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ABSTRACT In this paper, we study the cooperative optimization problem of multi-agent systems with
globally coupled cost function and coupled constraints, and design a distributed computing framework
combining potential game theory underlying geometric projection. This design framework has the advantage
of being able to solve the cooperative optimization problem with globally coupled cost function and coupled
constraints in distributed way. Firstly, the studied problem with coupled constraints is converted to an
unconstrained one by using barrier and penalty methods, respectively, and then the cost function with n
variables to be optimized is decoupled by projecting it to n hyperplanes, and n decoupled sub-optimization
problems are established. Underlying this design, we exploit an equivalently changing relationship during
the optimizing process between each decoupled cost function and the original global function in a fixed
communication topology, which forms a potential game, and derive that the optimal solution of the
cooperative optimization problem is equivalent with Nash equilibrium of the potential game. The obtained
sub-optimization problems can be solved in distributed manner and two improved distributed gradient
algorithms are proposed. Finally, the distributed design is applied to the economic dispatch problem in power
system to verify the superiority of our proposed algorithms.

INDEX TERMS Cooperative optimization, coupled inequality constraint, potential game, barrier method,
penalty method.

I. INTRODUCTION
A multi-agent cooperative optimization problem (COP)
means that agents cooperate to find the best solution to
minimize the global cost function relying on the information
obtaining from their neighbors through a communication
network [2], [3], [4], [5], [6], [7], [8], [9]. Many achievements
focus on this issue and study COP with coupled constraints.
For example, a fixed-step algorithm is raised to solve a
smooth COP with coupling constraints in [6]. In [7], a dis-
tributed online optimization problem with time-varying cou-
pled constraints is studied. As we all know that constraints in
a COP are usually of great practical importance, such as res-
idential energy consumption scheduling problems [10], [11],
[12], [13], network resource allocation problems [14], [15],
[16] and power-traffic network allocation problems [17],
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[18], [19], [20]. However, the existing of coupled constraints
definitely increases difficulty of seeking optimal solution and
complexity of designing algorithms in a great extent.

Many algorithms are proposed to solve COP in which
agents learn their associated decision sets (feasible regions)
during optimizing process, including but not limited to dual
gradient algorithms [21], [22], [23], [24], [25] and primal-
dual algorithms [26], [27], [28], [29], [30]. However, not
every agent knows its own feasible region in real applications
causing the above methods to be infeasible [31], [32], [33],
[34]. Reference [31] studies the information exchange and
equilibrium computation of distributed algorithms in commu-
nication networks for a kind of games, which converge to the
equilibrium point both synchronously and asynchronously.
Convergences of two distributed algorithms are investigated
and analyzed in the communication environment with
transmission delays and time-varying network topographies
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in [33]. Note that in most references mentioned above,
the cost function in a COP to be optimized is given in
summation form of local cost functions directly, in which
each agent possesses an independent cost function. However,
not every COP can be modeled by a global cost function
in summation form of independent local cost functions, and
some existing distributed algorithms would lose efficacy if
the cost function of a COP is in a general form. How to
design a distributed computation procedure to solve COP
with general cost functions and constraints motivates our
interests.

In recent years, potential game theory has been introduced
into the theoretical analysis of distributed optimization since
it is a better way to provide a structural decomposition
between COP and specific decision rules for agents [35].
In addition, it is necessary to adopt some optimization
techniques to deal with the coupled constraints [34], [36],
[37], [38], [39], [40], [41], such as the multiplier method [34],
[37] and the penalty method [39], [40], [41]. By combining
game theory with barrier and penalty methods, we concen-
trate on developing a decoupling design framework for the
multi-agent COP with globally coupled cost function and
constraints. The main difficulties solved by us are in two
aspects: The first one is how to obtain the local cost function
for each agent by decoupling from the global cost function,
under which what kind of distributed algorithms can be used
to solve the decoupled COP. The second one is how to
guarantee equivalence between the joint optimal solution of
the decoupled COP and the optimal solution of the original
COP. Based on the above analysis, the main contributions of
this paper are listed below.

1) Ideological innovation. A kind of multi-agent COP with
globally coupled cost function and constraints is studied,
in which the cost function is not necessarily the summation
of local utility functions. We design two improved gradient
projection algorithms to solve the multi-agent COP in
distributed manner. This undoubtedly relaxes the restriction
on the form of the global cost function for modeling
multi-agent COP and provides effective algorithms to solve
this kind of COP in distributed way.

