IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 6 March 2024, accepted 14 April 2024, date of publication 25 April 2024, date of current version 3 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3393479

== RESEARCH ARTICLE
Macro Memory Cell Generator for SKY130 PDK

EMILIO ISAAC BAUNGARTEN-LEON 12, (Graduate Student Member, IEEE),
SUSANA ORTEGA-CISNEROS™!, (Member, IEEE),

GERMAN PINEDO-DIAZ “'13, (Graduate Student Member, IEEE),

MIGUEL ANGEL RIVERA ACOSTA !, FRANCISCO JAVIER RODRIGUEZ NAVARRETE ',
URIEL JARAMILLO-TORAL', (Student Member, IEEE), CRISTIAN TORRES GONZLEZ 1,
AND JUAN CARLOS GARCIA LOPEZ"'!, (Student Member, IEEE)

ICentro de Investigacién y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México Zapopan 45019, México
2Department of Design, Science and Technology, Universidad Auténoma de Guadalajara, Zapopan 45129, México
3Department of Engineering, Universidad Panamericana Campus Guadalajara, Zapopan 45010, México

Corresponding author: Susana Ortega-Cisneros (susana.ortega@cinvestav.mx)

ABSTRACT The SKY130 Process Design Kit (PDK) offers limited options for Static Random-Access
Memory (SRAM) configurations, providing only three predefined memory sizes: 8x1024, 32x256,
and 32x512, this poses a challenge for designers who require memories with different characteristics,
as they must either design an entire memory architecture from scratch or resort to interleaving techniques
with the available memory configurations. To address this issue, we present a novel framework that
automates the generation of multiple memory arrays with custom floorplans, leveraging the concept of
interleaving memory. Our framework enables designers to create various sizes and configurations memories
by combining and interleaving the existing SKY130 PDK memories, additionally, the framework allows
designers to easily specify their desired memory size, word length, floorplan, and other essential parameters.
The framework then automatically generates multiple memory arrays that meet the specified requirements.
Furthermore, it provides the files required by OpenLane, facilitating the seamless integration of these
memories into the Register Transfer Level (RTL) to Graphic Data System IT (GDSII) flow. The key advantage
of our framework lies in its ability to streamline the creation of custom memories by automating the
interleaving process and offering flexibility in floorplan design. This significantly reduces design time and
effort, empowering designers to efficiently create memories with specific characteristics while adhering to
the limitations of the SK'Y130 PDK. The framework thus serves as a valuable tool for memory design in the
context of the SKY 130 PDK, opening doors for more efficient and optimized chip designs.

INDEX TERMS Framework, interleaving memory, memory design, OpenLane, SKY130 PDK, SRAM,
VLSI.

I. INTRODUCTION

Technology’s continuous evolution has led to a significant
surge in demand for faster and more efficient computing
systems. Because of this demand, the electronics industry
has experienced remarkable integration, resulting in billions
of transistors being added to single chips. Such advance-
ments, often referred to as System-on-a-Chip (SoC) designs,
have revolutionized the computing landscape, however, this

The associate editor coordinating the review of this manuscript and
approving it for publication was Wu-Shiung Feng.

integration has brought along various complexities for Very
Large Scale Integration (VLSI) designers [1].

Memories play an important role in an array of elec-
tronic devices, from smartphones and gaming consoles to
high-performance computing in the cloud and advanced
driver assistance systems in cars. With an escalating demand
for compute-intensive applications like big data analytics,
machine learning, and artificial intelligence, memory design-
ers are facing significant challenges in fulfilling the diverse
application requirements while ensuring time-to-market and
cost targets are met [2].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

59688

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0001-6243-219X
https://orcid.org/0000-0001-6646-1529
https://orcid.org/0000-0003-4802-6632
https://orcid.org/0000-0002-5836-6246
https://orcid.org/0000-0001-6871-3611
https://orcid.org/0009-0002-6589-8344
https://orcid.org/0009-0007-0766-5709

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

IEEE Access

The memory-bound computing problem represents
another significant hurdle in the VLSI domain. As the data
volume to be processed grows, there is a resultant surge
in memory demand, creating a bottleneck that significantly
affects system performance [3]. This challenge necessitates
the incorporation of new memory management techniques in
the designs.

However, creating memory in layout can be an ardu-
ous task. Given the complexity of VLSI designs, system
design becomes of paramount importance, encompassing
a broad spectrum of disciplines. Designers must balance
performance, power consumption, and area demands while
considering the limitations of the manufacturing process,
material properties, and end-user needs [1].

Designers working within such constraints often have to
resort to time-consuming and error-prone manual processes
to design the entire memory architecture from scratch or
apply interleaving techniques with the available memory
configurations.

Interleaving memory is a technique designed to mitigate
this challenge, where the single memory unit is replaced by
multiple memory units or banks. These banks are arranged to
allow independent and concurrent access to multiple units,
permitting several words to be accessed in each memory
cycle [4].

Interleaving memory stands as an effective solution for
the limitation imposed by the connection between the main
memory module and a processor in conventional systems.
In these conventional systems, the speed of data and
instruction processing is directly dependent on the delivery
speed of the memory, which typically exhibits a longer access
time than the processor cycle time. This disparity creates a
bottleneck that restricts system performance [4].

The advantages of memory interleaving extend beyond
merely improving system performance. For instance, this
approach proves highly beneficial in machines equipped
with vector processors. In such machines, the data sets’ size
often renders the caches less efficient than usual. Thus, the
memory system must continually supply the processor with
a high-speed data stream, which interleaved memory can
achieve effectively [4].

Memory interleaving also enhances fault tolerance. In a
system with a single memory unit, an operational failure
could lead to significant performance disruptions. However,
with multiple memory banks, soft logic can be integrated to
reconfigure the remaining banks into smaller memory units,
ensuring continuity of operation [5].

Memory interleaving is not solely applicable to dividing
large memory units into smaller ones; it can also be used
to compose large memory units from interconnected smaller
ones [4]. This method is currently in use across various
hardware accelerators [6], in improving cache memory
performance [7], and in advancing energy performance [8].

In the bibliography, various techniques are employed for
memory interleaving optimization. In some of these tech-

VOLUME 12, 2024

niques the generated memory, the interconnection algorithm,
or both are intellectual property [9], [10], [11]. Another
technique involves using simulation tools to test different
possible configurations that meet the specifications set by
the designer. These tools provide the interconnection that
yields better results in system metrics, such as latency, power
consumption, or area [12].

Another technique, found in the literature and also used in
this work, is to perform multiple iterations of interconnection.
The goal is to experimentally determine the optimal values
for interconnection parameters, focusing on specific memory
characteristics [13].

In the complex realm of VLSI design, technological
innovations are continually evolving. An example of such is
SKY130 [14], which is a flexible process node developed by
Cypress Semiconductor and now accessible to the industry
via the SkyWater Technology Foundry. A result of a fruitful
collaboration between Google and SkyWater, this provides
an open-source Process Design Kit (PDK) and resources for
fabricating concrete designs. SKY130 is a mature hybrid
technology that possesses a flexible technology stack, replete
with a myriad of features. These include support for various
voltage levels, local interconnects, multiple metal layers,
inductor capabilities, and even optional components like
capacitors. Despite these extensive capabilities, the primary
focus of the SkyWater open-source PDK at present is geared
towards test chips and initial design verification rather than
full-scale production contexts [14].

The SKY 130 process incorporates the design of memory,
particularly, Static Random-Access Memory (SRAM) cells
included in its Intellectual Property (IP) libraries. However,
these libraries pose a limitation as they offer only a few
memory sizes, specifically three: 8x1024, 32x256, and
32x512. This restricted range in memory size significantly
limits memory resources, potentially posing a substantial
constraint to system designs and applications that require
larger or more flexible memory configurations [14], [15].

