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ABSTRACT In recent years, time series forecasting has been widely used in various fields, especially in
financial markets. Stock trend forecasting has become one of the most common and complex challenges
faced by investors and researchers. However, much of the current research relies primarily on single-
granularity stock data for forecasting, with relatively few studies on multi-granularity data and fewer
studies on spatial correlation of multi-granularity data. This inherent limitation restricts the comprehensive
extraction of valuable information. To address this challenge, we propose the Multi-Granularity Deep
Spatio-Temporal Correlation Framework (MDSTCF). Our approach combines the strengths of a multi-
granularity residual learning, gated recurrent units, and graph attention networks to extract spatio-temporal
information specific to each granularity. Subsequently, predictions at each granularity are generated through
the prediction layer. Finally, a soft attention mechanism is employed to assign weights to the predictions at
each granularity to obtain the final result. Comprehensive experiments conducted on tow stock datasets show
that the proposed forecasting model improves the F1 score by about 7.88% and 11.2%, and the cumulative
relative returns are close to 80% and 40%, respectively, compared to the previously studied time series
forecasting models. The results clearly indicates that fusing multi-granularity information can significantly
improve the performance of time series forecasting.

INDEX TERMS Time series forecasting, multi-granularity learning, graph neural network, spatio-temporal
correlation, financial markets.

I. INTRODUCTION
Time series forecasting has received extensive attention in
academia and industry, including financial markets [1], [2],
[3], retail sales [4], transportation [5], [6], and the energy
sector [7]. In the financial markets, stock prediction plays
a pivotal role in guiding the investment decisions of market
participants. Accurate forecasts can help investors make
informed choices and thus improve investment returns. How-
ever, stock data exhibit characteristics such as nonlinearity
and chaos, making stock prediction a challenging task that
has received significant attention from researchers over the
past decade [8], [9], [10]. Currently, time series forecasts
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are categorized into two main types: long-term forecasting
and short-term forecasting. Long-term forecasting [11] aim
to reveal macro trends, formulate strategies and support
decision-making, while short-term forecasting focus on cop-
ing with near-term volatility, making operational decisions
and responding flexibly to unforeseen events. However,
today’s stock forecasting studies are tilted towards the short-
term to cope with the rapidly changing market and business
environment.

Traditional time series analysis methods such as SVR [12]
and ARIMA [13] can handle nonlinear relationships to a
certain extent, but they still have limitations. These methods
mainly rely on domain expertise to construct parametric
models and most of them can only handle linear relationships
between different time steps. In order to simulate nonlinear
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relationships, there are variations of autoregressive models
such as LRidge [14], LSVR [15], etc. But they still assume
that the time series has a certain distribution or functional
form, so there are certain limitations when dealing with
highly nonlinear real time series data.

In the past few years, deep learning and graph methods
[16] have made remarkable achievements in time series
forecasting. Deep learning techniques, such as Recurrent
Neural Networks (RNN) [17], Long Short-Term Memory
Networks (LSTM) [18], [19], and Gated Recurrent Units
(GRU) [20], have demonstrated outstanding performance
in the prediction of stock trend. Furthermore, stock data
contains not only temporal features, but also spatial features
due to their complex interrelationships. Graph neural net-
works, including Convolutional Neural Networks (CNN) [21]
and Graph Convolutional Networks (GCN) [22], are gaining
increasing popularity in the domain of time series forecasting.
These networks leverage the complex interdependencies
among stocks to enable more precise price predictions.
Consequently, these advancements hold the potential to
provide substantial benefits to investors in terms of decision-
making and trading strategies. However, it is important to
emphasize that many of these studies have largely ignored
the exploration of various granularities.

Currently, Multi-Granularity Residual Learning Frame-
work (MRLF) [23] achieves multi-granularity learning and
mitigates validity discrepancies by utilizing coarse-grained
prior knowledge, computing residuals to remove redundant
information, and introducing a self-supervised objective.
However, this method is challenged by the complexity of
noise in multi-granularity data. To address this problem,
Wang et al. proposed the Multi-Granularity Denoising
Comparison framework (MDC) [24], which filters the noise,
aligns the data, and handles trend differences using self-
supervised learning. Despite the progressmade, when applied
these methods to stock markets which contains multiple
time series data, they tend to ignore the spatial correlations
between stocks, which affects the accuracy of prediction.

To address the limitations observed in the preceding mod-
els, this paper introduces the Multi-Granularity Deep Spatio-
temporal Correlation Framework (MDSTCF) to improve
the performance of stock trend prediction. Specifically, 1)
We construct multiple spatio-temporal network blocks, with
each block being responsible for learning spatio-temporal
information at a specific granularity level. Our approach
not only extracts temporal information, but also effectively
captures dynamic spatial information for more effective
information acquisition. 2) In order to make full use of the
spatio-temporal information of each granularity data, reduce
the validity difference and achieve more accurate prediction,
we integrate the extracted spatio-temporal hidden states, and
use the soft attention mechanism to determine the prediction
weight coefficient of each granularity. The final prediction
result is the weighted sum of the results of each particle
size.

In summary, the main contributions of this work include:
• To learn spatio-temporal features for data with different

granularities, we use GRU to capture temporal features
and dynamic graphs constructed with specific granu-
larities combined with GAT to capture spatial features,
respectively, and finally fused to obtain spatio-temporal
relationship embeddings with different granularities.