2) Technological innovation. Barrier and penalty methods
are used to convert the COP with coupled constraints to an
unconstrained one, respectively, and the globally coupling
cost function with n variables is decoupled by projecting it
to n hyperplanes, then n decoupled sub-optimization prob-
lems are established. We exploit an equivalently changing
relationship during the optimizing process between each
decoupled cost function and the original global cost function,
which forms a potential game. Through this design, the final
solution of COP is proved to be equivalent with the Nash
equilibrium point of the potential game.

The rest organization of this paper is as follows. Section II
describes the multi-agent COP and give some related
definitions and lemmas. In Section III, we present the
detailed process of designing framework, and propose two
improved distributed gradient algorithms. In Section IV,

two simulation examples are given to verify our proposed
algorithms. Section V concludes the paper.

II. PRELIMINARIES
Let N = {1, 2, · · · , n} be the set of agents. Every agent i ∈ N
has a convex decision set yi ⊆ R. Define y = (y1, · · · , yn)T ∈

Y =
∏

i∈N Yi as the global decision vector and {yj}i is the
set of neighbors of agent i. A general multi-agent COP with
coupled constraints is in form:

min
y∈Y

f (y),

s.t. hu(y) = 0, u = 1, 2, · · · ,m1,

gv(y) ⩽ 0, v = 1, 2, · · · ,m2, (1)

where f (y) : Rn
→ R is convex and quadratic

differentiable, {hu(y) = 0, u = 1, 2, · · · ,m1} and {gv(y) ⩽
0, v = 1, 2, · · · ,m2} are the equality constraint set and the
inequality constraint set, respectively. In addition, we assume
that the optimal solution y∗ of (1) uniquely exists, and f (y∗) =

p∗ is the optimal value. A connected graph G = (N , E)
represents the communication rule between agents, where
E means the edge set. The neighbor set of i is denoted by
Ni = {j ∈ N : (i, j) ∈ E} and we define i ∈ Ni specially.
Agent i is only allowed to communicate with its neighbors
based on a connected graph. Our goal is to derive the optimal
solution y∗ of (1) by each agent i calculating its variable value
in the light of the communication with its neighbors in the
connected graph G.
Before proceeding, we state preliminary knowledge of

potential game and two relative lemmas for the analysis
process of our main result.

A strategic game is characterized by the player (agent)
set N = {1, 2, · · · , n}, in which every player i ∈ N
has one action profile A and cost function fi : A → R
where A =

∏
i∈N Ai stands for the combination action

profile. For an action profile y = (y1, · · · , yn)T , let y−i =

(y1, · · · , yi−1, yi+1, · · · , yn)T be the actions of players other
than i. The following definition is meaningful for our main
work.
Definition 1 [35]: For a potential game G =

{N , {Ai}, {fi}}, there is a function F : A → R satisfying

fi(y′i, y−i) − fi(y′′i , y−i) = F(y′i, y−i) − F(y′′i , y−i)

for every player i, where y−i ∈ A−i and y′i, y
′′
i ∈ Ai. The

game G must have a pure Nash equilibrium point y∗ ∈ A,
if the action profile y∗ ∈ A satisfies

fi(y∗i , y
∗
−i) = min

yi∈Ai
fi(yi, y∗−i).

Lemma 1 [42]:Define a convex set Z ⊆ Rn, and it is closed
and nonempty.
i) For each y ∈ Rn, there is only one z∗ ∈ Z that minimizes

∥y − z∥ overall z ∈ Z , and z∗ is called the projection of y on
Z and is recorded as [y]+.
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ii) The projection [y]+ and z∗ ∈ Z are consistent if and
only if

(y− z∗)T (z− z∗) ⩽ 0, ∀z ∈ Z

holds for some y ∈ Rn.
Lemma 2 [42]: Let f : Rn

→ R be a continuously
differentiable vector function and y, x ∈ Rn be two real
vectors. If

∥∇f (y+ rx) − ∇f (y)∥ ⩽ Lr∥x∥, ∀r ∈ [0, 1],

holds, where L is a scalar, then

f (y+ x) ⩽ f (y) + xT∇f (y) +
L
2

∥x∥2.

III. BARRIER FUNCTION METHOD
In this section, we solve the optimization problem (1) relying
on logarithmic barrier function method.