In light of the constraints delineated above, and the
pivotal role memories play in contemporary systems, the
tool presented in this research emerges as a robust solution.
This tool strategically harnesses the benefits of memory
interleaving and leverages the IPs offered by the SKY130
library. The result is an innovative configuration wherein an
array of memories operates cohesively as a single SRAM
unit. This tool enables customization of the bit width and
memory depth according to specific system requirements.
Hence, this tool introduces a level of flexibility, scalability,
and time design prompt, presenting a compelling solution to
the current limitations in memory design and implementation
of SKY130 PDK.

The memory interleaving tool transcends conventional
design methods, extending beyond the Register-Transfer
Level (RTL) design. It introduces a more comprehensive
solution by automatically generating all the essential configu-
rations necessary for a successful memory tape-out, a critical

59689

IEEE Access

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

stage in Integrated Circuit (IC) design where the final design
files are provided for manufacturing.

One crucial aspect of this tool is its compatibility
with the OpenLane design flow, an automated RTL to
Graphic Data System II (GDSII) flow based on several
components from the open-source semiconductor ecosystem.
This flow includes processes such as synthesis, floorplanning,
placement, Clock Tree Synthesis (CTS), routing, and verifi-
cation [16].

In effect, this tool synergizes the concept of memory
interleaving with the powerful automation capabilities of the
OpenLane flow, enhancing memory design efficiency and
reliability. Additionally, the tool simplifies the complex pro-
cess of memory design and tape-out, offering a streamlined
approach that can better handle the specific constraints and
requirements in memory design, particularly in the context
of the SK'Y130 technology.

The remainder of the article is organized as follows.
Section II will cover a literature review. Section III introduces
the Macro Memory Cell Generator tool. Section IV addresses
to explains the development of the Macro Memory Cell
Generator tool. Section V illustrates the experimental result.
Section VI presents the discussion. Finally, Section VII
concludes this work.

Il. BACKGROUND AND RELATED WORK

The work presented in [13] emerges as a viable option for
users that require customized designs and configurations.
OpenRAM is an open-source memory compiler that auto-
mates the process of designing SRAM memories in IC,
enabling designers to generate customized designs that sat-
isfy specific system requirements. Additionally, it simplifies
memory design offering a tool to characterize and evaluate
the performance, stability, and power consumption of these
designs.

Using OpenRAM, designers can create and tailor SRAM
cells to their specific needs within the SKY 130 PDK, offering
an extra degree of flexibility and control in memory design.
Nevertheless, OpenRAM has limitations regarding the size
and density of the generated memories, with a maximum
suggested size of 4KB, although 8KB and 16KB memories
are available, they still present problems when implemented
in layout with the PDK SKY130 [13].

In the study presented by [17], there is a notable extension
of the capabilities originally introduced in OpenRAM as
delineated in [13]. This extension features a multi-port
solution, enabling the memory compiler within OpenRAM to
utilize multi-ported memories. Such an adoption significantly
augments both the throughput and the versatility of the mem-
ory system. Central to this enhancement is the introduction of
a parameterized bitcell. Remarkably, this bitcell can support
any combination of read, write, and combined read-write
ports. The SRAM layout is adeptly designed to support any
dual-port combination.

From a broader perspective, it’s evident that advancements
in memory architecture play a pivotal role in the overall

59690

efficacy of SoC. As technological applications evolve, the
optimization and performance of memory systems, especially
those with multi-port configurations, ascend in importance.
[17].

In the study detailed by [15], the utility of OpenRAM
for SRAM design technology co-optimization is elaborated
upon. The culmination of this exploration led to the
development of a memory configured for a 130nm node,
incorporating 5 metal layers and operating at a nominal sup-
ply voltage of 1.8V. This memory boasts an effective bit area
of 11.1um?/bit. For context, the authors compared this with
a D-flip flop designed in the analogous technology, which
occupies an area of 41.3um?/bit. Furthermore, it’s noteworthy
to mention that a 1-kilobyte variant is currently in the
fabrication phase, under the auspices of the Google/Skywater
OpenPDK project, as referenced in [14].

The study [12] analyzes memory design challenges such
as optimization, performance, area and latency, as well as
the intricate interplay of low-level circuit attributes. Their
approach takes advantage of the synergy between CACTI,
a high-level tool for design exploration, and OpenRAM.
By taking advantage of both tools, the research strives to
accelerate the derivation of memory configurations with
exceptional area efficiency and minimized power delay
product.

The study covers various technology nodes, including 7nm
FinFETs, 32nm and 65nm massive CMOS. In particular, the
balance between peripheral components and interconnects
was found to fluctuate between technology nodes, warranting
nuanced design considerations. In addition, the introduction
of near-threshold voltage and standard/full swing voltage
regimes further enriches the analysis, delineating their impact
on memory subset performance.

However, it is imperative to highlight that the focus
of [12] is rooted in theoretical exploration and architec-
tural design, circumventing the limitations imposed by the
non-manufacturable nature of the PDKs used. This approach,
while not directly implementable, serves as a fundamental
step in the design of optimized memory configurations that
could potentially inform future practical design efforts.

Within the [9] product catalog you can find a set of
memory compilers, designed to fit a wide spectrum of
configurations and architectures. These configurations cover
single port and dual port options, along with log files and
read-only memory alternatives. The very architecture of these
compilers incorporates SRAM, ternary content-addressable
memory, and embedded flash, each of them adapted to
different requirements such as low energy consumption or
high performance.

Notably, these compilers align with the manufacturing
processes of industry giants like TSMC, Samsung, and
GlobalFoundries. This compatibility facilitates seamless
integration into a broad chip design landscape.

A key advantage of memory compilers is their transforma-
tive impact on SoC development. By substantially shortening
time to market and mitigating development costs, these

VOLUME 12, 2024

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

IEEE Access

compilers allow you to navigate the intricacies of building
complex SoCs with greater agility.

A notable facet of the approach lies in its ability to
be customize. Recognizing the uniqueness of each project,
they offer a canvas to tailor memory blocks to specific
needs, spanning size, performance benchmarks, and power
consumption. A final exploration brings us to the diverse
range of technologies with which they are offered from
250nm to 7nm.

There are other memory compilation solutions [10]
comparable to other companies’ products [9]. Ass Generic
Memory Compiler (GMC) [10] which is a tool designed
to automatically generate multiple types of SRAM with
different characteristics. offering a variety of capabilities and
a simple user interface, very similar to those offered by
other companies [9] for a wide number of configurations
and architectures. GMC creates a variety of insights for
each supported memory type, such as layout designs, SPICE
network lists, Verilog and VHDL models, timing and power
libraries, and Design Rule Checking (DRC)/Layout Versus
Schematic (LVS) verification reports. Its modular form and
its emphasis on the ‘““tiling” approach to design generation
allow for the production of effective and flexible designs.

The company offers the broadest portfolio of silicon-proven
base IPs in the industry, including memory compilers, logic
libraries, and General Purpose I/O (GPIOs), supporting a
variety of die castings and process technologies from 250nm
to 3nm FinFET. This is how GMC fits into Synopsys’ broader
product portfolio. Synopsys memory compilers are designed
with extensive power management capabilities such as light
sleep, deep sleep, shutdown, and dual power rails. They are
optimized for low power consumption, high performance,
and high density. This makes it possible for designers to
meet the stringent low-power specifications of contemporary
SoCs. In addition, the integration of the STAR memory
system and Synopsys memory compilers optimizes integrated
memory tests, increasing performance and efficiency of
the [11] chip area.

While it is worth acknowledging that [9], [10], [11] offers a
suite of sophisticated commercial tools, including proprietary
memory compilers that offer an extensive array of memory
design and optimization functions, it is essential to consider
the limitations associated with commercial software.

Commercial tools often entail significant costs, potentially
placing financial burdens on users, especially smaller orga-
nizations or individuals. Furthermore, commercial licenses
may come with restrictive terms and limited flexibility,
limiting accessibility and adaptability for a broader user
base, conversely, open-source tools [13], [14], [15], [16],
[17], in contrast, tend to be more cost-effective, fostering
inclusivity and community-driven development. They often
provide greater transparency, enabling users to understand
and modify the underlying code, thus encouraging collabora-
tion and innovation within the open-source community. These
factors make open-source tools an appealing choice for many
seeking memory design and optimization solutions.