• After performing residual learning to remove redundant
information in the granularity and extract spatio-
temporal features, we introduce self-attentive attention
and soft-attentive mechanisms to better fuse data of
different granularities and make the information of each
granularity complementary.

• Extensive experiments on two real-world stock datasets
from American and Chinese market clearly show that
our model exhibits superior predictive performance
compared to other models. In addition, we validate the
practical effectiveness of our model through trading
strategy.

The rest of the paper is organized according to the
following structure. First, in Section II, we present the
background of the related work and the problem posed. Then,
in Section III the definition of multigranularity is specified
as well as the formulation of the proposed problem. Then,
in Section IV, we describe the proposed methodology in
detail. Next, in Section V, we present the experimental setup
and analyze the results obtained. Finally, in Section VI,
we will summarize the main points of the paper and suggest
directions for subsequent improvements.

II. RELATED WORK
In this section, we explore the application of time series
forecasting methods in the stock market and present all the
methods organized and summarized in Table 1.

A. TIME SERIES FORECASTING
Some traditional time series methods applied to stock
forecasting, such as SVR [12] and ARIMA [13], with
roots tracing back to the 1970s, can handle simple time
series but fail to balance spatial and temporal correlations.
The Multilayer Perceptron (MLP) [28] can be considered
as the first post-neural network solution for sequence
modeling. With the progress of deep learning, Recurrent
Neural Networks (RNNs) [17] gradually became the default
choice for time series modeling. However, they encounter
the issue of vanishing gradients when dealing with lengthy
sequences. Long Short-Term Memory (LSTM) [18] and
Gated Recurrent Unit (GRU) [29] help alleviate this problem
to some extent but it cannot reach the point where it becomes
long-term. In pursuit of more accurate predictions, complex
structures like the Time Attention Layer (LSTNet-A) [19]
and the novel Temporal Pattern Attention (TPA) [30] have
been proposed. Subsequently, the well-known self-attention-
based Transformer [25] has been successfully applied to
sequence modeling. Despite their success, these methods are
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TABLE 1. Comparison of time series forecasting methods.

predominantly utilized for predicting at a single granularity,
lacking extensive research into different granularities.

B. MULTI-GRANULARITY TIME SERIES FORECASTING
Multi-granularity time series prediction has become a hot
research topic in the field of time series forecasting in recent
years. Scholars from both domestic and international have
conducted extensive research and exploration on this issue.

Presently, the predominant focus of research lies in
single granularity prediction, as exemplified by the work
of Feng et al. [31] and Qin et al. [32]. However, this
single-granularity approach often results in a loss of infor-
mation when viewed from a multi-granularity perspective.
In reality, an effective time series prediction model should
have the capacity to capture temporal patterns across
various time granularities. Although there have been studies
using ‘‘multi-scale’’ information in time series analysis,
this information needs to be clearly distinguished from
the ‘‘multi-granularity’’ information we talk about. From
a more technical perspective, the concept of ‘‘scale’’ is
mainly related to the division of spectrum. In contrast,
‘‘multi-granularity’’ methods, also known as multi-resolution
methods, aim to address the challenges of processing data
sets with different levels of granularity or aggregation.
This includes aggregating statistics or features that occur at
different resolutions or time intervals [33].
Over the past two years, Hou et al. introduced the

Contrastive Multi-Granularity Learning Framework (CMLF)
[27], a framework that leverages multi-granularity temporal
data for stock trend prediction tasks. To address the dispar-
ity between multi-granularity inputs and single-granularity
objectives, the CMLF incorporates an innovative contrastive
learning mechanism with dual objectives. In 2022, Hou
further extended this work with the introduction of the
Multi-Granularity Residual Learning Framework (MRLF)
[23] to enhance time series forecasting. However, the above
methods do not explicitly consider the relationships between
the data at each granularity. In fact, there are dynamic
correlations between stocks, and fully utilizing these potential
dependencies can improve the predictive performance of the
model. Therefore, the spatial relationships formed under each
granularity are considered to be incorporated into the model
to further improve the accuracy of stock trend prediction.

C. GRAPH NEURAL NETWORKS
Graph neural networks (GNNs) [26] have gained increasing
popularity in the field of time series forecasting, where
variables are treated as nodes, and their interactions are

effectively modeled through edges. It has been demonstrated
that significant improvements can be achieved by extracting
hidden graph structures, even for tasks where explicit
graph structures do not naturally exist. In line with this
trend, GNNs, including convolutional neural networks, are
becoming increasingly prominent in prediction.

However, most existing works assume static graph struc-
tures in the context of multivariate time series forecasting.
In reality, there are interdependencies among variables in
multivariate time series forecasting methods. These inter-
dependencies between variables can be dynamic, with each
variable not only depending on its own historical values but
also on other variables. State-of-the-art forecasting models,
such as Multivariate Time Series Forecasting with Graph
Neural Networks (MTGNN) [26], learn the adjacency matrix
of the graph from the entire input time series and retain it for
subsequent timemodeling. In 2022, the EvolvingMulti-Scale
Graph Neural Network (ESG) [7] introduced a hierarchical
graph structure that incorporates dilated convolutions to
capture scale-specific correlations between time series. Most
current research focuses on multi-scale graph learning, but
this is different from the multi-granularity graph we propose.
Multi-granularity graphs focus more on spatial relationships
after data refinement, rather than just spatial correlations
obtained through frequency or temporal changes.