It is well known that an equality constraint can be
equivalently replaced by two inequality constraints, we hence
only need to consider problem (1) with inequality constraints:

min
y∈Y

f (y),

s.t. gv(y) ⩽ 0, v = 1, 2, · · · ,m. (2)

The problem (2) with inequality constraints can be con-
verted to the equivalent unconstrained optimization problem:

min
y,t

tf (y, t) + φ(y, t), (3)

where φ(y, t) is a barrier function, t > 0 is a barrier
parameter with its variation law ts+1

= µts to determine the
approximate precision, where µ > 1 is constant. It needs to
point out that y changes once t changes. But we can analyze
the updating process of each component of vector y while
remains t unchanged. To facilitate subsequent exposition,
we adopt ys∗ to denote the optimal solution of (3) at t = ts.
We take the barrier function φ(y, t) in (3) as

φ(y, t) = −

m∑
v=1

log(−gv(y, t)), (4)

where the variable y in φ(y, t) strictly satisfies inequality
constraints of (1) and φ(y, t) is convex and quadratic
differentiable with y. It is obvious from (4) that φ(y, t) → ∞

for ∀t > 0, when gv(y, t) goes to zero. Replace φ(y, t) in (3)
with (4), we obtain an equivalent optimization problem of (2):

min
y,t

F(y, t) = tf (y, t) −

m∑
v=1

log(−gv(y, t)). (5)

From the convexity operation, F(y, t) in (5) is convex and
quadratic differentiable with respect to y. Now, the prob-
lem (1) has been transformed to its equivalent optimization
problem (5). In the following, we exploit a decoupling design
method and develop a distributed algorithm for solving the
optimization problem (5). We will state this design process in
two aspects.

A. DECOUPLING DESIGN UNDER BARRIER METHOD
We first present the main result of decoupling design for the
optimization problem (5) in following theorem.
Theorem 1: Consider the optimization problem (5),

if there exists a local cost function fi(y, t) for every i ∈ N
and for ∀y′i, y

′′
i ∈ Yi, y−i ∈ Y−i such that

fi(y′i, y−i, t) − fi(y′′i , y−i, t) = F(y′i, y−i, t) − F(y′′i , y−i, t),

(6)

then G = {N , {Yi}, {fi}} is a potential game, and the
optimization problem (5) could be decoupled into n sub-
optimization problems

min
yi∈yi

fi(yi, ys−i, t
s), s = 1, 2, . . . (7)

and (ys∗i , ts) is one stage Nash equilibrium of G =

{N , {Yi}, {fi}} at t = ts > 0 if

fi(y∗i , y
s∗
−i, t

s) = min
yi∈Yi

fi(yi, ys∗−i, t
s) (8)

for every agent i. The solution ys∗ of (7) is a stage optimal
solution of (5) at t = ts, and ys∗ will gradually approach the
optimal solution y∗ for (5) with ts → ∞.
Proof. Combining (6), (7) and (8), the equivalence of

solutions between optimization problems (5) and (7) will be
proved by a spatial projection segmentation technique.

Consider the problem (5) with n agents in n+1 dimensional
Cartesian coordinate system. For a given initial state (y0, t0),
we establish the hyperplane h0i = {y|yi ∈ Yi, y−i = y0

−i} for
each i ∈ N . The optimizing process of the variable vector y
is as follows:

(i) Underlying the n+ 1 dimensional Cartesian coordinate
system, a cross-sectional function fi(yi, y0−i, t

0) would yield
on the intersecting surface between the hyperplane h0i and
the cost function F(y, t). Variable yi can be optimized to get
the local optimal value fi(y1i , y

0
−i, t

0) along yi direction, where
y1i is the optimal variable response to y0

−i under t = t0.
Underlying the point (y1i , y

0
−i, t

0), one neighbor of agent i, yj,
is chosen. Hyperplane hj = {y|yj ∈ Yj, yi = y1i , y−{i,j} =

y0
−{i,j}} is set up corresponding to yj which is used to cut
the image of function F(y, t) to obtain fj(y1i , y

1
j , y

0
−{i,j}, t

0) on
the cutting surface. yj can be optimized to obtain the local
optimal value fj(y1i , y

1
j , y

0
−{i,j}, t

0) at yj direction. Repeat the
above process until we obtain the processing solution (y1, t0)
for updating all variables once under t = t0. We present a
simplified decomposition process in 3D space as an example
in FIGURE 1.

(ii) Repeat the updating process of (i) by replacing y0 with
y1 and optimize each component of vector y to obtain the
processing solution (y2, t0) for updating all variables once
again under t = t0.

(iii) Repeat processes (i) and (ii) until we get the stage
optimal solution (y0∗, t0), where each y0∗i , i ∈ N , is the
optimal response to y0∗

−i under t = t0.
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FIGURE 1. Illustration of decoupled design in 3D space, where α and β

denote two different hyperplanes, f1 and f2 denote two different
cross-sectional functions.