VOLUME 12, 2024

lIl. MACRO MEMORY CELL GENERATOR

The Macro Memory Cell Generator Tool has been created to
help design memories more flexibly and quickly when using
the SKY'130 design kit implementing memory IPs that have
been created and tested on-chip. The SKY 130 kit comes with
three default memory sizes, in case you want a memory with
different capacities than the pre-established memories, you
would have to make modifications at the layout and RTL
level. That’s where this innovative tool comes in, making all
these modifications on based on requested memory.

Atits core, the Macro Memory Cell Generator comprises a
collection of Python scripts that facilitate the customization of
memory sizes by modifying the parameters within a Verilog
file. By working within the constraints of the three SKY130
memory sizes, 8x1024 (T0), 32x256 (T1), and 32x512
(T2), the tool combines and interleaves these memories to
generate the desired configuration. This provides designers
with enhanced flexibility that caters to an extensive range
of project requirements, from the smallest modules to larger,
more complex memory architectures.

The user-friendly nature of the tool is evident in the simple
input requirement - the user needs only specify the base
memory type, 0 for 8 x 1024, I for 32x256, or 2 for 32x512,
the word width, the number of memory directions, and the
preferred layout floorplan: ¢ for column, r for row, g for
grid, ct for custom, or a for automatic. When a custom
floorplan option is selected, two additional parameters are
necessitated, the number of block memories on the X axis
and the number of block memories on the Y axis, all arranged
with a fill priority based on the X position. Conversely, when
the automatic floorplan option is chosen, the extra parameters
required are the X and Y perimeter that define the user’s
area in micrometers. With these coordinates in place, the tool
will insert as many memory blocks as possible within the
designated region, optimizing for space and functionality.

These parameters enable the tool to produce an accurate
memory configuration and ensure that the resulting memory
layout aligns with the user’s design goals.

Beyond the Verilog file modifications, the tool also works
hand in hand with OpenLane configuration files. By utilizing
the same Python scripts, baseline configurations are subtly
manipulated based on the memory type and size, allowing for
a seamless integration process that significantly reduces the
design time. The Macro Memory Cell Generator thus presents
itself as a comprehensive solution for efficient and optimized
memory designs, striving to unlock new potentials in the face
of the SKY 130 PDK memories limitations.

Fig. 1 provides a visual representation of the systematic
workflow utilized to generate the memories GDSII file.
Within this workflow, the user is guided through a stream-
lined process that simplifies the creation of memory into
manageable steps.

This process starts with the selection of the memory type,
the user then determines the data width and address size
according to specific requirements, followed by the choice
of arrangement. Then the generated files are imported into

59691

IEEE Access

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

<Base Memory Type>
<Word Width>
<Number of Addresses>
<Layout Floorplan>

)

Folders Generation

Verilog File Generatlon

Config File Generatlon

Placement F|Ie Generanon] |

Macro Memory Cell Generator

Schematic Generatlon

S S L_T
.......... Synthesis
S Floorplaning” "~~~ """
R Placement =~~~
(0 Clock Tree Synthesis """~
N Routing ~ ~ ~
o Tape:Out” """ "
Signoff
GDsSII

FIGURE 1. Workflow diagram for memory configuration. This illustration
details the step-by-step process from selecting the memory type to
executing the OpenLane flow, leading to the generation of the GDSII file
of the memories.

OpenLane. Finally, the OpenLane flow is executed, this
can be accomplished without the need for any additional
changes or adjustments. The design of this workflow reflects
a thoughtful balance of flexibility and efficiency, enabling
users to achieve the desired memory structure with minimal
complexity.

A. TOOL INSTALLATION AND USE
Prerequisites:

o Python 3.6+, pip, svgwrite, cairosvg
o Git 2.34+4
« OpenLane

The initial phase to execute the Macro Memory Cell
Generator Tool starts with obtaining the necessary files by
downloading the repository from GitHub.

$ git clone
< gitQ@github.com:Baungarten-CINVESTAV/
— SKY130-Macro-Memory-Cell-Generator.git

Then to generate the desired memory execute the
imem_generator, which is the main Python file, with the
command:

$ cd SKY130-Macro-Memory-Cell-Generator
$ python3 imem_generator.py [mt] [wn]
- [ad] [p] [opl] [op2]

The parameter mt represents the base memory type from
the SKY 130 library and is characterized as an integer data
type. Its value is restricted to 0, I, or 2, each corresponding

59692

to distinct SKY 130 memory sizes. Specifically, an mt value
of 0 corresponds to a memory size of TO, while a value of /
corresponds to a size of T1. When mt is set to 2, the associated
memory size is T2.

The data width, denoted as wn, is determined by the word
width and is expressed as an integer data type. The constraints
on wn are dependent on the value of mz. If mt is set to 0, then
wn must be a multiple of 8. However, if mt takes on a value
of I or 2, the requirement for wn changes, and it must be a
multiple of 32.

The parameter ad represents the number of addresses of
the desired memory. It must always be a multiple of 2 to
ensure proper alignment and functionality. The minimum
required value of ad varies depending on the memory type
parameter mt. If mt is set to 0, the minimum allowable
value for ad is 2048. In the case where mt equals I,
the minimum requirement for ad is 512. Finally, if mt
is set to 2, the minimum value required for ad is 1024.
These conditions are integral to defining the correct memory
structure and must be adhered to in order to maintain
the integrity and efficiency of the memory management
system.

The p parameter signifies the placement or arrangement
of the memory in the die area, and its value determines
the specific structure configuration. If set to g, the memory
is arranged in a grid formation. A value of r leads to
a row arrangement, whereas c¢ corresponds to a column
configuration. For more specialized requirements, ct can
be selected for custom arrangements, allowing for unique
configurations tailored to specific needs. Alternatively, the
a option ensures that the memory is arranged automatically
by the system. It’s important to note that the choice of
arrangement is conditional on the data width wn being either
8 or 32 when the option a is chosen, as these constraints
ensure proper alignment and optimal performance within the
given memory structure.

The parameter opl represents option and is defined as an
integer data type, serving different purposes depending on the
placement configuration defined by p. If the placement p is
set to ct, opl refers to the number of columns. Conversely,
if the placement p is set to a, then opl signifies the
x_space and refers to the user-defined space on the x-
axis, measured in micrometers. This dimension guides the
automatic arrangement, ensuring that the memory is laid out
according to the spatial constraints and specific requirements
of the user’s design.

The op2 parameter, denoted as option two, is an integer
data type and serves a specific function depending on the
chosen placement configuration p. If the placement p is set
to ct, then op2 corresponds to the number of rows, and it
must not exceed 10 to ensure a successful GDSII file creation.
Conversely, if p is set to a, then op2 refers to y_space,
representing the size on the y-axis, measured in micrometers.
The precise meaning of op2 thus varies according to the
overall design specification, and careful consideration must
be given to its value to maintain the structural integrity

VOLUME 12, 2024

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

IEEE Access

[— REEn R

FIGURE 2. Visual representation of the GDSII file corresponding to the
SRAM_8_4096_0_grid memory.

e et

e

and alignment of the memory within the defined spatial
constraints.

B. OUTPUT STRUCTURE

After executing the imem_generator Python file, the console
presents a memory implementation summary. This includes
the base memory type and its size, data width, number
of addresses, chosen arrangement, generated memory size,
count of memories in serial and parallel setups, total base
memories used, and a completion message.

As an integral component of the primary repository, the
Macro Memory Cell Generator Tool incorporates a designs
folder. This folder serves as a storage for all the memory
structures generated and adheres to a specific naming
convention: SRAM_<wn>_<ad>_<mt>_<p>. The tool
automatically generates this folder, which encompasses
crucial configuration files, constraint file, placement file, and
five essential sub-folders: GDS, LEF, LIB, src, and V_BB.
This comprehensive setup is essential for compatibility with
OpenLane. In addition, the tool provides an illustrative
schematic representation of the interleaved memory, avail-
able in both PNG and SVG formats, facilitating a visual
understanding of the memory organization and design.