III. PROBLEM FORMULATION
In this paper we primarily focuses on multi-granularity
time series prediction. Given an original sequence X =
[x1, . . . , xT ] with time length T , time interval 1 and
M granularities. Then the coarsest granularity X1 =
[x1, x[T/s]+1, x[T/s](s−1), xT ] is to divide T into s equal
parts, where s is the largest integer that satisfies
the equation 1 = [T/(2M−1s)], the 2nd granularity
X2 = [x1, x[T/(2s)]+1, x[T/(2s)](2s−1), xT ] is to divide
T into 2s equal parts, the mth granularity Xm =
[x1, x[T/(2m−1s)]+1, x[T/(2m−1s)](2m−1s−1), xT ] is to divide T
into 2m−1s equal parts, and so on the finest granularity should
be 2M−1s parts. For example, given that the original sequence
is X1 = [x1, x2 . . . , xT28 ], the number of granularities
is 2. Then s = 14 is computed, so here the coarsest
granularity is X2 = [x1, x3 . . . , xT27 , xT28 ] and the finest
granularity is X1 = [x1, x2 . . . , xT28 ]. Finally, we are given
N stocks, and the data for M granularities is represented as
{X1, X2, . . . , XM} where the order of granularity is from
coarse to fine and XM = [x1, . . . , xT M ] ∈ RN×T M×D,
where TM represents the point in time calculated by the
method described above. Our model learns the future trend

VOLUME 12, 2024 67221



J. Chen et al.: Multi-Granularity Spatio-Temporal Correlation Networks for Stock Trend Prediction

FIGURE 1. Illustration of multi-granularity deep spatio-temporal correlation model (MDSTCF).

function y = f̂ (X1, X2, . . . , XM ), based on historical data,
where y exceeding the critical threshold (set to 0.5 in our
experiments) indicates an upward trend, while falling below
the threshold indicates a downward trend.

IV. METHODOLOGY
A. MODEL FRAMEWORK
We will start by outlining the model’s overall structure.
As illustrated in Fig. 1, our model’s input consists of M
data granularities from coarse to fine, corresponding to M
linear alignment layers,M spatio-temporal feature extraction
layers,M fusion prediction layers, and aweighted sum output
module.

Firstly, in order to effectively eliminate information
redundancy between different granularities, we employ
residual connections to acquire non-redundant granularity
information. Subsequently, the spatio-temporal feature layer
is extracted by the interaction of GRU [20] and GAT [34],
capturing temporal and spatial dependencies, respectively.
Next, we use a soft attention mechanism to allow the
model to assign appropriate correlation coefficients to dif-
ferent granularity, reducing effectiveness differences. Finally,
we calculate the weight of each granularity prediction based
on these coefficients of concern. The final forecast is obtained
by aggregating weights. This process not only ensures that the
model can effectively extract the spatio-temporal information
of each granularity, but also combines their predictions to
mitigate differences to produce more accurate predictions.
Specifically, the details of our model are as follows.

B. DATA ALIGNMENT
Due to the inconsistent dimensions of different granularity
{X1, X2, . . . , XM}, we align them to the same space for

subsequent residual operations, as shown in the yellow part
of Fig. 1. Specifically, we apply MLP to the input Xi ∈
RN×T i×D, which represents the lagged original data of
multiple stocks at granularity i over T i time steps. aligni

involves first swapping the 2nd and 3rd dimensions of Xi,
followed by linear transformation to align with the time
length, and finally, restoring the original order by swapping
back. We describe the feature alignment process as follows:

F i = Aligni(X
i) (1)

The aligned features are denoted as F i ∈ RN×K×D, where
K represents the time length to which all granularity data are
aligned.

C. TEMPORAL FEATURE LAYER
To capture key information in the time series and learn long-
term dependencies, we utilize GRU for temporal feature
extraction for each stock. The extracted hidden states are
used for subsequent spatial feature extraction and prediction
at the next level of granularity. The structure of this module
is shown in the orange section of Fig. 2. As an illustrative
example, we will provide a detailed exposition of the module
at granularity level i.

When the upstream output Pi is received, it is then fed into
N individual GRU models to capture the hidden features vi

for each stock and to generate predictions for the next-level
granularity data vi

output. Here,Pi represents the data obtained
after the residual operation, and the specific process will be
described in the next subsection. The specific formula is as
follows:

v i
output , v

i = GRU i(P i) (2)

Q i+1 = MLP i(vi
output) (3)
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FIGURE 2. The overall structure of the i-th granularity.

FIGURE 3. Trend of the movement of coarse-grained data and
fine-grained data. The last one is the trend of the movement after the
residual.

where vi ∈ RN×D′ represents the time features extracted
by GRU at i-th granularity, where D′ represents the
hidden dimension. vi

output ∈ RN×K×D′ predicts the next
granularity value Qi+1 ∈ RN×K×D. For the prediction,
we adopt a Multilayer Perceptron approach. In this case,
our temporal feature layer produces two outputs: one for
subsequent prediction and downstream spatial information
feature extraction vi, and another Qi+1 for the elimination of
information redundancy between different granularity in the
next layer.