According to the above analysis, the decoupled optimiza-
tion problem for agent i can be derived from (7) as

min
yi

fi
(
yi|{yj}i, t0

)
, (9)

where fi is the cost function for agent i with yi and {yj}i is
the decision variable for neighbor j of i. It is obvious that the
cross-sectional function fi we obtained by using the spatial
projection segmentation technique from F(y, t) satisfies (6).
Therefore, {N , {yi}, {fi}} is a potential game where F(y, t) is
the potential function.

We describe the optimizing process of variable y and derive
the stage optimal solution y0∗ of (5) when t = t0. In what
following, we analyze the optimizing process of the barrier
parameter t .
It is easy to conclude from the definition of potential game

that the stage optimal solution ys∗ of (5) is also the optimal
solution of (7) at t = ts. We only need to prove that ys∗ → y∗

when ts → ∞. We refer to the solution (ys∗, ts) of (5) as the
central point. The set {(ys∗, ts)|ts > 0, s = 1, 2, · · · } formed
by central points is regarded as the central path of (2), and for
(ys∗, ts), we have

gv(ys∗) < 0, v ∈ [1,m],

0 = t∇f (ys∗, ts) + ∇φ(ys∗, ts)

= t∇f (ys∗, ts) +

m∑
v=1

1
−gv(ys∗, ts)

∇gv(ys∗, ts).

(10)

Define λs∗v corresponding to the central point (ys∗, ts) as

λs∗v = −
1

tgv(ys∗, ts)
, v ∈ [1,m], (11)

where gv < 0 and λs∗v > 0. Instead of λs∗v in (10) with (11),
we obtain

∇f (ys∗, ts) +

m∑
v=1

λs∗v ∇gv(ys∗, ts) = 0. (12)

The Lagrange function of (2) is

Lb(y, λ, t) = f (y, t) +

m∑
v=1

λvgv(y, t). (13)

With the optimal dual solution λs∗ and the central point
(ys∗, ts), it can be concluded that λ = λs∗ when y = ys∗

and the Lagrange function (13) reaches the minimum, which
means that λs∗ is a dual feasible solution at t = ts, the dual
function is finite. We denote the dual function by d(λs∗, ts),
then

d(λs∗, ts) = f (ys∗, ts) +

m∑
v=1

λs∗v gv(y
s∗, ts) = f (ys∗, ts) −

m
ts

.

(14)

It is not difficult to see from (14) thatm/ts is the duality gap
between the dual feasible solution λ∗ and y∗. y∗ represents the
optimal solution of (2). We thus have

f (ys∗, ts) − p∗ ⩽
m
ts

. (15)

From (15), it is obvious that ys∗ → y∗ when ts → ∞. □
Remark 1: For the COP with globally coupled cost

function, a novel design framework based on potential game
is proposed in Theorem 1. Underlying this framework, we can
obtain the decoupled local cost function for each agent from
the global cost function. For the coupled inequality con-
straints, the barrier method is used to incorporate constraints
into the proposed design framework. The complexity of
the proposed design framework is how to find an effective
way to prove equivalence between the joint optimal solution

Algorithm 1 Gradient Projection Algorithm

Input: An initial value (y0, t0) = (y01, y
0
2, · · · , y0n, t

0), where
y0 satisfies gv(y0) < 0

Output: The optimal solution t = ts, y∗ = ys∗ of the
problem (1)

1: c = 0, s = 0
2: while ∥y(s+1)∗

− ys∗∥ > ε2 do
3: while ∥yc+1

− yc∥ > ε1 do
4: Calculate ∇fi(yi, y−i, ts) by

∇fi(yi, y−i, ts) =
∂fi(yi, y−i, ts)

∂yi

=
t∂f (yi, y−i, ts)

∂yi
−

∂φi(yi, y−i, ts)
∂yi

(16)

5: yc+1
i = yci − ω∇fi(yci , y

c
−i, t

s)
6: c = c+ 1
7: end while
8: Get ys∗ = yc = (yc1, · · · , ycn)
9: s = s+ 1

10: ts = µts−1

11: end while
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obtained from local optimization problem (7) and the optimal
solution of original optimization problem (2).

