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ABSTRACT Depth estimation in light field imaging is integral for the accurate rendering of 3D scenes and
a crucial task in light field applications. However, the development of a model that simultaneously achieves
high accuracy and speed in light field depth estimation remains a significant challenge. Existing networks
utilizing dilated convolution achieve state-of-the-art speeds, but they often encounter accuracy limitations,
particularly in fine-grained details. In this paper, we introduce a fast and accuratemethod based on depth-wise
cross attention. By integrating cross-attention with existing networks, our approach effectively emphasizes
local features, thereby overcoming the accuracy limitations commonly encountered. Our method adopts
depth attention to compare the center and side views along the epipolar line. As a result of depth attention, the
cost volume was aggregated by similarity information that was based on the attention score. This technique
not only maintains computational efficiency but also significantly enhances the performance in fine-grained
regions by emphasizing the importance of local feature analysis. We validated the efficacy of depth
attention in emphasizing local features. Our experiments were conducted using the 4D HCI Benchmark,
employing evaluation metrics such as BadPixel and MSE. The results demonstrate remarkable performance
in estimating fine depth changes, primarily due to the focus on local features, thereby offering a balanced
solution in terms of both speed and accuracy. The code is available: https://github.com/syt06007/LFDA.

INDEX TERMS Light field, depth estimation, attention, deep learning.

I. INTRODUCTION
Light field (LF) cameras, unlike conventional cameras, are
capable of capturing the real world by encoding it in
both spatial and angular resolutions [1]. This unique ability
enables the acquisition of sub aperture images (SAIs), which
support a variety of applications, including refocusing, 3D
reconstruction and also LF display [2], [3], [4]. Since depth
estimation is a mid-level process of LF imaging, which is
the basis of various LF algorithms, fast and accurate depth
information estimation is important [5].
With advances in deep learning and computer vision,

a variety of depth estimation methodologies are being
explored in the field of LF. Among these, epipolar plane
image (EPI) [6], [7], [8], [9], [10] and multi view stereo
(MVS) [11], [12], [13], [14] methodologies have been
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prominent. Traditionally, the EPI approach utilized line
orientations in EPIs to estimate depth, leveraging the intuitive
information from LF SAIs. However, this method faces
challenges in real-world application due to the low spatial
resolution of LF and its vulnerability to occlusion, often
resulting in lower accuracy [15]. On the other hand, LF depth
estimation methodologies have increasingly adopted the
MVS approach [16], commonly used in multi-image depth
estimation. MVS methodologies involve feature extraction,
cost volume construction, cost aggregation and depth regres-
sion. These methodologies generally exhibit higher accuracy
compared to the EPI method. In LF imaging, the requirement
for a large number of SAIs poses a significant computational
speed challenge [14]. Dilated convolution [17], as utilized in
cost volume construction [14], substantially reduces compu-
tational time by addressing this challenge. However, while
dilated convolution reduces computational time, it faces
limitations associated with the integer dilation rate [18]. This
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FIGURE 1. Example of SAI array generated light rays on the 3 × 3 micro
lens array.

limitation affects the accuracy at the sub-pixel level, making
it less precise than other models.

Recently, attention mechanisms [19], initially developed
for natural language processing, have been applied in
various vision domains [20], [21], [22], [23], [24], including
depth estimation. These mechanisms function by calculating
the similarity of input vectors through the dot product,
similar to how optimal pixel matching is essential for depth
estimation. Cross attention enhances depth accuracy by
establishing a 3D association between the center and side
views along the epipolar line [23]. Despite its potential, the
widespread adoption of transformer-based attention in LF
depth estimation is limited due to the large number of SAIs
involved.