D. ELIMINATING INFORMATION REDUNDANCY
In this study, in order to reduce the redundancy of data at
different granularities, we used a residual-based approach.
In Fig. 2, an example is used to illustrate the relationship
of coarse-grained and fine-grained data. First, we extracted
coarse-grained and fine-grained data from the raw data.
It is difficult to capture local details by directly inputting

fine-grained data because fine-grained data is dominated by
coarse-grained trends, which poses a challenge to directly
capture fine-grained trends. Specifically, coarse-grained data
typically shows general movement trends, while fine-grained
data provides more localized change details, as shown in the
Fig 3. Since the coarse-grained data is part of the fine-grained
data, the overall movement trend information is easier to
capture, resulting in localized detail information that is dif-
ficult to accurately capture. Therefore, removing redundant
information by calculating the residuals between coarse-
grained and fine-grained data can capture unique patterns
in fine-grained data more effectively. Second, considering
that data of different granularities come from statistical
measurements at different time levels, coarse-grained data
contain a priori information about the distribution of fine-
grained data. On this basis, for a given coarse-grained
data, we can predict the possible fine-grained data. Finally,
by calculating the residuals between different granularity
data, redundant information is eliminated in order to obtain
specific fine-grained data. For the first layer, we input coarse-
grained data P 1 = F 1, and the remaining layers use residuals.
The specific formula is as follows.

P i =

{
F i, i = 1
F i −Qi, i ̸= 1

(4)

where P i ∈ RN×K×D represents the de-redundant input
of layer i, Qi denotes the current level i granularity data
predicted by the level i-th granularity data. By introducing a
residual approach, the model is able to more acutely perceive
small trend changes in the data, and thus learn and capture the
complex correlations therein more accurately.

In order to capture trend information from coarse-
grained data while retaining the unique characteristics
of fine-grained information in the residual structure, the
original fine-grained information must be represented in the
coarse-grained information to the maximum extent possible.

VOLUME 12, 2024 67223



J. Chen et al.: Multi-Granularity Spatio-Temporal Correlation Networks for Stock Trend Prediction

We formulate this constraint as:

L1 =
∑

||F i −Qi||2F (5)

where ||.|||F denotes the Frobenius norm. In order not to
affect the fine-grained information extraction process, when
optimizing Eqs.3, we fix the process of extracting fine-
grained information F i and only optimize the Qi.

E. SPATIAL FEATURE LAYER
For the formation of spatial features, after the data features of
each stock are captured by GRU, the hidden state features
obtained can be regarded as nodes containing relevant
information of stocks. We use the attention mechanism
through GAT to dynamically assign different weights to
adjacent nodes, allowing the model to prioritize the more
relevant nodes in each prediction task, and then perform
convolution to extract the spatial hidden state. In addition,
in order to learn the trend relationships under each granularity
more efficiently, we introduce weight selection in GAT. This
mechanism ensures that each node can focus on learning
the spatial state under the current granularity, thus better
capturing the stock trend relationships at different time
granularities.

Firstly we precompute an adjacency matrix A ∈ RN×N ,
constructed using Dynamic Time Warping (DTW). DTW
is primarily employed to capture dynamic relationships
between different stocks.

Ai = DTW (P i
closei

, P i
closej

) (6)

where matrix Ai is a matrix with values of 0 and 1. We use
top-K to select entries with higher scores in the matrix.
P i

closei
, P i

closej
∈ ×RK represent the data corresponding

to the closing price dimension of the i-th and j-th stocks,
respectively.

Subsequently, the acquired matrix Ai and the hidden state
features vi are input to Graph Attention Network (GAT),
generating latent spatial patterns. Here, we elaborate on the
role of the matrix Ai: after GAT autonomously generates
the weight matrix Āi among nodes, we utilize the adjacency
matrix Ai for weight selection, and then use the Softmax
operation to reassign the weights. The purpose of this step is
to preserve only the weight of stocks that are highly correlated
at a given granularity.

Āi = (āk
i,j )

=

(
exp(LeakReLU(a[Wvi||Wvj]))∑

k∈Ni
exp(LeakReLU(a[Wvi||WvK]))

)
(7)

(ak
i,j) = Softmax(Ai • Āi ) (8)

where ak
i,j is obtained by taking the dot product of matrix Ai

and matrix Āi , followed by applying softmax to each row to
reassign weights.

Finally a convolutional operation makes the model focus
on learning at a specific granularity.

H i = σ

 1
K

K∑
k=1

∑
j∈Ni

ak
i,jW

kvi

 (9)

where Hi ∈ RN×D′′ represents the extracted spatial features
from GAT. By applying spatial convolution to the temporal
data vector vi, the resulting output Hi can effectively
preserve spatio-temporal relationships simultaneously. The
purpose of this step is to better retain nodes with higher
relevance, eliminate nodes with lower relevance, and thereby
focus the model more on learning spatial relationships at the
i-th granularity layer.

F. ATTENTION-WEIGHTED SUMMATION
To fully utilize the spatio-temporal information at each
granularity, we generate predictions of the probability of
stock price increases or decreases by concatenating the
captured spatio-temporal features and then passing them to
MLP and softmax functions.

yi = Softmax(MLP (Hi ⊕ vi)) (10)

where yi ∈ RN represents the probability prediction of the
rise and fall of the i-th granularity layer.