B. ALGORITHM DESIGN UNDERLYING BARRIER METHOD
A gradient algorithm is proposed and its convergence is
proved under the above designed framework. The detailed
procedure of the proposed algorithm is shown in Algorithm 1
and its convergence will be proved followed from [43] in
Theorem 2.
Theorem 2: Algorithm 1 converges and the variable y will

gradually approach the equilibrium point y∗ if and only if the
step ωi < 2/Li.
Proof. Consider the local optimization problem for agent

i with cost function fi(yi, y−i, t), an initial value (y0i , y
0
−i, t

0),
and the ensuing state (yc+1

i , yc+1
−i , t0). From Theorem 1 and

algorithm 1, we obtain

F(yc+1
i , y0

−i, t
0) = fi(y

c+1
i , y0

−i, t
0)

⩽ fi(y0i , y
0
−i, t

0) = F(y0i , y
0
−i, t

0), (17)

which illustrates that F(yi, y−i, t) is monotonically decreas-
ing with yi. Now we prove that F(yi, y−i, t) is mono-
tonically decreasing with y−i, i.e., F(yc+1

i , yc+1
−i , t0) ⩽

F(yc+1
i , y0

−i, t
0). According to Lemma 1

F(ỹi, ỹ−i, t) − F(ỹi, y0−i, t)

= F(ỹi, y0−i + 1y−i, t) − F(ỹi, y0−i, t)

= F(y+ 1y−i) − F(y)

⩽ 1yT−i∇F(y) +
Li
2

∥1y−i∥2

= 1yT−i
∂F(ỹi, y−i, t)

∂y−i
+
Li
2

∥1y−i∥2, (18)

where 1Y−i = (1y1, · · · , 1yi−1, 1yi+1, · · · , 1yn), 1y−i is
a variable of y−i. By Theorem 1, we have(

−ε−ik ·
∂F(yc+1

i , y−i, t0)

∂y−i
− 1y−i

)T
· (−1y−i) ⩽ 0.

(19)

From (19), we have

1yT−i ·
∂F(yc+1

i , y−i, t0)

∂y−i
⩽ −

1
ε−ik

∥1y−i∥2. (20)

Combining (18) and (20), we have

F(yc+1
i , yc+1

−i , t0) − F(yc+1
i , y0

−i, t
0)

⩽
∑(

Li
2

−
1

ε−ik

)
∥1y−i∥2 ⩽ 0. (21)

Therefore,

F(yc+1
i , yc+1

−i , t0) ⩽ F(yc+1
i , y0

−i, t
0) = fi(y

c+1
i , y0

−i, t
0)

⩽ fi(y0i , y
0
−i, t

0) = F(y0i , y
0
−i, t

0), (22)

from which F(y, t) is monotonically decreasing along yi
direction as fi(yi, y−i) until it arrives at a fixed point, at which
point there is 1yi = 0 for i = 1, · · · , n, and this fixed point
is the optimal solution of (2).
Remark 2: The iteration process of Algorithm 1 has

been proved convergent to the optimal solution. It realizes
distributed computation in which each agent updates only
utilizing its neighbors’ information, although the complex-
ity of Algorithm 1 increases compared with centralized
algorithm.

IV. PENALTY FUNCTION METHOD
In this section, we solve the optimization problem (1) by
using penalty function method.

We introduce slack variables θv(v = 1, 2, · · · ,m2) and
convert problem (1) to its equivalent problem:

min
y

f (y),

s.t. hu(y) = 0, u = 1, 2, . . . ,m1,

gv(y) + θ2v = 0, v = 1, 2, . . . ,m2. (23)

Let σ
2

m1∑
u=1

h2u(y),
σ
2

m2∑
v=1

(
gv(y) + θ2v

)2
be penalty functions.

The augmented Lagrange function of (23) is

Lp(y, αu, βv, θv, σ ) = f (y) +

m1∑
u=1

αuhu(y)

+
σ

2

m1∑
u=1

h2u(y) +

m2∑
v=1

βv

(
gv(y) + θ2v

)
+

σ

2

m2∑
v=1

(
gv(y) + θ2v

)2
, (24)

where αu > 0 and βv > 0 are Lagrange multipliers and
σ > 0 is the penalty factor. Then we have the equivalent
problem of (24) as

min
y

Lp(y, αu, βv, θv, σ ). (25)

To eliminate the slack variable θv, we present the first-order
necessary conditions for (25)

∂Lp(y, αu, βv, θv, σ )
∂θv

= θv

(
βv + σ (gv(y) + θ2v )

)
= 0.

(26)

Therefore

θ2v =

−
βv

σ
− gv(y), gv(y) + θ2v < 0,

0, gv(y) + θ2v ⩾ 0.
(27)

We give second-order sufficient conditions of (25)

∂2Lp(y, αu, βv, θv, σ )
∂θ2v

= 2(3σθ2v + σgv(y) + βv) ⩾ 0.