To handle two aforementioned challenges, we introduce
the light field depth attention (LFDA), a novel architecture
that integrates depth attention into existing networks. Depth
attention is conducted with cost volume constructed by
dilated convolution. Fig. 1 and Fig. 2 illustrate how angular
patches in the SAI are acquired using dilated convolution.
When constructing a cost volume, dilated convolution
generates angular patches by collecting pixels from the
SAIs. By varying the dilation rate across depth candidates
within a predefined depth range, the generated angular
patches are stacked to construct a cost volume. After this,
similarity comparison is performed between center view
pixel of SAI array and cost volume. A key advantage of
transformer attention is that it leverages cross-attention to
build correlations among the SAIs. This method emphasizes
local features between images, enhancing both accuracy
and computational efficiency in depth estimation [33].
Our paper presents the development of a depth attention
layer capable of cost volume matching, transitioning from
traditional patch-based pixel matching to an attention layer.
Additionally, we aim to overcome existing challenges in
LF depth estimation by introducing a novel approach that
combines the benefits of attention layers with advanced
cost volume construction. The LFDA network enhances
the accuracy and speed of traditional methods through the
application of modern deep learning approach.

FIGURE 2. Visualization of the dilated convolution filter according to the
dilation rate. This figure illustrates a 3 × 3 dilated convolution applied to
a 3 × 3 SAI array to create an angular patch. Parts (a) and (b) show
aliasing due to an insufficiently small filter gap.

The contributions of LFDA are as follows:

• Enhancing light field depth estimation through
precise pixel matching: This approach highlights the
importance of precise pixel matching, where the depth
attention mechanism plays a key role in identifying
and emphasizing the most relevant features for accu-
rate depth estimation. As a result, LFDA effectively
enhances the accuracy of depth estimation in areas
based on local features while maintaining computational
efficiency.

• Utilizing cross attention structure: LFDA leverages
cross attention via a cost volume constructed by dilated
convolution, enabling a focused comparison of pixel
similarities across all depth candidates. This approach
not only allows for more precise pixel matching but also
overcomes the challenge of applying attention in the
presence of a large number of light field SAIs.

These contributions highlight significant advancements
of our model in LF depth estimation, offering improved
accuracy while maintaining efficiency.

II. RELATED WORK
In this section, we review the previous approach of LF
depth estimation, ranging from traditional methods to deep
learning-based methods involving EPI and MVS.

Conventionally, LF depth estimation has been approached
through various methodologies. Wanner and Goldluecke [25]
proposed a algorithm utilizing 2D structure tensor to estimate
the slop of line within EPIs. Tao et al. [26] proposed
algorithm that combines defocus and correspondence depth
cues. Zhang et al. [27] proposed a spinning parallelogram
operator (SPO) that utilize the regions divided in EPI to
estimate line orientation. Jeon et al. [16] adopted a multi view
stereo method using phase shift on sub-pixel level. Williem
and Park [34] proposed a novel method that robust occlusion
and noisy scene using angular entropy metric and adaptive
refocus response.

Deep learning-based approaches have been introduced
in recent years. In particular, learning-based EPI method
has been widely used since the beginning of deep learning
adoptation because it could be used by replacing the existing
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FIGURE 3. A toy example of depth attention using 3 × 3 SAIs. This figure illustrates the depth attention process. It starts with generating
the cost volume through depth candidates. Next, the cost volume and the center view are tokenized, followed by conducting a vector dot
product. Finally, the obtained attention score is applied as a weighted sum to the cost volume.

methodology with the CNN network. Heber and Pock [8]
used end-to-end network to learn each EPI representation
seperatly. Also Heber et al. [9] analyze entire EPI using
U-shape 3D CNN Network to extract EPI orientation of
SAIs. Feng et al. [28] proposed a two-stream network
specifically to learn the association between neighboring
pixels in EPIs. Anna Alperovich at al. [7] use the autoencoder
design for light field encodes horizontal and vertical EPI
stacks simultaneously using six stages of residual blocks.
Shin et al. [10] proposed multi-stream architecture to analyze
each streams of EPI and also they proposed a novel data
augmentation for network training. Leistner et al. [29]
proposed EPI-shift strategy to retain a small receptive field in
wide-baseline EPIs using U-Net [30] architecture. Li et al. [6]
proposed oriented relation module to estimate the depth of
intersection point on horizontal and vertical EPIs.

