowing one to understand
not only the final decisions but also the process that led to
those decisions, and typically providing greater generaliza-
tion and robustness, thus enhancing trust in the model [19].
While early research investigated the potential of ViTs

for vein-based biometric recognition [20], a comprehensive
study elucidating robust explainability mechanisms tailored
for ViTs and applied to this task is still missing in the
literature. The present paper represents a step in this direction,
analyzing the attention maps generated by ViTs applied to
vein images when performing user verification. In detail, the
state of the art on the specific modality here considered,
i.e., wrist vein patterns and the use of ViTs for biometric
recognition and explainability, is presented in Section II.
The ViT-based framework used for wrist-vein biometric
recognition is described in Section III. The setup employed
in the performed experimental tests is outlined in Section IV,
while the obtained results are presented in Section V. Some
conclusions are eventually drawn in Section VI.

II. RELATED WORKS
As already mentioned, vein-based biometric recognition was
historically approached by resorting to feature engineering
and conventional machine learning algorithms, before CNNs
kicked in and significantly outperformed traditional process-
ing techniques [21], [22], [23], [24]. With specific regard to
wrist-vein biometric recognition [25], early attempts focused
on extracting the vessel patterns in the treated images to
derive representations based on handcrafted characteristics
fed to classic machine learning algorithms. For instance,
support vector machines (SVMs) with LBP inputs were
used in [26] to train a classifier, then used as feature
extractors in a closed-set verification system, achieving an
equal error rate (EER) at 1.3% when comparing samples
from different acquisition sessions of the PUT wrist-vein

database [27]. Such verification performance was obtained
by performing tests on the same subjects employed to train
the SVM classifier, with limited generalizability capacity.
On the other side, open-set verification conditions were
considered on [28], where the comparison between vein
patterns was performed using correlations, as well as in [29],
where scale-invariant feature transform (SIFT) characteristics
were extracted from vein patterns and compared to estimate
the similarity between samples. However, the verification
rates achieved in open-set scenarios, where recognition
performance is computed over subjects other than those
used for training the employed solution or no training is
required, are typically worse but more generalizable than
those achievable in closed-set scenarios. In fact, EERs
at 9.3% and 15.9% were respectively obtained in [28]
and [29] on the PUT database. Handcrafted features were also
employed to perform wrist-vein identification in [30], where
rank-1 accuracies at 84.0% and 93.1% were respectively
achieved on the PUT and FYO [31] datasets.

Deep learning approaches were instead applied to
wrist-vein images in [32], where an EER=2.1% on PUT was
obtained in closed-set verificationwhen training a ResNet152
network [33], then employed to extract features used as
input to a further logistic regression classifier. Closed-set
conditions were also considered in [34], where a lightweight
network was designed to extract discriminative wrist-vein
features, achieving EERs at 1.2% on PUT and 1.84% on
FYO when testing on the same subjects employed to train
the used model. Open-set verification conditions have been
instead considered in [35], where a siamese approach was
employed to train a CNN, achieving an F1 score at 84.7%.
Also, ViTs were applied to wrist-vein images, as in [20]
where an accuracy at 99.5% on PUT was obtained in
identification, yet not investigating any explainability aspect
nor the generalizability of ViT on verification tasks.

In general, while deep learning approaches notably out-
performed classic machine learning algorithms for wrist-vein
biometrics in identification scenarios they are still not as
efficient for verification, where networks should be employed
as feature extractors. Furthermore, deep learning reliability
for wrist-vein verification in open-set scenarios must be prop-
erly explored. Given that these latter conditions are closer to
real-life verification, in which a solution is designed to be
optimized over a certain dataset yet then applied to different
subjects, we here resort to open-set experimental scenarios
to conduct our analysis in the hope of deriving more general
outcomes than what closed-set conditions could allow.

In more detail, within the context of explainable artificial
intelligence (XAI), our intent here is to shed some light
on the decision-making processes of deep-learning-based
wrist-vein biometric verification, thus trying to demystify
the operations of approaches relying on neural networks
and understand their rationale [36]. Unfortunately, XAI
applications in biometric recognition are still at an infant
stage [37], with most of the studies so far presented mainly
focused on presentation attack detection (PAD) for facial
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biometrics [38]. Among the investigations that tried to look
into the aspects exploited by neural networks applied to
biometric recognition during their decision-making process,
the vast majority relied on post-model methods. These
approaches, essentially visual toolkits, elucidate predictions
of an already trained model [39]. A notable technique in this
category is the gradient-weighted class activation mapping
(Grad-CAM) approach, prominently featured in studies
analyzing network decisions [40]. The only work devoted
explicitly to the explainability of vein recognition [41], to the
best of our knowledge, actually adopted such post-model
paradigm, employing the local interpretable model-agnostic
explanations (LIME)method [42] to visually dissect a custom
CNN areas of focus on palm vein images. However, the
obtained visual results are coarse and hardly highlight areas
resembling the vein patterns in the images.