C. USAGE EXAMPLE

1) GRID ARRANGE

In the present demonstration, a grid floorplan configuration
is adopted, characterized by a memory size of 8x4096.
Upon finalizing the choice of memory, it becomes imperative
to appropriately set the parameters for the imem_generator
file. Specifically for this configuration, the parameters are
defined as: mt = 0, wn = 8, ad = 4096, and p = g. The
corresponding command line invocation, which aligns with
these parameters, should be structured as follows:

$ python3 imem_generator.py 0 8 4096 g

To execute this command correctly, consider that must be
located in the repository directory.

VOLUME 12, 2024

FIGURE 3. Visual representation of the GDSII file corresponding to the
SRAM_32_1024_1_row memory.

FIGURE 4. Visual representation of the GDSII file corresponding to the
SRAM_64_2048_2_custom memory with 2 columns and 4 rows
arrangement.

Upon execution, a directory named SRAM_8_4096_0_grid
is systematically generated within the primary designs
directory. The spatial layout of this specific memory
configuration can be ascertained from the config.json
constraint file. Within this file, the parameter DIE_AREA is
distinctly allocated with values 0 0 1115 1082, delineating the
dimensions of the memory in micrometers. As delineated in
Fig. 1, the subsequent procedure necessitates the exportation
of the generated directory to OpenLane. Following this,
the initiation of the RTL to GDSII workflow ensures the
generation of the corresponding GDSII file for the selected
memory configuration. A detailed visual representation of
this GDSII file, specifically for the SRAM_8_4096_0_grid
memory, is presented in Fig. 2.

2) ROW ARRANGE

For this demonstration, a memory size of 32x 1024 has been
selected. The pertinent parameters have been set as: m¢ = 1,
wn = 32, ad = 1024, and p = r. The appropriate command
line invocation that corresponds to these parameters should
be articulated as:

$ python3 imem_generator.py 1 32 1024 r

Subsequent to the execution, a directory entitled
SRAM_32_1024_1_row is produced. The encompassing
area of this specific memory configuration is delineated by
the dimensions 0 0 2217 570. Refer to Fig. 3 for a GDSII file

59693

IEEE Access

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

showing a 32 x 1024 memory configuration with a row layout
and using base memory type T1.

3) CUSTOM ARRANGE
In this particular demonstration, the targeted memory size
is set at 64x2048, utilizing the base memory type T2. The
arrangement is custom-designed as a rectangle encompassing
2 columns and 4 rows. To generate the GDSII file that
accurately reflects this memory specification, the following
parameters must be set: mt = 2, wn = 64, ad = 2048, p = ct,
optl = 2, and opt2 = 4.

Fig. 4 shows the GDSII file of the SRAM_64_2048_2
custom memory. For memories encompassing multiple rows
or columns, a custom arrangement selection is imperative.

IV. DEVELOPMENT AND IMPLEMENTATION

A. DESCRIPTION HARDWARE IMPLEMENTATION

The architecture design presented in this paper represents
an approach to memory expansion by combining serial and
parallel block memories. This design expands the address and
data width of a memory system. Furthermore, depending on
the defined memory type (TO, T1, T2), the based module can
be instantiated N times to complete the required address and
data from the Python generation file.

The generator module in hardware was described in
Verilog HDL, as a parameterized module with param-
eters ALL_MEM_DATA WIDTH, ALL_MEM_NUM_
ADDRESSES, and MEM_TYPE. These parameters are
modified in Python to generate the appropriate combination
of memories.

The following Verilog code illustrates how the parameters
are implemented.

module memory_generator_skyl30
- # (parameter ALL_MEM DATA_WIDTH =
—~ W_n, parameter
— ALL_MEM_NUM_ADDRESSES = Ad_n,
— parameter MEM_TYPE = MT) (
// Port0 signals
“ifdef USE_POWER_PINS
inout wvccdl,
inout vssdl,
“endif
input clkO,
input csbo0,
input webO,
input
o [(ALL_MEM_DATA_WIDTH/8)-1:0]
< wmaskO,
input
— [Sclog2 (ALL_MEM_NUM_ADDRESS
— ES)-1:0] portO_address,
input [ALL_MEM_DATA_WIDTH-1:0]
— port0O_datain,
output [ALL_MEM DATA_WIDTH-1:0]
— port0_dataout,

59694

// Portl signals
input clkl,
input csbl,
input
— [$clog2 (ALL_MEM_NUM_ADDRESS
— ES)-1:0] portl_address,
output [ALL_MEM_DATA_WIDTH-1:0]
— portl_dataout

)i

By default, Verilog cannot synthesize parameters that lack
specific values, such as ALL._MEM_DATA_WIDTH defined
as W_n, or MEM_TYPE defined as MT. The use of keywords
such as W_n, Ad_n, and MT is necessary because these
variables are intended to be substituted for their actual value
in a Python script based on user values.

The RTL design uses for-generate constructs and mul-
tiplexers to create a parameterized architecture capable
of combining various data selection configurations. This
parameterized model facilitates simultaneous support of
parallel and serial data.

genvar i, j;

generate

for (i=0; i < NUM_SERIAL_MEMORIES;

— 1i=i+1) begin: SERIAL_MEMORY
for (j=0; § < NUM_PARALLEL_MEMORIES;
—~ Jj=7j+1) begin: PARALLEL_MEMORY

<base memory instantiation>
end
end
The top wires of the chip are referred to as port0 and portl
as are the base modules, clkO, csbO, webO, wmaskO, addr0,
din0, doutO, clkl, csbl, addrl and doutl. Number of serial

and parallel memories are calculated based on parameters
defined by:

localparam NUM_SERIAL_MEMORIES =
<~ ((ALL_MEM_NUM_ADDRESSES) /
< (SINGLE_MEM_NUM_ADDRESSES)) ;

localparam NUM_PARALLEL_MEMORIES =
N ((ALL_MEM DATA WIDTH) /
SN (SINGLE_MEM_DATA_WIDTH)) ;

Finally, the output data is assigned by shifting the
portl_bus_odata where is concatenated all memory outputs.
The shift is obtained by:

(port_addr * ALL_MEM_DATA_WIDTH) (1

B. UNIVERSAL VERIFICATION METHODOLOGY FOR
MEMORY TOOL IMPLEMENTATION

The verification of the generated memories by the tool is a
critical aspect of ensuring their functionality and reliability.
To address this need, a robust verification environment based

VOLUME 12, 2024

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

IEEE Access

on the Universal Verification Methodology (UVM) has been
developed.

The UVM verification environment implemented for
this work is showed in the Fig. 5, consisting of two
distinct sections: the OpenRAM UVM environment and
the OpenRAM Design Under Test (DUT). The Open-
RAM environment consists of several components such
as openram_base_test, openram_env, port0)_scb, portl_scb,
portO_agent, portl_agent, portO_monitor, portl_monitor,
portO_driver, and portl_driver.

The full random test is designed to assess the memory
generator’s ability to handle arbitrary data inputs effectively.
It encompasses a wide range of parameters, including
addresses, masks, enables, and data values, with each of these
elements being generated randomly during the test execution.

The Simultaneous Read/Write Test aims to verify that
the memory generator can effectively manage and maintain
data integrity when subjected to simultaneous read and write
requests.

C. PYTHON CODE DEVELOPMENT

The Python code for the Macro Memory Cell Generator
comprises five main functions, each with a specific role
in the framework functionality. The following pseudocode
illustrates the order in which each function is executed.

Folder_Name = Src_generator (wn,ad,mt, p,
— Rows, Columns)

Die_Area = Placement_File_Generator (wn,
— ad,mt,p, Rows,Columns,Folder_Name)
Copy_macro_files (mt, Folder_ Name,

< Die_Area)

Config File_Generator (,Folder_ Name)
draw_diagram(wn,ad,mt,Folder_Name)

These functions perform the five key steps: Folder
Generation, Verilog File Generation, Placement File Gen-
eration, Config File Generation, and Schematic Generation
mentioned in Fig. 1.