Based on deep learning, multi view stereo approach
in LF is introduced by Tsai et al. [11]. This method
proposed an channel attention based view selection net-
work to utilize all views more effectively and efficiently.
Liu at al. [35] proposed novel feature extraction based
on dilated-convolution and channel attention for disparity
regression. Chen at al. [12] proposed attention-based multi-
level fusion network that designed intra and inter branches
hierarchically to select views with less occlusions and richer
textures. Huang et al. [13] proposed a fast and lightweight

disparity estimation model with multi-disparity-scale using
sub-network of edge guidance to achieve fast LF depth
estimation. Wang et al. [14] proposed occlusion-aware cost
constructor with dilated convolution that can achieve fast
computational time and high accuracy by occlusion handling
via pixel modulation.

Deep learning-based MVS methodologies have achieved
high accuracy in various scenarios by learning detailed depth
information between each SAIs. Despite this high accuracy,
there is still space for improvement in terms of running time,
this indicates that although the MVS approach is effective
for depth estimation, there is still room for improvement in
computational efficiency.

III. METHOD
A. DEPTH ATTENTION
Our method integrates the traditional patch matching depth
estimation approach with the existing model, utilizing deep
learning techniques. In this section, we first describe the
construction of the cost volume, followed by an explanation
of the depth-wise cross-attention that emphasizes local
features through similarity information on the cost volume.
The process of using dilated convolution in the cost volume
construction process is mostly similar to the structure of
OACC-Net [14]. The overall architecture is illustrated in
Fig. 3.
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FIGURE 4. Architecture of LFDA mechanism. In this figure depicts detailed
structure of (a) cost construction and (b) depth attention.

1) COST VOLUME CONSTRUCTION BY DILATED
CONVOLUTION
To estimate depth in LF, we use the feature map Fuc,vc
from the center view (reference view) as a basis for
establishing depth candidates along the epipolar line of
the side view (source view), thus constructing the cost
volume C . Traditional methods in deep learning-based
cost volume construction involve setting minimum and
maximum disparities as hyperparameters, employing a shift-
and-concat [11] method to warp the side view image across
the disparity range.

However, this warping process becomes computationally
expensive with a large number of SAIs. To address this
challenge, our LF depth estimation approach utilizes a dilated
convolution technique tailored to the angular resolution of
the SAIs. Dilated convolution, similar to basic convolution
but featuring adjustable filter spacing, enables efficient pixel
matching across the arranged images Fu,v. Fu,v derived from
feature extraction is aligned according to angular resolution.
Subsequently, patches corresponding to the filter positions
are obtained by applying dilation to the CNN filter, sized
U × V , equivalent to the angular resolution. The pixels
resulting from this process form an array Ah,w,d ∈ RUV×C ,
which are referred to as angular patches.

Then, we construct the volume Cd ∈ RHW×UV×C

by aggregating angular patches for every pixel. Depth
candidates d ∈ {dmin, . . . , dmax} within the specified range
are considered, and the final 4-dimensional cost volume
C is constructed through iterative application of CNN for
each depth candidate d . The dilation rate, defined as per
equation (1), adjusts the distance between filters, effectively
replacing image warping. This approach provides a more
efficient means of constructing the cost volume compared to
traditional image warping techniques.

Dilation_rate(d) = [H − d,W − d] (1)

2) DEPTH-WISE CROSS-ATTENTION
In LF depth estimation, the limitation of dilation rates
being integer values means that dilated convolution cannot
achieve sub-pixel level shifting [18]. This limitation presents
a significant challenge in achieving high accuracy in depth
mapping.