Within the XAI taxonomy, our approach instead fits into
the functional methods according to which, to achieve better
explainability, it is preferable to consider methods that jointly
provide predictions and explanations. In this regard, ViTs
achieved remarkable results for vision tasks. Specifically,
ViTs segment images into fixed-size patches and process
them through multiple layers of self-attention mechanisms,
capturing long-range dependencies [16], [17]. Given their
ability to capture complex patterns, ViTs have already been
exploited for biometric recognition, especially for gait [43],
[44]. Regarding vein biometrics, in addition to [20] where
ViTs were applied to wrist-vein images, in [45] and [46]
the authors have applied ViTs to finger-vein traits, while
a multi-scale transformer was applied on palm-vein data
in [47]. Yet, all the studies mentioned above only used ViTs
to extract discriminative features from the considered images,
with no reference to the associated explainability aspects and
without investigating the derived attention maps.

Although there is an ongoing debate about the effectiveness
of generic attention mechanisms as explainability tools [48],
[49], there is also a consensus on the efficacy of ViT attention
maps in providing relevant insights on models explainability
for visual tasks [50], [51]. This kind of analysis proved
effective in other fields such as bio-medicine [52]. For
instance, ViT attention maps provided relevant insights for
explainable COVID-19 screening in [18]. A comprehensive
study in [53] also delves into explainable transfer learning
for ViTs applied to chest X-rays. Similar works within the
biometric recognition field are still rare, with a notable
example presented in [54], where the authors employed ViTs
to guide fingerprint embedding using minutiae matching, and
emphasized the decision process of ViTs through salience
maps. The present study aims at providing an analogous con-
tribution considering wrist-vein biometrics, trying to achieve
high recognition performance and provide an insightful
and transparent understanding of the underlying biometric
features that drive accurate verification. The present study
aims at providing an analogous contribution considering
wrist-vein biometrics, trying to achieve high recognition
performance and provide an insightful and transparent

understanding of the underlying biometric features that drive
accurate verification.

III. EXPLAINABLE VEIN BIOMETRIC RECOGNITION
Initially crafted for natural language processing tasks,
ViTs [16] recently emerged as a groundbreaking approach in
computer vision, outperforming traditional CNNs in a variety
of vision tasks, especially when dealing with large-scale
data [55]. The core concept of ViTs can be mathematically
distilled into the following components.

A. TOKENIZATION
Analogous to the tokenization of words in text, ViTs
dissect images into fixed-size and non-overlapping patches.
An image I of dimensionsH×W ×C is divided into patches
of size P × P × C , resulting in N =

H ·W
P·P patches. Each

patch is subsequently flattened and linearly embedded into
a vector uij ∈ Rd . Formally, if vij ∈ RP2·C denotes the
vector corresponding to the patch at row i and column j of the
original image, we have uij = vij We, where We ∈ R(P2·C)×d

is a learnable embedding matrix. Furthermore, a special
<cls> token is appended to the beginning of this sequence,
serving as an aggregate representation for downstream tasks,
especially classification.

B. POSITIONAL EMBEDDING
By design, the transformer architecture does not provide any
order or position that captures the original context provided
by the spatial arrangement of the patches. To overcome this
limitation, a learnable positional embedding vector pij is
added to its corresponding token, with xij = uij+pij being the
final patch embedding infused with positional information.

C. TRANSFORMER LAYERS
To capture both local and global information from an image I ,

a ViT receives as input the sequence X ∈ R(1+N 2)×d

composed of a vector ucls that contains the embedding
of the <cls> token, followed by the sequence of the
patch embeddings xij. Each layer consists of a self-attention
mechanism [56] followed by a feed-forward network. For a
single head of attention, the attention weights α and output
oij are computed as:

Q = X WQ

K = X WK

V = X WV

α = softmax
(

QKT
√
d

)
O = αV,

where WQ, WK and WV are learnable weight matrices. The
attention maps indicate which areas of the original image
are highlighted during the process and mostly used for
the desired task, that is, classification during the training
phase. After L ViT layers, the output corresponding to the
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FIGURE 1. Illustrative representation of the Vision Transformer (ViT) [16] tailored for explainable vein biometric recognition.