To generate the final prediction result from each granu-
larity prediction, we employ soft attention mechanism that
assigns a weight to each granularity prediction and then
aggregates all the results for the ultimate prediction. First,
on the time step T i of granularity i, in order to extract
the historical trend information embedded in the time step,
we directly use vi

output as the potential information feature,
and then aggregate the history information of the time step
through the self-attention mechanism. We then use the soft
attention mechanism to calculate the weight coefficient of
each particle size prediction. The goal is to make the model
more focused on important or relevant parts of learning

V i = Self_Attention(vi
output)

=
T i∑

m=1

softmax
(
(Qs, Km)√

(dK)

)
V i

m (11)

αi
j = Soft_Attention(V i, P i

closej
) =
∑D

k=1
V i

j,2

V i
j,k•P

i
closej

(12)

αi = (αi
1, . . . , α

i
j , .., α

i
N ) (13)

where Qs = WQ • vi
output,s(s = T i) is the query vector,

Km = WK • vi
output,m(m = 1, . . . T i) is a key-value

vector, dK is the dimension of the key-value vector, V i
m =

WV • voutput,m is the dimension of the value vector. First,
we extract the historical trend information V i ∈ RN×D

of the vector vi
output within the time step T i using an self

attentionmechanism. Subsequently, we utilize a soft attention
mechanism to calculate weight coefficients. In this paper,
soft attention refers to the dot product of the D-dimensional
features in V i with our residual granularity closing price data.
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FIGURE 4. Rolling training process.

In Eqs.12 and 13, j represents the j-th stock. The resulting
weights αi ∈ RN correspond to the proportion associated
with the closing price dimension.

After computing these weight coefficients and assigning
the weight αi through the softmax function, we perform a
weighted summation of yi with the predicted value to derive
the final prediction.

ᾱi
j = Softmax(αj

i) =
exp(αi

j)∑
k∈M exp(αi

k)
(14)

yj =
M∑
i=1

ᾱi
jy

i
j (15)

y = (y1, . . . , yj , .., yN ) (16)

where ᾱi
j represents the weight coefficients computed by

the previously obtained correlation coefficients, which are
further allocated to each stock under each granularity using
the Softmax method. By calculating the weighted sum, the
probability of an increase or decrease for the j-th stock,
denoted as yj , is determined. y ∈ RN represents the
probability of upward or downward movement, determined
by a threshold.

We adopt this approach to more effectively integrate the
results of predictions at different granularities. By calculating
the weighted sum, we comprehensively consider the contri-
butions of various granularities to the probability of a specific
stock’s increase or decrease. This enables a more accurate
assessment of the future trend of the stock.

G. MODEL OPTIMIZATION
Considering the optimization of the base model, we combine
the cross-entropy loss for the prediction task with the recon-
struction loss L in the cross-granularity residual learning
process to obtain the following loss function:

L = λL1 +
∑

yi logŷi + (1− yi) log(1− ŷi ) (17)

λ is the hyperparameter for balancing the loss, and ŷi

represents the true labels, either 0 or 1. We utilize the
Adam algorithm to perform batch backpropagation for
updating our model parameters. Since each granularity
block is responsible for each granularity of learning, they
are equally important and are not shared. When updating
the parameters, the parameters of each granularity block
are updated simultaneously. The training and optimization
composition of the model is shown through Algorithm 1.

Algorithm 1 The Learning Algorithm of MDSTCF

Input: O ∈ RN×M×T i×D,Y label ∈ RN×M , initialize
model parameters f i, i = 1, 2, . . . ,M , learning rate γ,
batch size b

Output: Y ∈ RM×N (This is Outputs)
for sample a batchX1, X2, . . . , XM from O, ylabel and
from Y label do
for Xi do

Compute P i specific granular data, according to
Eqs.1 and 4
for each j ∈ [0, N ] do
Compute vi

j and vi
outputj

, according to
P i[:, j, :, :] and Eqs.2
if vi=None then

vi = vi
j

vi
output=vi

outputj

else
vi = concat(vi,vi

j)
vi

output = concat(vi
output,v

i
outputj

)
end if

end for
First calculate the correlation coefficient between
stock closing prices, and then select the top-K
relationship matrix A, which is defined as 1 and the
others as 0.
Compute spatial hidden state vector Hi, according
to Eqs.9
Compute the current granularity prediction result yi,
according to Eqs.10
Compute the correlation coefficientαi, according to
Eqs.11 and 12

end for
Compute final prediction y, according to Eqs.14
and 15
Compute Loss =

∑
yi logylabel

i + (1 − yi) log(1 −
ylabel

i ) + λ ∗ L1[Qi+1, P i+1])
Compute the stochastic gradient of θ according to
Loss.
Update model parameters θ according to their gradi-
ents and the learning rate γ.

end for

V. EXPERIMENTS
A. EXPERIMENTING SETTINGS
1) DATA SET DESCRIPTION
We utilize the CSI 300 and NASDAQ 100 stock datasets,
covering the period from September 28, 2010, to May 9,
2023, encompassing a total of 3064 and 3149 trading days,
respectively. Initially, we excluded stocks that went public
after September 28, 2010. We then make a time alignment
from these selected stocks. If some stocks are missing data
on some days, we use the previous day’s data to fill in the
missing data for the day. In the end, we selected 183 and
83 stocks on the CSI300 and NASDAQ100 for training and
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TABLE 2. Model input variables.

testing. All datasets were partitioned into training, validation,
and test sets, following a distribution of 70%, 15%, and 15%,
respectively.