1) FOLDER AND VERILOG FILE GENERATION

The Src_generator function is responsible for generating
the main directory SRAM_<wn>_<ad> _<mt>_<p>
within the design folder. It also creates the src folder
and the top module Verilog file, which incorporates
user-configured settings changing the global param-
eters ALL_MEM_DATA_WIDTH, ALL_MEM_NUM_
ADDRESSES, and MEM_TYPE. The pseudocode of this
function is shown below.

Current_directory = Current_Path ()
Designs_directoy = Current_directory +
—~ "/../designs"

VOLUME 12, 2024

New_Folder = make_dir (Designs_directoy,
— "SRAM_<wn>_<ad>_<mt>_<p>")
Copy_File ("memory_generator_python.v",
— "memory_generator_skyl30.v")
change_parameter ("memory_generator_sky
- 130.v","W_n", <wn>)

change_parameter ("memory_generator_sky
— 130.v","Ad_n", <ad>)
change_parameter ("memory_generator_sky
- 130.v","MT", <mt>)

shutil.move ("memory_generator_skyl30.v"
— ,"New_Folder/src")

The first step is to get the path of the current directory
and assign it to the Current_directory variable, then create
another variable that points to the designs directory, which
is where all the memories generated by the framework are
located, create a new folder with the name SRAM and the
parameters selected by the user, followed by a copy of the
memory_generator_python.v file. and in the copy replaces
the key names W_n, Ad_n and MT, by the values entered
by the user <wn>, <ad>, and <mt> and finally moves the
modified verilog file to the newly created folder.

2) PLACEMENT FILE GENERATION
The Placement_File_Generator function utilizes user-provided
parameters to generate a configuration placement file. This
file plays a critical role in arranging the memory components
in the desired order, optimizing the overall memory layout.
Equation 2 defines the DIE AREA (D4) parameter which
is the area occupied by the generated block memory. Here,
N, is the number of memories, Dx; and Dy; are constants
determined by the dimensions of the base memories TO,
T1, and T2 along the x-axis and y-axis. Conversely, bx; and
by; biases represent the offset space between two memories
along the x and y directions. The Placement_File_Generator
function automatically adjusts these biases, considering
factors such as the number of memories, the type of base
memory, and the need to avoid routing congestion errors. The
determination of specific offsets bx; and by; for each memory
configuration was achieved through an empirical approach to
avoid interconnect congestion.

Nm
D =Y (Dxi + bx;) (Dy; + by)))
i=1

This function can be divided into three sections.

In the first section, based on the parameters <wn>, <ad>,
and <mt>, the function Memory_Type calculates and stores
the size of the selected base memory and the total number of
memories required.

The second part involves calculating the position of each
memory. This calculation considers factors such as the type
of placement, the number of memories, and the size of the
base memory obtained in the previous section.

Finally, the third part of the function involves writing the
obtained coordinates to the macro.cfg file and determining

59695

IEEE Access

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

tb

openram_base_test

openram_env

port0_agent
| port0_scb b._
_Ql port0_monitor I
| port0_subs b¢_
" portQ_intf
openram_v_sqr J,_,l port0_sqr b_,d port0_driver } K0
sbO
port0_sqr |> web0-
wmask0 [NUM_WMASKS]—>| - Port0 : RW
——addr0 [ADDR_WIDTH]—>{
portl_sqr portl_agent din0 [DATA_WIDTH]—»|
|—|' | portl_scb b,_ |«—dout0 [DATA_WIDTH]— openRAM
_Ql portl_monitor I LUl
portl_subs portl_intf
Ik1
N sbl L Port1:R
portl_sqr portl_driver | [|——~addr1 [ADDR_WIDTH]—»{
— | le—dout1 [DATA_WIDTH]—

FIGURE 5. UVM diagram used to test and verify randomly memory write and read behavior.

the coordinates with the highest values in both the X and Y
axes which are used to calculate the die area of the generated

memory.

The following pseudocode illustrates the execution of the

Placement_File_Generator function.

Memory_Type (MT,W_n,Ad_n)
size_X = selected MT
size_Y = selected MT
SINGLE_MEM_ NUM_ADDRESSES
SINGLE_MEM _DATA_WIDTH =

= Ad_n

W_n

Total_Mem = Number_ of_ memories (W_n,

< Ad_n)

Placement_Type (p)

coordinates = Square_placement (MT,

- Total_Mem)

coordinates = row_placement (W_n,MT,

— Total_Mem)

coordinates = column_placement (W_n,MT,

— Total_Mem)
coordinates =

— Custom_placement (W_n,MT, Rows,

— Columns, Total_Mem)

file_path = f"designs/{Folder_Name}

— /macro.cfg"
open (file_path)
for i in Total_Mem:

file.write (name[i] coordinates[i])

if (coordinates[i] > coordinates[i-1])

die_area = coordinates[i]

return die_area

59696

3) CONFIG FILE GENERATION

The Config_File_Generator function dynamically generates
the constraint file (config.json). This file is custom-tailored to
meet precise memory requirements, accommodating various
memory types, quantities, and placement configurations with
meticulously crafted constraints.

The essence of this function lies in its remarkable
flexibility for modifying variables within a JSON file. This
capability is demonstrated in the following code. Here,
the function first specifies the names of Verilog files and
instances of the base memory (TO, T1, T2). Subsequently,
it initiates the JSON file editing process. Utilizing the
json.load command, allowing the ability to seamlessly edit
any parameters within the file.

Config_ File_Generator (MT,

— Folder_Name,Die_area)
Mem_Name = Verilog_File_Memory_Name (MT)
inst_Name = Instantiation_Name (MT)
Lib_name = Library_File_Name (MT)

open ('onfig_python_script.json') as

— Json:

F_Json = json.load (Json)

F_Json|['<prameter>']='<Variable
— configuration>"

The main constraints are comprehensively elucidated in
the subsection KEY OPENLANE PARAMETERS for clarity
and precision.

Alternatively, the Copy_macro_files function duplicates
crucial folders from the macro_files folder to the generated
memory folder in the design path, The files copied include
GDS, LEF, LIB, and V_BB, all of which contain essential data

VOLUME 12, 2024

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

IEEE Access

for a seamless RTL to GDSII conversion process for the base
memory.

4) SCHEMATIC GENERATION

Lastly, the draw_diagram function contributes by generating
schematic representations of the requested memory compo-
nents. These visual outputs aid in better understanding and
visualization of the generated memory structures.

D. KEY OPENLANE PARAMETERS

It’s important to note that when working with OpenLane
and integrating SKY130 IP memories as macros, specific
constraints play a crucial role in ensuring successful memory
fabrication and integration. Here’s a breakdown of these
constraints and their significance:

o VERILOG_FILES: Specifies the Verilog source files
that form the core of the macro.

o VERILOG_FILES_BLACKBOX: Used to treat certain
Verilog files as black boxes. Include Verilog files
corresponding to the macro modules used in the core.

« EXTRA_LEFS: Specifies the Library Exchange Format
(LEF) files associated with pre-hardened macros incor-
porated into the core design.

« EXTRA_LIBS: Specifies the library files of pre-hardened
macros used in the current design. Optional but aids in
improving timing analysis.

o EXTRA_GDS_FILES: Used for specifying GDSII files
associated with pre-hardened macros integrated into the
core.

« MACRO_PLACEMENT_CFG: Provides fine-grained
control for manual macro placement with instance
names, positions, and orientation information.

« SYNTH_USE_PG_PINS_DEFINES: Enables the usage
of power and ground pins defined within the macro
module during synthesis.

« VDD_NETS: Specifies power supply nets or connec-
tions required for the macro module.

o« GND_NETS: Defines ground nets or connections
needed for proper grounding within the macro module.