<cls> token, denoted as ocls, is processed by a linear layer
for classification as ŷ = softmax(oclsWcls + bcls). Cross-
entropy is typically employed as a loss function over the
computed probabilities to drive network training using the
back-propagation algorithm.

D. ATTENTION MAPS
As previously illustrated, attention maps provide information
about which regions of the input image are of particular
interest to the model. These maps serve as a compass, guiding
our understanding of where the model focuses when making
a prediction. To construct such maps in the context of ViTs,
one typically examines the attention weights, specifically
from the last layer of the transformer. The rationale behind
this choice is that the latter layers capture higher-level,
more abstract features that directly influence the model’s
final decision. To provide an output that is robust to the
model fluctuations, we consider a ViT equippedwithmultiple
attention heads. Each head assigns distinct attention weights
to different input regions during its operation. To derive
the final attention maps, we average the attention weights
across all heads. Mathematically, for a multi-head attention
mechanism with h heads, the final attention map A can be
thus formulated as:

A =
1
h

h∑
i=1

A(L)
i (1)

where A(L)
i is the attention weight matrix for the i-th head

at the last transformer layer L. Once obtained, this averaged
attention map is upsampled and overlaid on the original
image to visualize the regions that the ViT paid attention
to during the biometric recognition task. Such visualizations
not only serve as an explanatory tool, demystifying the
ViT behavior, but also play a pivotal role in diagnosing

potential biases or shortcomings in the model focus and,
by extension, its decision-making process. A visual depiction
of the processing applied to the considered vein pattern
images is shown in Figure 1. In contrast, the details of the
processing performed to derive the desired attention maps are
given in Algorithm 1.

It is worth noticing that the ViT attention weight matrices,
and therefore the attention maps, are computed before deriv-
ing the final inner representation of the input or performing
classification, differently from class-dependent post-model
explainability tools such as Grad-CAM. Therefore, attention
maps may provide insights on the most relevant parts of an
image evenwhen aViT is used only as a feature extractor, as it
happens in our case when verification, and not identification,
is carried out in the experimental tests.

IV. EXPERIMENTAL SETUP
The datasets used in the performed tests are presented
in Section IV-A, while the employed training and testing
strategies are respectively outlined in Sections IV-B and IV-C.

A. DATASET
We applied ViTs to the wrist-vein patterns in two public
datasets, namely PUT [27] and FYO [31].

The PUT wrist-vein database comprises 1200 images,
with acquisitions taken from the right and left hands of
50 subjects. A total of 4 images were captured for each
wrist during 3 acquisition sessions separated in time. Given
the low correlation between each subject’s right and left
wrist-vein patterns, each wrist is considered a class for
a total of 100 distinct classes. The samples within this
dataset experience low contrast between the vein traits
and the background, being, therefore, particularly hard
to be processed effectively. To enhance the visibility of
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Algorithm 1 Get Attention Maps
Input: Image I of dimensions H ×W × C
Output: Predicted class ŷ, Attention Map A(I )
Require: Patch size P
procedure Tokenization(I : Image)

P = Divide I into a gird of N patches. ▷ N =
H×W
P×P

vi = vec(Pi,j) ∀i, j ▷ Seq. of RP2·C vectors
ui = vi · We. ▷ We ∈ R(P2·C)

× d
return u. ▷ Patch Embeddings ∈ RN×d

end procedure
procedure Pos. Embedding(u: patch embeddings)

xi = ui + pi ∀i
X(0)

= [ucls, x1, . . . , xN ]
return X(0)

end procedure
procedure Self Attention(X(l))

Q(l)
= X(l)

· W(l)
Q

K(l)
= X(l)

· W(l)
K

V(l)
= X(l)

· W(l)
V

A(l)
= softmax

(
Q(l)

·(K(l))
⊤

√
d

)
. ▷ Attention Maps

O(l)
= A(l)

· V(l)

return O(l)
, A(l)

end procedure
u = Tokenization(I )
X(0)

= embedding(u)
for l = 1 to L do

X̂
(l)

= LN(X(l)) ▷ Layer Norm.
O(l)

, A(l)
= MHA(X̂

(l)
) ▷ Multi-head Attention.