2) INPUT DATA
In this paper, 6 features and 4 technical indicators are
calculated, the effectiveness of which has been confirmed
in numerous studies [14], [35] focusing on stock market
forecasting. The detailed formula is shown in Table 2, where
EMA stands for moving average, e.g. EMA12 means using
12 days of data summed and averaged to get. Finally, it is
normalized and used as an input variable. In the stock market,
since the market is in a constant state of change, we choose
to use a rolling training method in order to adjust the model
to the new market in time. To handle the case of different
lengths of the CSI300 and NASDAQ100 test sets, we used the
method of dividing the test set into 3 equal parts to determine
the sliding window size. To keep the length of the training,
validation, and test sets consistent, each time we slide to a
new test set, we remove a segment of the head of the training
and validation set that is equal in length to a sliding window,
and then replenish the portion of the test set that was slid over.
The specific the rolling process are shown in Fig. 4.

3) HYPERPARAMETER SETTINGS
In our method, the hidden layer dimension size is chosen
as 64 from [32, 64, 96, 128], the batch size is chosen
as 64 from [16, 32, 64, 128] and the learning rate is
chosen from [10−5, 10−4, 10−3, 10−2, 10−1] is chosen as
10−3, the learning rate weight decay is chosen from
[10−5, 10−4, 10−3, 10−2, 10−1] as 10−3 The model predicts
the rise-fall threshold is chosen to be 0.5 from the set
[0.5, 0.6] and k is chosen to be 20 from the set [10, 20, 30, 40].
Since the model tends to predict the fall, in order to solve
the problem, we assign some weights to the cross-entropy
loss function, where the rise and fall weights are set to
be 1.2 from the set [1,1.5]. The size of λ in Eq. 17 is
[10−4, 10−3, 10−2, 10−1, 1] as 1. The number of training
times is set to 10,

B. COMPARISON METHODS
To demonstrate the computational performance of our
proposed method MDSTCF, we compared its results with
those of other methods, including GRU [20], GCN [22], GAT

[34], TRANSFORMER [36], MGTNN [26] and MRLF [23].
Each method was executed 50 times to reduce randomness
and obtain mre robust results.

• GRU: This method can effectively capture long-term
and short-term dependencies in a stock price series. This
allows it to identify the impact of price movements
over the past period of time on the future. For this
method, the dimension size of the hidden layer is
chosen as 64 from [32, 64, 96, 128], the batch size is
chosen as 64 from [16, 32, 64, 128], the learning rate
is chosen as 10−3 from [10−5, 10−4, 10−3, 10−2, 10−1],
the weight decay of the learning rate is chosen as 10−2

from [10−5, 10−4, 10−3, 10−2, 10−1], and the threshold
of themodel prediction rise and fall is chosen as 0.5 from
the set [0.5, 0.6].

• GCN: This method is a method that combines GRU and
GCN. First, GRU is used to extract trend information
from historical stock data and convert it into time
series features. Next, the GCN part captures the
correlation between stocks by performing convolution
operations on a predefined graph structure, realizes
information transmission and fusion, and further refines
valuable stock features and outputs the final stock trend
prediction. The parameters of this method are the same
as those of the our method.

• GAT: Firstly, GRU is used to capture the time series
characteristics in stock price fluctuations. Then, GAT is
used to calculate the attention of the extracted time series
features to obtain the dependency weights between
stock prices. Finally, through convolution, information
transfer and fusion are realized, valuable features are
extracted, and the final stock trend prediction is output.
The parameters of this method are the same as those of
the our method.

• TRANSFORMER: This method model uses the
encoder-decoder structure and self-attention mechanism
to effectively capture the time characteristics in the
historical stock series, so as to improve the prediction
accuracy of stock prices. Especially in capturing long-
term dependencies, Transformer shows good predictive
ability. The parameters of this method are the same as
those of the GRU method.
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• MGTNN: This method automatically extracts the rela-
tionship between variables through the graph learning
module. In addition, the hybrid hop propagation layer
and the extended initial layer can capture spatio-
temporal dependencies in time series. Finally, the
convolutional layer is used to predict the stock trend.
The l2 regularization penalty is chosen as 10−2 from
[10−5, 10−4, 10−3, 10−2, 10−1]. Apply Layernorm after
each graph convolution module. Set the mix-hop propa-
gation layer depth to 2. The retention ratio for the hybrid
hop propagation layer is set to 0.05. The saturation rate
of the graph learning layer activation function is set to 3.
The number of dimensions embedded in the node is 40.

• MRLF: The method removes redundant coarse-grained
trend information and captures useful information in
fine-grained data for more reliable stock trend forecast-
ing. The parameters of this method are the same as those
of the GRU method.

C. EVALUATION METRICS
To demonstrate the effectiveness of the proposed model,
we conducted a comparison using the following evaluation
metrics. These metrics are categorized into two groups: one
evaluates the accuracy of our model’s trend predictions, and
the other involves a simple investment portfolio analysis to
validate our model’s performance compared to other models.

Our method predicts the trend of whether the stock price
will rise or fall for the next day. Therefore, we employed
the following metrics to analyze the performance, with their
specific formulas provided below.

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

(21)

where TP = true positives, TN = true negatives, FP = false
positives and FN = false negatives.