The previous constraints are mandatory and exhibit sim-
ilarity across all the requested memories. However, the key
differences arise when incorporating different base memories
from the SKY 130 IP memory. Each base memory introduces
its unique GDSII, LEF, library, and Verilog files into the
design, which need to be set up in a specific way.

Furthermore, to ensure the effective interleaving of mem-
ory components in the layout, specific constraints become
imperative. These include:

o« PL_TARGET_DENSITY: It reflects how spread the
cells would be on the core area. 1 = closely dense. 0 =
widely spread

o FP_PDN_HPITCH: Defines horizontal power distribu-
tion pitch, indicating the distance between two adjacent
horizontal power rails, in micrometers.

VOLUME 12, 2024

« FP_PDN_VPITCH: Establishes vertical power distribu-
tion pitch, specifying the distance between two adjacent
vertical power rails, in micrometers.

o FP_PDN_VSPACING: Manages vertical power distri-
bution spacing by determining the distance between two
adjacent vias in a vertical power rail, in micrometers.

« FP_PDN_HOFFSET: Specifies horizontal power distri-
bution offset, indicating the distance between the left
edge of the die and the first horizontal power rail,
in micrometers.

« FP_PDN_VOFFSET: Determines vertical power distri-
bution offset by specifying the distance between the
bottom edge of the die and the first vertical power rail,
in micrometers.

o GRT_ADJUSTMENT: Supports route adjustment con-
siderations, allowing to determine how much space
should be left between two adjacent routes.

« ROUTING_CORES: Facilitates effective configuration
of routing cores by specifying the number of routing
cores to be used during routing.

o DIE_AREA: Used to specify the area of the die in
the OpenLane configuration files. It is defined as a
rectangle with four coordinates: x/, y/I, x2, y2. The first
two coordinates x/, yl represent the bottom-left corner
of the rectangle, and the last two coordinates x2, y2
represent the top-right corner of the rectangle. The unit
of measurement for these coordinates is micrometers
pm.

These constraints collectively facilitate the seamless
integration of SKY130 IP memories as macros within
the OpenLane design flow, ensuring efficient synthesis,
placement, and routing while preserving the integrity of the
macros’ functionality and physical characteristics.

V. EXPERIMENTAL RESULTS

This section about the Macro Memory Cell Generator
framework is presented in three distinct subsections, each
contributing to a comprehensive understanding of our
approach:

A. DEVELOPMENT PHASE: CONSTRAINT CONFIGURATION
In this subsection, we delve into the critical aspect of
constraint configuration. The constraints governing memory
generation play a pivotal role in the subsequent phases.
An empirical methodology is provided insight, employed to
derive these configurations.

As previously mentioned, the constraints VERILOG_
FILES, VERILOG_FILES_BLACKBOX, EXTRA_LEFS,
EXTRA_ LIBS, EXTRA_GDS_FILES, SYNTH_USE_PG_
PINS_ DEFINES, VDD_ NETS, and GND_NETS are
imperative for utilizing the SKY 130 IP memory effectively.
The selection of these constraints is contingent upon the
specific base memory chosen for the design.

On the other hand, the parameters are set as PL_TARGET_
DENSITY: 0.05, FP_PDN_HPITCH: 350, FP_PDN_

59697

IEEE Access

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

&> Cursor B~

'h 5480C04»

‘h D195F04»

‘h 108DEDAY
‘h 108DEDA*

Bl un

* Report counts by severity
UVM_INFO :319877
UVM_WARNING : :]
UVM_ERROR : <]
UVM_FATAL : 4]

* Report counts by 1d

[RNTST] 1
[TEST_DONE] 1
[UVM/RELNOTES] 1
[UVM/REPORT/CATCHER]
[uvm_test_top] 319873

(b)

FIGURE 6. UVM-based testbench full random testcase. a) Waveforms of the DUT top wires, b) UVM reporter summary.

VPITCH: 100, FP_PDN_VSPACING: 5, FP_PDN_ HOFF-
SET: 10, FP_PDN_VOFFSET: 13, and GRT_ ADJUST-
MENT: 0.1. The selection of these parameters involved
a series of iterations guided by empirical methodology.
Their values were calibrated with to ensure the successful
implementation of over 150 different memory configurations
into GDSII format.

Furthermore, the DIE_AREA constraint’s definition is
contingent on the MACRO_PLACEMENT_CFG constraint,
with considerations encompassing routing congestion, the
number of memories, and their arrangement. Lastly, the
configuration of ROUTING_CORES could be adapted to the
user’s processor and the desired number of core usage during
the routing phase, defaulting to 1.

B. UVM SIMULATION

The module (Design Under test) DUT in testbench is
instanced with serial and parallel memories for the dif-
ferent types of memories (TO, T1, T2) in order to have
memory different blocks with 2! ADDRESSES and 256
BLOCK_DATA_WIDTH.

The testcase used for this UVM-based testbench is multiple
full random addresses and full random data. It has been
performed 100,000 operations in each port, where portO does
random writes/reads, 20,000 reads in each port concurrently,
and Byte per Byte checking.

Fig. 6 a) shows the simulation waveform where can notice
the randomized values for address and data in both ports.
On the other hand, Fig. 6 b) is the UVM reporter, where no
errors have been detected during the test.

C. TESTING PHASE: DIVERSE MEMORY INSTANCES

By utilizing the Macro Memory Cell Generator framework,
we successfully automated the generation of a diverse set
of 151 memory instances at the layout level. These memory
instances exhibit a wide range of configurations, including
data widths spanning from 8 bits to 128 bits and memory
capacities ranging from 512 to 32768 memory addresses.
The arrangement of these memories varies, with options

59698

including column, row, and grid layouts, as well as custom
configurations tailored to specific design requirements.

In Fig. 7, both base memories T1 and T2 are depicted,
illustrating the correlation between memory size and die
area measured in mm?. The representation encompasses
memories organized in column, row, and grid arrangements.
Notably, the absence of specific size and arrangement
information, such as 32x4096 (T1) with a column floorplan,
signifies the inherent limitations of the previously mentioned
constraint configuration. In such cases, a custom constraint
configuration becomes necessary. Nevertheless, the frame-
work can still rely on a base reference configuration, requir-
ing minimal adjustments, to accommodate these variations
and streamline the memory design process.

Fig. 8 and 9 offer a graphical representation of the size-to-
die area ratio for memories configured with custom layouts
using the T1 and T2 base memories, respectively. The label at
the top of each data in those figures represents the number of
columns and rows, e.g. Fig. 4 uses a custom configuration
with a T2 base memory, the memory configuration has
2 columns and 4 rows so the corresponding data for that
implementation can be found in Fig. 9 with a memory size
of 64x2048 and a top label of 2_4 which correspond to
<number of columns>_ <number of rows>.

Out of the 151 generated memory instances, 63 were
derived from the TO base memory. In Fig. 10, The comprehen-
sive visualization illustrates the relationship between memory
size and die area in mm? for memories organized in column,
row, and grid arrangements. Meanwhile, Fig. 11 provides a
detailed illustration of the size-to-die area ratio for memories
configured with custom layouts, showcasing the versatility
and adaptability of our framework.

VIi. DISCUSSION

A significant portion of the work detailed in Section II
shares a close association with the OpenRAM framework,
which served as the foundation for constructing the base
memories within the SKY130 PDK. The Macro Memory
Cell Generator tool’s execution relies on specific functions,

VOLUME 12, 2024

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

IEEE Access

200
Floorplanning
== Column (T1)
75 " wmm Row (T1)
 Grid (T1)
450 == Column (T2)
m== Row (T2)
e Grid (T2)
125
E
% 10.0
H

o s? Sl s
& o o as»* & o

. I ||||| |“] ||||||
0o | EEm | || T II III I III

Size vs Area Comparison

b 2>
. & Y &
& & & o

u ‘b

@W ¢
& & &

Size

FIGURE 7. Results of size vs area comparison for T1 and T2 memory type with column, row and grid arrangement.