(28)

VOLUME 12, 2024 59163



T.-F. Li et al.: Cooperative Optimization With Globally Coupled Cost Function and Coupled Constraints

Replacing θ2v in (27) with (28), we can verify that (27) is
minimum point of (25). Replacing θ2v in (25) with (27),
we obtain

min
y
Lp(y, αu, βv, σ )=f (y) + H (y, αu, βv, σ )+G(y, αu, βv, σ )

(29)

where

H (y, αu, βv, σ ) =

m1∑
u=1

αuhu(y) +
σ

2

m1∑
u=1

h2u(y),

G(y, αu, βv, σ ) =
1
2σ

m2∑
v=1

{
[max(0, βv + σgv(y))]2 − β2

v

}
.

Let yc∗ be the optimal solution of (29). If σ = σ ∗ is
sufficiently large and α = α∗, β = β∗, then the optimal
solution yc∗ of (25) converges to the equilibrium point y∗ of
the original problem (1) followed from [44].

A. DECOUPLING DESIGN UNDER PENALTY METHOD
Similarly to Theorem 1, we give the decoupling decomposi-
tion of (29) in following theorem.
Theorem 3: For the optimization problem (29), if there is

a local cost function Ji(y, αu, βv, σ ) for every i ∈ N and for
∀y′i, y

′′
i ∈ Yi, y−i ∈ Y−i such that

Ji(y′i, y−i, αu, βv, σ ) − Ji(y′′i , y−i, αu, βv, σ )

= Lp(y′i, y−i, αu, βv, σ ) − Lp(y′′i , y−i, αu, βv, σ ), (30)

then G = {N , {Yi}, {Ji}} is a potential game, and (29) can be
decoupled into n sub-optimization problems

min
yi∈Yi

Ji(yi, y−i, αu, βv, σ ), u = 1, . . . ,m1, v = 1, . . . ,m2

(31)

and (yc∗, α∗, β∗, σ ∗) is a stagewise Nash equilibrium point of
G = {N , {Yi}, {Ji}} if

Ji(y∗i , y
c∗
−i, α

∗
u , β

∗
v , σ

∗) = min
yi∈Yi

Ji(yi, yc∗−i, α
∗
u , β

∗
v , σ

∗) (32)

where i ∈ N . The solution yc∗ of (31) is a stage optimal
solution of (25) with positive parameters αu, βv, σ and yc∗

converges to the optimal solution y∗ of (1) when σ = σ ∗ is
sufficiently large and α = α∗, β = β∗.
Proof. The proof of Theorem 3 can be derived by

replacing the cost function F(y, t) in the proof of Theorem 1
with Lp(y, αu, βv, σ ). Finally, we obtain the decoupled
optimization problem for every agent i from (31) as

min
yi

Ji(yi|{yj}i, αu, βv, σ ). (33)

B. ALGORITHM DESIGN UNDERLYING PENALTY METHOD
A brief calculation process and related parameters of the
distributed gradient algorithm are presented and is executed
in Algorithm 2.

1) UPDATE RULES
For the optimization problem (33), the iterative process of yi
is given by

yc+1
i = yci − αstep ·

∂Ji(yi, y−i)
∂yi

, (34)

where αstep and c stands for the step size and the iteration
number, respectively. Let s denote the iteration number for
parameters α = (α1, · · · , αm1 ), β = (β1, · · · , βm2 ) and σ .
The updating rules of α, β and σ are

αs = αs−1
+ σ s−1h(ys−1),

βs = max(0m2 , β
s−1

+ σ s−1g(ys−1)),

σ s = ησ s−1, (35)

where 0m2 denotes a zero vector with m2 · 1 dimension and
the factor η > 1 regulates the rate at which σ increases.

2) TERMINATION CONDITION
Repeating (34) until

∥yc+1
i − yci ∥ ⩽ ε3,{ m1∑
u=1

h2u(y
s∗) +

m2∑
v=1

n
[
max

(
gv(ys∗), −

βv

σ

)]2} 1
2

⩽ ε4,

(36)

where ε3 and ε4 are the preset termination errors.