Additionally, we evaluate the method’s prediction results
through a simple investment portfolio. Here is a description of
the portfolio method: Firstly, we obtain the daily probability
predictions for each stock. Then, we set a threshold (in our
experiments, the threshold is set at 0.5) to identify which
stocks are predicted to rise today based on the predicted
probabilities. Next, we select the top-performing stocks (in
our experiments, we buy the top 10 stocks with the highest
probabilities), and we hold them for 3 days before selling.

In order to assess the validity of the results of our portfolio
forecasts, we have used the following metrics.

CR =
vt − v0

v0
(22)

SR =
E[RORP ]− rf

σp
(23)

ARR = (1 + CR)
252
e − 1 (24)

MDD = max
i∈(0,t)

{
max

j∈(0,t)

vj − vi

vj

}
(25)

In Eqs.22 and 25, v0,vt,vi,vj represents the assets at
that moment. Eqs.23 uses E[RORP ] for the expected
return of the investment portfolio, rf for the risk-free
rate, and σp for the standard deviation of the investment
portfolio return. In Eqs.24, e represents the duration of the
trade.

D. MAIN RESULTS
After conducting extensive experiments, our obtained results
are presented in Table 3, which respectively showcase various
evaluation metrics and the final returns of both our method
and the comparative method.

In the experimental evaluation, our method is compared
with other methods on various performance metrics, which
are compared in detail in Table 3, while Fig. 5 visualize the
results of these comparisons. These confirm that our method
has better results. The MDSTCF model we have constructed
consistently exhibits superior performance when applied to
the CSI 300 and NASDAQ 100 datasets, resulting in higher
F1 scores and increased returns. These performance metrics
underscore the effectiveness of our approach in the domain
of stock prediction. Below we conduct a detailed analysis of
the results.

On the CSI300, when our method was compared with
traditional time series methods such as GRU and Trans-
former, the accuracy of our model improved by 0.35% and
2.04%, precision by 4.65% and 5.31%, recall by 8.39% and
6.12%, and F1/score by 6.96% and 5.23%, respectively. This
suggests that incorporating multi-granularity information can
enhance predictive performance.

In comparison to graph network models, specifically GCN
and GAT, our model shows improvements in accuracy by
1.61% and 1.67%, precision scores improving by 8.48% and
8.11%, recall scores improving by 8.07% and 3.17%, and
F1_score increase of 7.88% and 5.48%. This suggests that
the performance of temporal feature fusion prediction using
only to graph networks may not be as effective, and that the
combination of temporal and spatial information can help
improve prediction performance.

When compared to recent time series models, namely
MGTNN and MRLF, our model achieves an accuracy
score increase of 4.36% and 1%, precision scores increase
by 2.53% and 3.86%, recall scores increase by 8.07%
and 3.86%, and F1_score increases by 4.07% and 5.48%.
Similarly, on the NASDAQ 100 dataset, we observe per-
formance improvements compared to other models. These
results underscore the superior performance of our model
across multiple datasets and highlight the potential of multi-
granularity information integration for enhancing time series
forecasting.

To provide a more comprehensive overview of our model’s
real-world performance, we conduct a detailed analysis in
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TABLE 3. Performance of MDSTCF and comparison methods on stock dataset.

TABLE 4. Mann-Whitney U test results on two datasets.

conjunction with the relative cumulative returns shown in
Fig. 5, where the relative cumulative return is the actual
return of the portfolio over time compared to the return of the
benchmark index over the same period. The higher relative
returns highlight the model’s sensitivity to market changes,
suggesting that the model is able to make relatively accurate
predictions. From 2021 to 2023, our model consistently
outperforms other models in terms of returns. To be more
precise, our model exhibits an approximately 80% increase
in returns relative to the CSI 300 index and a nearly 40%
increase in returns relative to the NASDAQ 100 index. These
figures underscore the superior performance of our model in
real-world market trading.

In order to verify the superiority of our proposedMDSTCF
model compared to other models in terms of accuracy,
precision and recall, we conducted a significance test
experiment using Wilcoxon signed-rank test. The results in
Table 4 show that the accuracy, precision, recall and F1 score
of our proposed MDSTCF model are significantly different
from the results of other models with the significance
level set at 0.05. For example, the first value of 0.0328
(<0.05) in the table indicates that our model is significantly
different from Transformer in terms of precision rate
prediction. This experiment-al result strongly demonstrates
the significant performance improvement of our proposed
model.

E. ABLATION STUDY
In this experimental research, ablation experiments was
carried out to investigate on investigating the impact of
certain model components on the overall model performance.
These experiments were deliberately designed to unveil and
elucidate the distinct contributions and significance of each
specific component, thereby facilitating a more profound
insight into the model’s internal mechanisms. A more
comprehensive understanding of the model’s performance
and fundamental characteristics can be attained through
a meticulous analysis of the individual impact of each
component. The following are some variants of MDSTCF,
where w/o means that the corresponding module that follows
is not used.
• MDSTCF(Single granularity): Represents a single layer

spatio-temporal network, that is, spatio-temporal feature
extraction for a single granularity.

• MDSTCF(w/o Sptial): The model employs a two-layer
method, specialized for extracting spatial features at two
different granularities.

• MDSTCF(w/o Temporal): The model employs a two-
layer method, specialized for extracting temporal fea-
tures at two different granularities.