X̃
(l)

= X(l)
+ O(l)

X(l+1)
= X̃

(l)
+ FF(LN(X̃

(l)
)) ▷ 2-Layer MLP.

end for
A = 1/h

∑
h A(L)

h .
return A

TABLE 1. Employed wrist-vein dataset characteristics.

the traits, contrast limited adaptive histogram equalization
(CLAHE) [57] is typically applied to the images of this
dataset. CLAHE is a widely used image enhancement method
that adjusts the contrast of an image by redistributing pixel

FIGURE 2. Original wrist-vein patterns (left) vs their CLAHE-enhanced
representations (right) from the PUT-Wrist vein dataset.

intensities, characterized by two parameters, i.e., clip limit
and grid size, here, respectively set at 5.0 and (8, 8). The
results of this preprocessing to images from the PUT database
can be seen in Figure 2.

The FYO wrist-vein database contains images taken from
both hands of 160 subjects, collected using a medical vein
finder in a controlled environment, with an image captured
during each of two separate acquisition sessions for each
participant. As for PUT, the vein patterns from the two wrists
of each subject are considered as two separate classes, for a
total of 320 classes. Given that images in FYO have better
quality than those in PUT, applying CLAHE to the images in
this dataset is typically not required. A summary of the main
characteristics of the employed datasets is given in Table 1.

Given the limited amount of data in both databases,
data augmentation was employed to increase the number
of samples available to train the employed ViT models.
In more detail, we leveraged a suite of basic image processing
operations to generate augmented instances for each class,
thus enhancing the diversity of the training samples. The
augmentations were applied as follows: (1) Horizontal Flip
with a probability p = 0.5; (2) Rotation with a probability
p = 0.7 bounded by a maximum left rotation of −10◦ and
a maximum right rotation of +10◦; (3) Random Contrast
adjustments, initiated with a probability p = 0.5, with a
factor range between 0.7 and 1.3. (4) Random Illumination
variations, activated with a probability p = 0.5, regulated
by a factor ranging from 0.7 to 1.3. The PUT dataset was
augmented from 12 to 132 images per class, while the FYO
dataset from 2 to 30 images per class.

B. ARCHITECTURE AND TRANSFER LEARNING
Two different ViT configurations were used in the performed
tests, the first exploiting patch sizes of P× P = 16 × 16 and
the second with patch sizes of P× P = 32× 32. This choice
was made to evaluate whether the employed patch size affects
the model recognition performance in this task.
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FIGURE 3. In the left graph, one can see the trend of EER obtained from the two models at different training epochs while on the right
is the evolution of AUC for the PUT dataset.

FIGURE 4. In the left graph, one can see the trend of EER obtained from the two models at different training epochs, while on the right
is the evolution of AUC for the FYO dataset.

The imported architectures were pretrained on the
ImageNet-1K dataset, which contains 1 million images
labeled in 1,000 categories, thus providing a solid knowledge
base for our model. The used ViTs are characterized by
h = 12 heads, feeding inputs to a multi-layer perceptron
(MLP), producing representations with 768 coefficients to
model more complex relationships among the extracted
features before performing classification. For regularization
purposes, we replaced the last linear layer of the ViT model
with a combination of two linear layers, interspersed with a
dropout layer, to increase its generalization capability.

To investigate the properties of networks with different
discriminative characteristics, we fine-tuned the considered
ViTs on the available wrist-vein datasets varying the number
of training epochs, namely 20, 40, 60, and 100. As an
optimizer, we used stochastic gradient descent (SGD) [58]
with momentum at 0.9, a starting learning rate of 0.05,
and cosine decay without an initial warm-up. For all the
experiments, the batch size was set to 128. All tests were
performed on an 4 x NVIDIA® Tesla V100 GPUs with
5,120 CUDA cores and 32GB GPU memory, on a personal

computing platform with an Intel® Xeon® Gold 5218 CPU
@ 2.30GHz CPU using Ubuntu 18.04.6 LTS. The model was
implemented in PyTorch [59] by building on top of TIMM
library [60]. PyTorch, NumPy, SciPy, and Joblib are available
under the BSD andMatplotlib under the PSF licenses. TIMM
is available under the Apache 2.0 license.