Size and Floorplanning vs Area Comparison (T1)

410 84
84410

10
410 8.4
8
44210
210 4.4
44 210
4
24 “’
2
1414 NN
1,211
0

N2
& &8 \@@v‘” & S &'”\“%“"” v; \@ &
m_,wrsv@‘,,wv@*hy@@@@ e@*e‘@

Area (mm?)
>

6’06@&“@“b%
§° 4 o &
ea“wr&'r&@'r&

Size

FIGURE 8. Results of size vs area comparison for T1 memory type with
custom arrangement.

Size and Floorplanning vs Area Comparison (T2)

410 g,

175
15.0
125
E
E 100
©
g 210 44 210 44 210 44
75
50
16 24
25 41 14 “ zz
- Il
0o IR HEN
v
& w S &
S
Sy @»,

> @ & >
R ,e‘* 5 ﬁ &
A - Lt A S A

Size

i)

G’a‘*a"o‘\@.{ﬁ

FIGURE 9. Results of size vs area comparison for T2 memory type with
custom arrangement.

as discussed in section IV-C. This design choice affords
flexibility for adapting the tool to incorporate the latest
versions and improvements of memories generated with
OpenRAM. However, considering that the memories within
the SKY130 PDK have undergone rigorous testing and sili-
con manufacturing, we opted for the initial implementation
to be based on these foundational memories ensuring that the
memories generated by this tool can be manufactured. This
decision doesn’t prevent the possibility of integrating current
and future enhancements.

VOLUME 12, 2024

Size vs Area Comparison

Floorplanning
== Column (T0)
== Row (T0)
= Grid (T0)

Area (mm?)

© 4
o S
&
*

w “ ‘ “
o m— lll “l III — lll III
,

\‘9 &
’5

t‘ <

< t"q ‘b

’L &

@ 9;,;5“
&
& &

hﬂ

\
£
Ko \b‘ v w"

Size

FIGURE 10. Results of size vs area comparison for T0O memory type with
column, row and grid arrangement.

Size and Floorplanning vs Area Companson (TU)

23
200
175
16.3
15.0 =
125
10.0
310
75
50 83,10 -210
432,10
33 18 33 18
25 16
122‘2,2174 I 2214 I 23 I
00 =l
al
® @“ &.\ &
g

o v P P o
§° & @q’g,@ \ 5° %é;«? o"b@"‘ ‘&Q \6”
& & N g B o ,@* &

Area (mm?)

S

& °
SN ® e

&
5’» o w’“ o ,1} '\/"
Size

FIGURE 11. Results of size vs area comparison for T0O memory type with
custom arrangement.

The constraints configuration file holds a pivotal role
in the OpenLane workflow. A well-optimized constraints
file is essential for efficient system implementation at the
layout level. The configurations elucidated in section IV-D
and V-A were meticulously derived and fine-tuned through
empirical methodologies. These methodologies prioritize two
key factors: obtaining the GDSII file without violation errors
and ensuring the uniformity of constraints across various
memories. Consequently, the configuration file presents
consistent restrictions for all memories, deviating only when
selecting different base memory types and determining the

59699

IEEE Access

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

final memory area. The size of the ultimate memory is
intricately linked to the quantity of memories used. While
employing a generalized configuration file streamlines tool
development, it may not achieve the best optimization for
each individual memory, given its limitations regarding
memory range.

Beyond the 151 memories featured in the preceding
chapter, it is imperative to acknowledge that the tool may not
autonomously generate memories without human interven-
tion or errors within the RTL to GDSII flow. Nevertheless,
the tool serves as a foundational starting point for generating
memories beyond those covered in this research. Achieving
this entails adjustments in the configuration file and/or
memory positioning.

Fig. 7 illustrates the area utilization of each memory,
revealing a notable trend when comparing implementations
based on T1 and T2 memories. T2 memories tend to
occupy less area, primarily due to their inherent capacity
advantage. A T2 memory effectively implements double
the storage capacity of a Tl memory without doubling
the space requirement, consequently, implementing a T2
memory necessitates the instantiation of two T1 memories
to achieve equivalent storage capacity. Furthermore, it is
evident that higher-capacity memories can only be effectively
implemented using a grid arrangement, with the principal
constraint being routing congestion when adopting the
column and row arrangements.

Fig. 8 and 9 showcase custom implementations utilizing
T1 and T2 memories. While various possibilities exist for
custom arrangements, our initial tests focused on comparing
area utilization when employing more columns than rows and
vice versa. The outcomes vary depending on the base memory
type. With a T1 base memory, an increase in area is observed
when using more columns, whereas with a T2 base memory,
an increase in area occurs when using more rows than
columns. The disparities in area utilization between imple-
menting more rows or columns range from 1.4% to 6.1%.

Fig. 10 delves into area utilization with the base memory
TO in column, row, and grid arrangements. Upon inspecting
the data, a discernible pattern emerges. When the number
of instantiated memories is fewer than 16, and a row
arrangement is employed, a tendency toward lower area
utilization is evident. Conversely, when the number of
memories surpasses 16, a smaller area footprint is attributed
to the grid arrangement.

VIl. CONCLUSION

This research presented a comprehensive framework called
Macro Memory Cell Generator, designed to address the
memory limitations of the SKY130 PDK by automating
the generation of custom memory arrays with varying
sizes and configurations. Through a meticulous empirical
methodology, we optimized critical design parameters,
resulting in over 150 memories successfully implemented
at the layout level. Our work has shown that the tool can
efficiently generate memories based on SKY 130 IP memories

59700

while accommodating custom configurations with minimal
adjustments. The tool’s flexibility ensures compatibility with
the latest advancements and improvements in memory design
related to OpenRAM.

Furthermore, our study has shed light on the impact of
memory arrangement on die area utilization. We observed
that certain base memories, such as T2, offer advantages in
terms of capacity-to-space efficiency, with grid arrangements
proving particularly useful for high-capacity memories.

While the tool’s capabilities are substantial, we acknowl-
edge its limitations in generating memories beyond the scope
of this research without human intervention. Nevertheless,
it serves as a valuable starting point for memory designers,
streamlining the memory creation process.

Ultimately, this work contributes to the advancement of
memory design methodologies within the SKY130 PDK.
It empowers designers to efficiently create memories tailored
to specific requirements, facilitating more optimized chip
designs. As we move forward, we anticipate further enhance-
ments and applications of the Macro Memory Cell Generator,
fostering innovation and efficiency in memory design.

REFERENCES

[1] Y.-K. Chen and S. Y. Kung, “Trend and challenge on system-on-a-
chip designs,” J. Signal Process. Syst., vol. 53, nos. 1-2, pp. 217-229,
Nov. 2008.

[2] Synopsys. (2021). Memory Chip Design. Accessed: Apr. 17, 2024.
[Online]. Available: https://blogs.synopsys.com/from-silicon-to-software/
2021/12/08/memory-chip-design/

[3] P-H. Chen, “Intelligence everywhere: The challenges and opportunities
for semiconductor designs,” in Proc. Int. Symp. VLSI Design, Autom. Test
(VLSI-DAT), Hsinchu, Taiwan, Apr. 2021, pp. 1-2.

[4] A. R. Omondi, The Microarchitecture of Pipelined and Superscalar
Computers. The Netherlands, Europe: Springer, 1999.

[5] S. Das and S. Dey, “FPGA based design of a fine-grained fault tolerant
interleaved memory,” in Proc. IEEE Int. Conf. Adv. Commun., Control
Comput. Technol., Ramanathapuram, India, May 2014, pp. 565-568.

[6] C.-H. Yang, Y.-C. Wu, Y.-L. Chen, C.-H. Lee, J.-H. Hung, and C.-H. Yang,
“An FM-index based high-throughput memory-efficient FPGA accelerator
for paired-end short-read mapping,” IEEE Trans. Biomed. Circuits Syst.,
vol. 17, no. 6, pp. 1331-1341, Dec. 2023.