Algorithm 2 Gradient Algorithm Based on Penalty Function

Input: Initial value y0 and parameters σ 0, α0, β0, s, c, η
Output: The optimal solution y∗ = ys∗, α = α∗, β = β∗,

σ = σ ∗

1: while
{m1∑
u=1

h2u(y
s−1)+

m2∑
v=1

[
max

(
gv(ys−1), −βs−1

v
σ

)]2} 1
2

⩾

ε4 do
2: c = 0
3: while ∥yci − yc−1

i ∥ ⩾ ε3 do

4: yc+1
i = yci − αstep ·

∂Ji(yci ,y
c
−i)

∂yi
5: ysi = yc+1

i
6: c = c+ 1
7: end while
8: s = s+ 1
9: Get ys∗ = (ys1, . . . , y

s
n)
T

10: αs = αs−1
+ σ s−1h(ys−1)

11: βs = max(0m2 , β
s−1

+ σ s−1g(ys−1))
12: σ s = ησ s−1

13: end while

Remark 3: The gradient projection algorithm underlying
penalty function relaxes the restriction on initial points,
that is, the initial point does not need to satisfy the cou-
pling constraints, including coupling equality and inequality
constraints, but not be restricted in the feasible region.
In Algorithm 2, the advantage of the penalty method with
Lagrange multipliers instead of the barrier function method
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FIGURE 2. Simulation results of algorithm 1 in example 1.

is that we can choose the initial iteration point y0i outside the
feasible domain and ensure that there is no ill-conditioned
property in iteration processes.

V. EXAMPLES
In this section, we verify advantages of our proposed design
methods and optimization algorithms through two simulation
examples. Furthermore, we highlight the reliability of
our proposed gradient algorithms by comparing with the
centralized quadratic programming algorithm

yk+1
i = yki − ω

∂F
∂yi

,
∂F
∂yi

= t
∂f
∂yi

+
∂φ

∂yi
. (37)

Example 1: Consider a cooperative optimization problem
of multi-agent system composed of three agents who
exchange information through an undirected connected graph
which is modeled as

min f (y) =

 y1y2
y3

T  2 1 1
1 3 1
1 1 4

 y1y2
y3


+
[
2 3 1

] y1y2
y3

 ,

s.t. y1 + y2 + y3 = −0.43,

5y21 + 4y22 + 2y3 ⩽ 12. (38)

i) Barrier method (Algorithm 1). FIGURE 2 shows the
simulation results of Algorithm 1, where µ = 5, the

FIGURE 3. Simulation results of algorithm 2 in example 1.

termination error ε1 = ε2 = 0.01 and the step size
ω = 0.01. The convergence trajectory of f (y) is shown in
FIGURE 2(a). FIGURE 2(b) is the convergence trajectories
of the decision variables yi, and the results indicate that the
optimal solution converges to y∗ = (−0.16, −0.35, 0.09)T

with the initial value of y(0) = (0, 0, 1)T and the initial
barrier factor t = t0 = 0.5. In addition, it is not
difficult to find from FIGURE 2(b) that the variables yi meet
the requirements of the algorithm during the convergence
process. In order to verify the results of Algorithm 1, the
centralized quadratic programming algorithm (37) is used
for simulation verification, and the solution is converged to
y∗ = (−0.17, −0.35, 0.10)T . The comparison shows that the
results of Algorithm 1 and the algorithm (37) are almost the
same.
ii) Penalty method (Algorithm 2). With the parameter

η = 1.1, the error ε1 = ε2 = 0.005 and the step
size ω = 0.005, the simulation results of Algorithm 2 are
presented in FIGURE 3. The value change trajectory of the
f (y) is shown in FIGURE 3(a), and FIGURE 3(b) is the
convergence trajectories of yi, where the result converges to
y∗ = (−0.18, −0.35, 0.10)T . The initial value is set as y(0) =

(0, 0, 1)T and the initial value of the auxiliary variables are
α0

= −1, β0
= −1, σ 0

= 10. Clearly, the optimal solution
y∗ satisfies the requirements and constraints of Algorithm 2.
TABLE 1 shows the specific cost function values with

the steps for Algorithm 1, Algorithm 2 and Algorithm (37).
By comparing the final solutions of the three algorithms,
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TABLE 1. Comparison of the cost function values of example 1.

we can see that the results are basically consistent, which
verifies the effectiveness of our proposed Algorithms.
Furthermore, comparing the convergence process of the three
algorithms, it can be concluded that the final result of
Algorithm 1 is closer to the optimal solution of the centralized
algorithm thanAlgorithm 2, andAlgorithm 2 converges faster
than Algorithm 1 and Algorithm (37).
Remark 4: Example 1 is a numerical simulation charac-

terized by an inequality constraint function that is a nonlinear
function. This example is intended to show that our proposed
design framework and algorithm are inclusive to constraint
functions, and can solve more general forms of multi-agent
cooperative optimization problem.
Example 2: Consider a microgrid economic dispatch