The attention module in our approach plays a crucial
role in overcoming this limitation. The module calculates
vector similarity between the feature map Fuc,vc from the
center view and the cost volume C . Performing an attention
operation on a per-pixel basis, the module enhances depth
estimation accuracy. In a manner similar to traditional match-
ing methods, Fuc,vc is set as the Key, and the corresponding
Cdmin···dmax as the Query. For each Fuc,vc (h,w), there are Nd
angular patches, each with the same angular resolution (u, v).
where Nd is the number of depth candidates. These are then
input into the attention layer to obtain an attention score
based on vector similarity. This score is multiplied by the
candidate pixel to produce a weighted sum. The resulting
cost volume utilizes an attention score, assigning higher
weights to depths that exhibit better photometric consistency.
The attention score α ∈ RHW×UV×Nd is expressed in the
following equation:

α = softmax(
QKT
√
dk

) (2)

Cattended = Concat(α1 ∗ Cdmin , · · · , αNd ∗ Cdmax ) (3)

where ‘‘∗’’ operator denotes element-wise multiplication,
a key aspect of our attention mechanism. This equation illus-
trates the core mechanism of our attention-based approach.

Fig. 3 illustrates a toy example of the depth attention
process using a 3 × 3 arrayed SAIs, Fuc,vc (h,w). A dilated
convolution with a UV-sized kernel construct the cost
volume. This process generates respective angular patches
A for each depth candidate d , forming the set of angular
patches that constitute the cost volume. We set the Query
as Ah,w(u, v, d) and the Key as Fuc,vc (h,w) for pixels with
corresponding (u, v) angular resolution. Following the cross-
attention process, the model computes attention scores. These
are used for element-wise multiplication with the existing
cost volume to create an attention cost volume containing
similarity information.

B. LFDA NETWORK DESIGN
In this section, we introduce the overall architecture of our
network, which is based on the depth attention concept dis-
cussed in the previous section. Our network is comprised of
four key stages: feature extraction, cost volume construction,
depth attention, and cost aggregation & depth regression.
In the feature extraction stage, a residual networkmodule [31]
extracts features focusing on depth cues, while the cost
volume is constructed via dilated convolution in the cost
volume stage. The depth attention stage emphasizes the local
feature of the cost volume through similarity comparison.
Finally, the cost aggregation & depth regression stage refines
the cost volume and generates the depth map. We adopt
methodologies presented in previous studies [11], [14] for
feature extraction, cost aggregation & depth regression, and,
to some extent, for cost volume construction.

More details are as follows:
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TABLE 1. Metric scores of models. The best score is expressed in bold.

TABLE 2. Comparison of model size and speed. FLOPs were calculated
based on the 32 × 32 image patch.

1) FEATURE EXTRACTION
The feature extraction phase employs CNN layers to process
SAIs, focusing on essential visual information for depth
estimation, such as texture, color, and shapes. This phase
employs residual blocks [31] with a structure comprising
Convolution (Conv), Batch Normalization (BN), Leaky
ReLU, followed by another Conv and BN sequence. Finally,
we can get feature map Fu,v ∈ RH×W×C where H ,
W , C denote the height, width, and number of channels,
respectively, while u and v represent the angular resolution
of the SAIs.

2) COST VOLUME CONSTRUCTION
In our network, dilated convolution plays a key role in
efficiently processing SAIs for the cost volume construction.
This approach allows handling a range of depth candidates,
creating detailed cost volume essential for accurate depth
estimation.

Tomitigate accuracy reduction due to occlusion, we imple-
ment a coarse-to-fine manner. An initial depth map, which
is an output of the model, is utilized to identify occluded
regions, followed by masking these areas in the side views
during cost volume construction. This selective masking,
illustrated in Fig. 4(a), refines the cost volume by focusing
on relevant areas, enhancing depth estimation accuracy.

This integration of dilated convolution with the occlusion
handling strategy demonstrates our ability to manage com-
plex LF data efficiently, ensuring both speed and accuracy in
depth information processing.

3) DEPTH ATTENTION
The depth attention stage is a crucial phase in overcoming
accuracy issues that may arise from dilated convolution. This

layer refines the cost volume attentively by focusing on local
features through a depth-wise cross attention mechanism.