C. TESTING
As mentioned in our tests, we considered a verification
scenario in which a user asks the system to be recognized
based on comparing a probe sample to the data provided
during an enrolment phase. To assess the generalizability of
ViTs and their suitability for real-world scenarios, open-set
conditions were considered when estimating the achievable
recognition performance. In more detail, we performed a
10-fold cross-validation by excluding, at each iteration,
25 classes from PUT and 60 from FYO when training the
employed ViTs. After a ViT is fine-tuned, it is applied
as a feature extractor to the images belonging to the
classes excluded from training. The representations thus
generated are then compared to compute pairwise 1-vs-1
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FIGURE 5. Attention maps of ViTs trained for different numbers of epochs, for two different images of the same wrist
from the PUT dataset. Warmer colors signify higher attention concentration. Column (a) shows the original images,
column (b) the attention maps obtained after fine-tuning for 20 epochs, column (c) 40 epochs, column (d) 60 epochs,
column (e) 100 epochs.

FIGURE 6. Attention maps of ViTs trained for different numbers of epochs for two images of the same wrist from the
PUT dataset. Warmer colors signify higher attention concentration. Column (a) shows the original images, column
(b) the attention maps obtained after fine-tuning for 20 epochs, column (c) 40 epochs, column (d) 60 epochs, column
(e) 100 epochs.

similarity scores so that distributions of genuine scores are
created by comparing images belonging to the same class.
In contrast, the distributions of impostor scores are obtained
by comparing samples belonging to different test subjects.
Setting a threshold and comparing it against the obtained
scores allows us to decide whether the pairwise comparison
samples stem from the same user. Only the original images,
not the augmented ones, are included in the test set to estimate
the achievable performance.

V. EXPERIMENTAL RESULTS
As mentioned in the previous section, tests were conducted
by fine-tuning the considered ViT models for increasing
numbers of epochs, and adopting the trained networks as
feature extractors on a disjoint set of subjects. Figures 3 and 4
show the results obtained in the performed 10-fold cross-
validation tests, in terms of mean and standard deviation
equal error rate (EER), with ViT models trained for different

TABLE 2. Recognition performance comparison between approaches
based on ViTs and ResNet152 on the PUT-Wrist dataset.

numbers of epochs. Also, the trend of the area under the
curve (AUC) of the receiver operating characteristic (ROC),
obtained by plotting (1-FRR) vs FAR, is reported. As for the
PUT database, the results in Figure 3 are referred to images
processed with CLAHE, which is instead not employed for
FYO since it does not produce improvements, given that the
original samples are already characterized by proper contrast
and sharpness.
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FIGURE 7. Attention maps of ViTs trained for different numbers of epochs, for two different images of the same wrist
from the FYO dataset. Warmer colors signify higher attention concentration. Column (a) shows the original images,
column (b) the attention maps obtained after fine-tuning for 20 epochs, column (c) 40 epochs, column (d) 60 epochs,
column (e) 100 epochs.

FIGURE 8. Attention maps of ViTs trained for different numbers of epochs, for two different images of the same wrist
from the FYO dataset. Warmer colors signify higher attention concentration. Column (a) shows the original images,
column (b) the attention maps obtained after fine-tuning for 20 epochs, column (c) 40 epochs, column (d) 60 epochs,
column (e) 100 epochs.

The ViT configuration resulting in the best values of
average EER and AUC for the PUT database relies on
16 × 16 patches and fine-tuned for 100 epochs. As for the
FYO dataset, the ViT configuration leading to the lowest
average EER and highest average AUC uses a patch size of
32 × 32 and fine-tuned for 40 epochs. The obtained results,
therefore, testify that the selected patch size may significantly
impact the achievable recognition rate, especially for the FYO
dataset, whose better image quality allows it to perform better
than PUT. In more detail, the best average EERs obtained
in open-set verification is 5.2% for PUT and 2.3% for
FYO.

Figures 5 and 6 show the attention maps associated with
distinct images of two subjects from the PUT database, cre-
ated by ViTs fine-tuned for different numbers of epochs. It is
worth remarking that such maps refer to subjects used during
performance evaluation and, therefore, are not included in

the training dataset employed to fine-tune the ViTs. As can
be seen, regions with higher relevance (warmer colors)
significantly overlay with areas containing wrist vessels, thus
testifying the effectiveness of the considered solutions and
also their generalizability, since they are able to localize
relevant vessel regions also on images from subjects other
than those seen during fine-tuning. Furthermore, it can also
be appreciated that ViTs trained for more significant numbers
of epochs are more effective since they reduce the spurious
regions on which attention is placed.

The attention maps associated with distinct images of two
subjects from the FYO database, created by ViTs fine-tuned
for different numbers of epochs, are instead shown in
Figures 7 and 8. As for the images from PUT, the attention
maps properly focus on areas containing relevant vessel
contents, which are, therefore, those mostly considered to
decide on the presented subjects.
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FIGURE 9. EERs of ViT models trained on PUT wrist vein images either
with or without CLAHE preprocessing.