problem (EDP) in a power system with two dispatchable
generators (DG1 and DG2), an energy storage system (ESS),
and advanced control technologies. Each generating unit in
the grid can be regarded as an agent, and they communicate
directly with their neighbors by using the communication
network. The primary mission of microgrid EDP is to
minimize the generation cost function while keeping power
balance and meeting the capacity constraints of agents.
The three agents communicate according to the undirected
connected graph which is shown in FIGURE 4. Suppose yi
represents the power output of the ith agent, and D ⩾ 0
represents the total generated power demand of the three
dispatchable agents. f (y) represents the total cost of three
dispatchable agents. ymini and ymaxi denote the minimum and
maximum generated power of the ith generator unit. All the
agents operate at rated power after the microgrid system is
stabilized. The EDP can be modeled as COP of a multi-agent
system as

min f (y) = −2y1y2 +

3∑
i=1

aiy2i + biyi + ci,

s.t. y1 + y2 + y3 = 1.6,

− 9y1 − 7y2 − 16y3 ⩽ 100, (39)

where ai, bi and ci are cost coefficients of the three
schedulable agents which values are shown in TABLE 3 along
with the range of generated power.

In the ideal case, the initial generation power of the
agents is set to y(0) = (1, 1, 1)T , The generation demand
is met by the equality constraint in (39), and the total
demand of the three agents is D = 1.6 MW . Algorithm 1
and Algorithm 2 are used, respectively, to deal with the

FIGURE 4. The undirected network graph of the three dispatchable
agents.

FIGURE 5. Simulation results of algorithm 1 in example 2.

optimization problem (39). The simulation results and
statistical analysis are shown in FIGUREs 5-6 and TABLE 2.

Simulation results of Algorithm 1 are presented in
FIGURE 5 with parameters t = t0 = 0.5, µ = 5, the
error ε1 = ε2 = 0.01 and the step size ω = 0.01.
The generation cost optimization trajectory for agents is
shown in FIGURE 5(a). FIGURE 5(b) shows the output
power trajectories of agents. Simulation results show that
the output power of agents rapidly approaches y∗ =

(0.11MW , 0.17MW , 1.29MW ) which is close to the optimal
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TABLE 2. Comparison of total generation costs of example 2.

FIGURE 6. Simulation results of algorithm 2 in example 2.

TABLE 3. Parameters of three dispatchable agents.

result y∗ = (0.10 MW , 0.16 MW , 1.28 MW ) obtained
from algorithm (37). However, the total demand d of the
agent is not strictly satisfied, this is because the equality
constraints are transformed into two inequality constraints in
Algorithm 1, and then errors are generated.

FIGURE 6 shows the simulation results of Algorithm 2,
where the algorithm parameters α0

= −1, β0
= −1, σ 0

=

10, η = 1.1, the error ε1 = ε2 = 0.001 and the step size
ω = 0.001. FIGURE 6(a) and FIGURE 6(b) show the total
generation cost trajectory of the agents and the power output
trajectories of the agents, respectively. The simulation results
show that the power outputs of the agents quickly converges

to y∗ = (0.11 MW , 0.17 MW , 1.32 MW ), and this results
strictly meets the preset generation demand D.
To further analyze the simulation results, the total costs

of the three algorithms are listed in TABLE 2. The optimal
values of our proposed algorithms are basically the same
as the optimal values of the centralized algorithm (37), but
Algorithm 1 and Algorithm 2 ensure the privacy of the
agent information during the optimization process.Moreover,
the convergence rate of Algorithm 2 is faster than that of
Algorithm 1 due to the optimization method itself which
speculation was verified in the study [40].

VI. CONCLUSION
The focus of this paper is how to design local cost functions
for cooperative optimization problem with a global coupled
cost function and constraints. A distributed design framework
based on potential game theory has been developed to
achieve this goal. Specifically, we have transformed the COP
with coupled constraints to an unconstrained one by using
barrier function and penalty function, respectively, and then
decoupled the global cost function in Cartesian coordinate
system to obtain each agent’s private cost function. Through
the design framework, it has been turn out that the optimal
solution of the original COP and Nash equilibrium of the
potential game formed by multi-agent with decoupled cost
function are equivalent. Furthermore, two distributed gradient
algorithms have been proposed and verified through two
examples.

The idea of our design method aims to solve the
cooperative optimization problem with general global cost
function and constraints in distributed computation way,
which provides a general calculation framwork for coopera-
tive optimization problems. In this paper, we only consider
the cooperative optimization problem with time-invariant
cost function under undirected communication topology,
cooperative optimization problems in time-varying commu-
nication graphs and the finite signal transmission situation are
interesting topics will be left as our future work.
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