Initially, the cost volume and the feature map of the center
view are fed into an embedding layer, which tokenizes these
two inputs. Subsequently, queries and keys are fed into
the cross-attention mechanism, generating and normalizing
similarity scores. This process concentrates on local features,
a significant advantage of traditional local matchingmethods,
by comparing the similarity between angular patches of the
cost volume and pixels of the center view. Subsequently,
the inputs are processed through a feed-forward network
consisting of a multi-layer perceptron, layer normalization,
and ReLU activation. Through the depth attention process, C
becomes Cattended.

4) COST AGGREGATION AND DEPTH REGRESSION
Depth is estimated through the cost volume C containing
similarity information obtained by attention. Aggregation is
necessary for depth candidates Cdmin · · ·Cdmax , hence a 3D
convolution with a 3 × 3 × 3 filter size is used. Initially,
the number of channels is reduced using a 1 × 1 CNN
layer, followed by the use of 3D CNN residual blocks for
feature extraction, gathering depth information to create a
3D cost volume C ∈ RD×H×W . The process culminates
in a regression step to generate the final depth map. The
regression formula is provided as follows:

Dmap =

dmax∑
d=dmin

d × softmax(Cattended) (4)

IV. EXPERIMENTS
In this section, we introduce detailed implementations of
network and experiments settings, then we demonstrate
aforementioned performance through comparison with other
state-of-the-art models and experimental results.

A. MODEL ANALYSES
1) PERFORMANCE EVALUATION
For evaluating the performance of the model, we use metrics
including BadPix(ϵ) with ϵ = 0.01, as defined in [32], which
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FIGURE 5. Visual comparison of validation scenes ‘‘Pyramids’’, ‘‘Boxes’’, ‘‘Cotton’’, ‘‘Dino’’ with other methods (a) LFDA, (b)
OACC-Net, (c) Epinet-fcn-m, (d) FastLFnet, (e) SPO, (f) CAE. The first row of each scene represents the BadPix(0.01) error
image, and the second row represents the disparity map. In the error image, green areas represent the correct pixel and red
areas represent error pixel.

represents the percentage of pixels whose error rate exceeds
a certain threshold, and the Mean Square Error (MSE) for a
numerical assessment of error across all pixels.

We compared our proposed model with five different
state-of-the-art methods, including OACC-Net [14], Epinet-
fcn-m [10], FastLFNet [13], SPO [27], and CAE [34],
using the metrics BadPix(0.01) and MSE. In Table 1, our
method shows the best performance in 6 out of 8 scenes
when evaluated using the BadPix0.01 metric. As illustrated
in Fig. 5, the proposed method demonstrates remarkable

performance in most scenes, particularly where pronounced
textures and intricate depth changes are prevalent. This
notable effectiveness, especially in regions with fine-depth
change, stems from implementing depth-wise cross-attention
in cost volume construction. Comparative experiments reveal
the ability to outperform others, including OACC-Net,
in texturally detailed and subtly varying depth areas.

Our model excels in the BadPix(0.01) metric but underper-
forms in the MSEmetric, particularly in scenes such as ‘dots’
and ‘stripes’, which are designed to test noise and occlusion
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FIGURE 6. Visual comparison of BadPixel (0.01) and BadPixel (0.07) error maps for four stratified scene. For each scene, the first column is
BadPixel (0.07) map and the second column is BadPixel (0.01) map.

FIGURE 7. The results of depth estimation with 4D HCI test scene
‘‘bedroom’’. Our depth map is better than specific area remarked red box.

handling. This reflects its proficiency in capturing texture
but struggles with occlusion and noise. A more detailed
analysis of these limitations is presented in the ‘Failure Case
Analysis’ section, emphasizing the balance between local
feature detection and global context understanding.

Fig. 7 presents a comparison of the depth maps produced
by LFDA and OACC-Net for the test scene ‘bedroom’. In this
figure, the area highlighted with a red box demonstrates the
superior performance of our model in handling fine depth
changes. This specific area in the image effectively showcases
the strengths of the our approach in handling fine depth
change area.