FIGURE 10. Attention maps for images with or without CLAHE. Column
(a) shows an image from PUT preprocessed with CLAHE, column (b) the
corresponding attention map created by a ViT-16 model trained on CLAHE
images, column (c) the attention map created on the original image by a
ViT-16 model trained on original images.

Additional tests were performed to assess the effectiveness
and the effects of using CLAHE on images from the PUT
database. Figure 9 reports the performance achievable on
PUTwhen training ViTs on images either preprocessed or not
with CLAHE. The best average EER achieved when avoiding
CLAHE is 7.3%, with a notable worsening from the 5.2%
obtained with CLAHE. Moreover, Figure 10 offers a visual
comparison of the effects of CLAHE on the images processed
byViTs. Themaps there reported show that, due to the limited
contrast in the original images, networks trained on data not
preprocessed with CLAHEmight find it hard to pay attention
to areas with relevant vessel content, with consequences on
the achievable recognition performance. Fine-tuning ViTs
on images with enhanced contrast may also be beneficial
when applying the trained network on not-enhanced images.
Specifically, models fine-tuned on images preprocessed
with CLAHE produce more informative attention maps
when applied to both the original and enhanced images of
subjects, as shown in Figure 11. Conversely, leveraging the
original images for fine-tuning does not allow ViT to focus
appropriately on the most relevant areas of the inputs when
enhanced images are fed to the trained network. Resorting
to attention maps for explainability also offers interesting
insights into the effects of CLAHE on PUT wrist-vein
images.

FIGURE 11. Effects of CLAHE on ViTs trained on PUT. Column (a) shows an
image from PUT with (top) and without (bottom) CLAHE preprocessing.
Column (b) shows the attention maps obtained applying the trained
models on the original image, while column (c) shows the attention maps
obtained from the CLAHE-preprocessed images. For columns (b) and (c),
the first row refers to ViTs trained on the CLAHE-preprocessed PUT
dataset, the second row to ViTs trained without CLAHE.

Eventually, for comparison purposes, we report in Table 2
the recognition performance achievable in open-set verifi-
cation with the proposed approach based on ViT, and with
a state of the art approach relying on ResNet152 [33],
as proposed in [32]. As for tests with ViTs, a 10-fold cross
validation was performed by fine-tuning, at each iteration,
a pretrained ResNet152 on a subset of the considered vein
databases, and then using the trained model as feature
extractor for the disjoint dataset upon which the achievable
verification rates are estimated. The models are trained for
1000 training epochs using early stopping with a patience
of 10 epochs. As optimizer, we used SGD with a moment
of 0.9 and a learning rate of 0.0005, with batch size at 128.
It can be seen that ViTs outperform ResNet152 in both
the considered datasets, testifying the effectiveness of the
proposed solution in extracting discriminative characteristics
from vein patterns. It is worth mentioning that far better
results were reported in [32] using ResNet158, yet closed-set
verification conditions were there used, testing the models on
the same subjects exploited for training. Results quite similar
to those in [32] are obtained with ResNet152 in our tests
under the same closed-set conditions, yet open-set represents
a much more challenging scenario.

VI. CONCLUSION
In this paper, we demonstrated the effectiveness of using ViTs
for vein biometric recognition and exploited the attention
maps produced by ViTs when processing their inputs to
argue for the explainability of the obtained results. We thus
provide insights into the employed models’ inner behavior
when making their decisions.

Tests on the PUT and FYOwrist-vein datasets testified that
the considered approach based on ViT can outperform state-
of-the-art alternatives for open-set verification, with the best
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EERs obtained on the two datasets respectively at 5.2% and
2.3%. More interestingly, we have demonstrated for the first
time in literature that suchmodels’ decisions are takenmostly
by focusing on image regions containing significant venous
contents.

For the PUT database, we also proved the effectiveness of
preprocessing the available wrist-vein images with CLAHE
to enhance their quality and, consequently, the achievable
performance by also providing examples of the differences in
processing original or enhanced images throughViT attention
maps.

In conclusion, with this work, we evaluated the explain-
ability of wrist-vein biometric recognition by resorting to
the attention maps produced when employing ViTs for
image processing. The results provide interesting insights
into the decision-making process for vascular biometric
recognition, thus fostering transparency and trust in the per-
formed methods and promoting responsible AI deployment.
Conducting tests in open-set verification scenarios further
increases the robustness and generalizability of the obtained
outcomes.
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