• MDSTCF(w/o Soft_Attention): Indicates a method of
using only two spatial extraction layers to extract
spatial features of two different granularities, but only
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FIGURE 5. Some comparative methods and cumulative returns of our model on the two datasets.

doing a simple average without using the attention
mechanism.

The results in Table 5 clearly show that removing specific
model components leads to performance degradation, with
the removal of the temporal feature layer having the most
pronounced effect, leading to a significant degradation in
performance, with the accuracy dropping to 46% on the CSI
300 dataset and the F1 score decreasing by 6.1% and 9.7% on
both datasets, respectively. For not using the spatial feature
layer component and using only the single-granularity layer,
the F1 scores were reduced by 4% and 5.9%, respectively.
The impact of not using the soft attention mechanism is
relatively minor, with a 2.3% and 5.4% reduction in F1 score.
These results highlight the critical and irreplaceable role of
each model component in the overall effectiveness of our
model.

F. PARAMETER ANALYSIS
The following is an analysis of the impact of the model
from three aspects: different granularity(G1, G2, G3 rep-
resent from one to three grain sizes, respectively), test
set sliding length(W 1, W 2, W 3, W 4, W 5 represent the val-
ues corresponding to sliding window sizes after dividing
the test set into 1 to 5 equal parts), and hidden layer
size(H1, H2, H3, H4 represent the hidden state sizes of 32,
64, 96, and 128, respectively).

1) DIFFERENT GRANULARITY
In our experiments, our primary focus is on the analysis
of different granularities in terms of accuracy and overall
performance, as measured by the F1 score. Examining Fig. 6,
it becomes evident that the results of the single-grain-size
model are comparatively suboptimal. However, the score of
the two-granularity model is slightly superior to that of the
three-granularity model. Furthermore, our experiments have
revealed that the spatio-temporal complexity of the three-
granularity model increases by approximately two times
when compared to the two-granularity model. Considering
all these aspects, the two-granularity model appears to be the
most suitable choice at the current stage.

2) TEST SET SLIDING LENGTH
To ensure consistent prediction lengths, we divided the
test set into equal segments to determine the size of
the sliding window. Initially, the entire test set was fed
into the model for testing, resulting in relatively poor
performance. Subsequently, we attempted partitioning the
test set into 2 to 5 segments, observing a gradual improvement
in performance. Moreover, finer partitioning demonstrated
better results, as illustrated in Fig. 7. However, when
partitioning the test set into 3 segments or more, the
improvement was marginal. Considering the constraint of
runtime, we ultimately opted to partition the test set into
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TABLE 5. Performance analysis of ablation experiments for MDSTCF.

FIGURE 6. (a) Is F1 score at different granularities, (b) is the accuracy rate at different granularities.

FIGURE 7. The x-axis in (a) and (b) represents the division of the test set into 1 to 5 segments. The sliding window size is determined based
on the length of each segment. Therefore, here, 1 represents the entire length of the test set as the sliding window size, and 5 represents the
sliding window size after dividing the dataset into 5 segments.

FIGURE 8. (a) Represents the F1 score of the model at different hidden dimensions, (b) represents the accuracy of the model at different
hidden dimensions.

3 segments as the sliding length. This decision was made
after considering both model performance and operational
efficiency to ensure an appropriate balance of predictive
effects.

3) HIDDEN STATE SIZE
In the experiments, we adjusted the size of the hidden layer,
initially opting for 64 and subsequently exploring 32, 96,
and 128 to investigate the impact of different parameters
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on the model. As shown in Fig. 8, on the one hand, the
model complexity decreases when the hidden state size is
32, leading to underfitting and poor performance on the
training data. On the other hand, hidden layer sizes of 96 and
128 increased model complexity, aiding in better learning
of complex features in the training data but causing a slight
decrease in performance due to overfitting. Considering a
comprehensive assessment of performance, generalization
capability, and computational efficiency, we ultimately chose
a hidden layer size of 64 for the model.

VI. CONCLUSION
In this study, a new deep learning model is proposed
to deal with spatio-temporal information as well as the
union of spatio-temporal information for data of different
granularities. Our approach incorporates the advantages of
multi-granularity residual learning, gated recurrent units,
and graph attention networks to extract spatio-temporal
information specific to each granularity. In multi-granularity
residual learning, we are able to better capture spatio-
temporal correlations at different temporal granularities and
improve the sensitivity of the model to data features. In gated
recursive units, the introduction of gated recursive units helps
to process sequential data, enabling the model to better
capture and utilize long-term dependencies in time series.
Then GAT and DTW are integrated to deal with complex
spatial relationships in stock data and improve the model’s
ability to model inter-stock correlations. In soft attention
mechanism, we are able to assign weights to the prediction
results of each granularity, making the model pay more
attention to the granularity with better performance, thus
improving the overall prediction accuracy. By conducting
rich experiments on CSI300 and NASDAQ100, our model
outperforms other models in comparison experiments. In the
ablation experiments, the performance of themodel decreases
accordingly when each component of the model is grad-
ually removed, further validating the importance of each
component.

In our future research, we will further optimize two aspects
of the MDSTCF model. Firstly, we will deeply explore the
relationship between temporal and spatial correlations to
enhance the accuracy of stock prediction. Secondly, we plan
to optimize the model by considering textual content such as
market sentiment and relevant news headlines to obtain more
spatial relationships.
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