[7] H.Lee,S.Lee, Y.Jung, and D. Kim, ‘““T-CAT: Dynamic cache allocation for
tiered memory systems with memory interleaving,” IEEE Comput. Archit.
Lett., vol. 22, no. 2, pp. 73-76, Dec. 2023.

[8] B. Khargharia, S. Hariri, and M. S. Yousif, “An adaptive interleaving
technique for memory performance-per-Watt management,” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 7, pp. 1011-1022, Jul. 2009.

[9] Dolphin Technology. Products, Memory Products. Accessed: Apr. 17,
2024. [Online]. Available: https://www.dolphin-ic.com/about/market.html

[10] R. Goldman, K. Bartleson, T. Wood, V. Melikyan, and E. Babayan,
“Synopsys’ educational generic memory compiler,” in Proc. 10th Eur.
Workshop Microelectron. Educ. (EWME), Tallinn, Estonia, May 2014,
pp. 89-92, doi: 10.1109/EWME.2014.6877402.

[11] Synopsys | EDA Tools. Semiconductor IP and Application Security Solu-
tions. Accessed: Apr. 17, 2024. [Online]. Available: https://www.dolphin-
ic.com/products/memory.html

[12] A. Parmar, K. Prasad, N. Rao, and J. Mekie, “FastMem: A fast
architecture-aware memory layout design,” in Proc. 23rd Int. Symp.
Quality Electron. Design (ISQED), Santa Clara, CA, USA, Apr. 2022,
pp. 120-126, doi: 10.1109/isqed54688.2022.9806258.

[13] M. Guthaus, J. Stine, N. Chandramoorthy, J. Liu, N. Bafekrpour, S. Shah,
M. Sarwar, R. Huang, and S. Sinha, “OpenRAM: An open-source memory
compiler,” Dept. Comput. Eng., Univ. California Santa Cruz, Santa Cruz,
CA, USA, Tech. Rep., 2016. Accessed: Apr. 17,2024. [Online]. Available:
https://escholarship.org/content/qt8x19¢778/qt8x19¢778_noSplash_b2b3
fbbb57f1269f86d0de77865b0691.pdf, doi: 10.1145/2966986.2980098.

VOLUME 12, 2024

http://dx.doi.org/10.1109/EWME.2014.6877402
http://dx.doi.org/10.1109/isqed54688.2022.9806258
http://dx.doi.org/10.1145/2966986.2980098

E. I. Baungarten-Leon et al.: Macro Memory Cell Generator for SKY130 PDK

IEEE Access

[14] Google and SkyWater. SkyWater Open Source PDK. Accessed: Apr. 17,
2024. [Online]. Available: https://skywater-pdk.readthedocs.io/en/main/

[15] M. Guthaus, H. Nichols, J. Cirimelli-Low, J. Kunzler, and B. Wu,
“Enabling design technology co-optimization of SRAMs through open-
source software,” in IEDM Tech. Dig., San Francisco, CA, USA,
Dec. 2020, pp. 41.7.1-41.7.4, doi: 10.1109/IEDM13553.2020.9372047.

[16] A. Ghazy and M. Shalan, “OpenLane: The open-source digital ASIC
implementation flow,” in Proc. Workshop Open-Source EDA Technol.
(WOSET), 2020, pp. 1-5.

[17] H. Nichols, M. Grimes, J. Sowash, J. Cirimelli-Low, and M. R. Guthaus,
“Automated synthesis of multi-port memories and control,” in Proc.
IFIP/IEEE 27th Int. Conf. Very Large Scale Integr. (VLSI-SoC), Cuzco,
Peru, Oct. 2019, pp. 59-64, doi: 10.1109/VLSI-SoC.2019.8920314.

EMILIO ISAAC BAUNGARTEN-LEON received
the bachelor’s degree in biomedical electron-
ics from Universidad Autnoma de Guadalajara,
in 2019, and the Master of Science degree in elec-
trical engineering (MSEE) from Centro de Inves-
tigacion y de Estudios Avanzados del Instituto
Politécnico Nacional (CINVESTAV), where he is
currently pursuing the Ph.D. degree, concentrating
on the implementation of digital systems at the
layout level. During the master’s study, he has
collaborated on a research project with the German Aerospace Center.

SUSANA ORTEGA-CISNEROS received the
degree in communications and electronics engi-
neering from the University of Guadalajara, Mex-
ico, the master’s degree in science from the
IPN Center for Research and Advanced Studies,
Mexico, and the Ph.D. degree in computer science
and telecommunications from the Autonomous
University of Madrid, Spain. She is a Researcher
in electronic design with CINVESTAV Unidad
Guadalajara and a member of the National System
of Researchers. Her research interests include integrated circuit design;
physical design, layout, and simulation of digital integrated circuits;
methodologies and algorithms for modeling, analysis, and design of
electronic circuits; and handling of software for the development of
integrated circuits.

GERMAN PINEDO-DIAZ received the degree in
communications and electronics engineering from
the Autonomous University of Zacatecas, and
the Master of Science degree from CINVESTAV,
Guadalajara, specialized in electronic design lab-
oratory, where he is currently pursuing the Ph.D.
degree. His area of expertise lies in embedded
systems design and the application of artificial
intelligence in medicine. His research interests
include VLSI integrated circuit design, functional
circuit verification, and designing accelerators for neural network operations
on FPGA platforms.

MIGUEL ANGEL RIVERA ACOSTA received the
Ph.D. degree in electrical engineering from the
Center for Research and Advanced Studies of
the National Polytechnic Institute (CINVESTAV)
in 2020. Currently, he is a Design Verification
Technical Leader with Circuify Semiconductors,
and an Assistant Teacher at CINVESTAV. His
research interests include ASIC design for digital
image processing, computer vision, and hardware
development for artificial intelligence algorithms
inference.

VOLUME 12, 2024

FRANCISCO JAVIER RODRIGUEZ NAVAR-

RETE received the M.S.E.E. degree in electronic

design from Cinvestav Unidad Guadalajara, Mex-

[~ ico, in 2020, where he is currently pursuing

| the Ph.D. degree. He has collaborated with the

' - government of Jalisco on projects that include

. the design of processors based on RISC-V and

tools for integration and schematic data analysis,

/& simulation, and emulation of various systems. His

field of expertise includes computer architecture,

digital logic design/verification using HDL, data analysis, test automation,
and software development.

URIEL JARAMILLO-TORAL received the bach-
elor’s degree from the Technological Institute of
Aguascalientes, in 2019, and the Master of Science
degree in electrical engineering (MSEE), special-
ized in encryption systems and the generation of
integrated circuit layouts from Centro de Inves-
tigacién y de Estudios Avanzados del Instituto
Politécnico Nacional (CINVESTAV), where he is
currently pursuing the Ph.D. degree with a focus
on the implementation of digital systems at the
circuit design level and the development of encryption systems resilient to
quantum computers. During his master’s studies, he actively collaborated on
research projects related to these areas.

CRISTIAN TORRES GONZLEZ received the
bachelor’s degree in electrical and electronic
engineering with a specialty in electronics from
the Faculty of Engineering, National Autonomous
University of Mexico (UNAM), in 2020. In 2022,
he entered the Center for Advanced Studies of
the National Polytechnic Institute (CINVESTAV),
Guadalajara Campus, where he actively partici-
pates in the area of digital systems.

JUAN CARLOS GARCIA LOPEZ received the

degree from the University of Guadalajara,

in 2020. He is currently pursuing the master’s

L ot degree in electrical engineering (MSEE) with
. f Centro de Investigacién y de Estudios Avanzados
del Instituto Politécnico Nacional (CINVESTAV).

-_—
#I He is an Electronics and Communications
- Engineer. He has been involved in research
‘ projects at the institution. His current focus is on
the implementation of asynchronous systems and

neural networks at the RTL design level as he works toward the completion of
his master’s degree. He received the CENEVAL EGEL Prize for Academic
Excellence.

59701

http://dx.doi.org/10.1109/IEDM13553.2020.9372047
http://dx.doi.org/10.1109/VLSI-SoC.2019.8920314