2) PARAMETERS AND FLOPS
Table 2 compares the FLOPs and Parameters of the algo-
rithms. The FLOPs are measured for a 32 by 32 image patch,
and both Parameters and FLOPs demonstrate lower memory

TABLE 3. This table presents the average metric values for three models
across eight scenes on the 4D HCI benchmark: backgammon, dots,
stripes, pyramids, boxes, cotton, dino, sideboard, bedroom, bicycle, herbs
and origami.

consumption and computational efficiency compared to
existing networks.

3) FAILURE CASE ANALYSIS
Our proposed model has demonstrated exceptional perfor-
mance in estimating fine depth changes, particularly in areas
rich in local features. However, it has shown less satisfactory
results in regions lacking texture or with high noise levels,
and near occlusion boundaries. This is evident in the BadPix
map in Fig. 6 and the lower average scores for BadPix(0.07)
and MSE in Table 3.

The BadPix(0.01) metric is sensitive to errors not only
exceeding 7 percent but also to smaller discrepancies above
1 percent. Hence, while the LFDA generally performs well
by accurately predicting fine depth changes, its performance
under BadPix(0.01) is reduced in scenes like ‘‘dots’’ and
‘‘stripes’’, where noise and contrast disrupt local features
throughout the image. Furthermore, since BadPix(0.07)
focuses on errors larger than 7 percent, it tends to highlight
areas with more significant error margins over those with
less pronounced fine depth changes. This results in LFDA
showing suboptimal performance on the BadPix(0.07) met-
ric, particularly in regions where global context is crucial.
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Additionally, due to the nature of the MSE metric which
imposes greater penalties for larger errors, performance of
LFDA appears lower in these areas.

This suggests that the model, through its depth attention
process, tends to enhance local information, potentially at the
expense of global context, indicating a trade-off relationship.

B. DETAILS OF TRAINING
1) DATASET AND EVALUATION METRIC
The LFDA network was trained and validated using the 4D
HCI benchmark [32], which comprises entirely synthetic
scenes created with 3D graphic tools. Each data consists
of SAIs with an angular resolution of 9 × 9 and a spatial
resolution of 512 × 512. The dataset comprises a total of
16 training scenes, 8 validation scenes, and 4 test scenes (each
named additional, test and training).

2) TRAINING PROCESS
The input images are converted to gray scale and cropped
32 × 32 patches randomly acquired for training. Due to the
limited training dataset of only 16 SAIs, we employed data
augmentation techniques such as random flipping, rotation,
and adjustments in brightness, contrast, and refocusing were
employed to ensure sufficient training of the network. In our
supervised learning approach, we utilized the Mean Absolute
Error (MAE) as the loss function and the Adam optimizer
for network optimization. The training was initially planned
for 5000 epochs with a batch size of 32, and the learning
rate started at 1e-3, reducing by half every 1000 epochs.
We effectively use early stopper finally concluding the
training at 4830 epochs. The model is trained on an NVIDIA
RTX 6000 GPU and Pytorch framework, and takes about two
weeks for training.

In the training process, our network design effectively
applies a coarse-to-fine manner. Using initial depth maps
from an untrained network for occlusion masking can hinder
stable convergence of the loss function. To address this,
we initially train the network with ground truth (GT)
depth maps to block occlusion information. Contrary to
expectations, training with GT masks led to early divergence
of loss, not stable convergence. Based on this insight, we ini-
tially pre-trained the LFDA network for 2100 epochs using
conventional depth estimation methods, without considering
occlusion. Post this phase, we integrate coarse-to-finemanner
training with GT masks.

V. CONCLUSION
In this paper, we proposed a depth attention layer as a solution
to balance the trade-off between accuracy and computational
speed. The LFDA model applies patch matching via similar-
ity comparisons in attention mechanisms, emphasizing local
features within existing networks. The experimental results
demonstrated remarkable outcomes in the BadPix(0.01)
metric, underscoring the effectiveness of our approach in
balancing accuracy and speed in depth estimation.

Future research will be directed towards overcoming the
challenges associated with the lack of global context, which
have contributed to lower MSE scores. The primary goal will
be to enhance the model’s ability to accurately predict depth
in occluded and textureless areas, thereby refining its overall
performance.
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