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ABSTRACT This paper explores the synergistic role of Distributed Resources (DR), including Distributed
Generation (DG) and Battery Energy Storage Systems (BESS), in enhancingmodern power systems’ sustain-
ability, reliability, and flexibility. It addresses the gap in concurrent distribution network reconfiguration and
DR allocation, especially under the variability of renewable energy. The study aims tominimize energy costs,
losses, and voltage deviations by integratingwind and solar PV-typeDGswith BESS.A novelmulti-objective
function and an improved bi-directional coevolutionary (I-BiCo) Algorithm are employed to find the optimal
RES and BESS placement and sizing, showing marked improvements over existing methods. Furthermore,
statistical comparisons using hypervolume, objective function values (diversity), and near-global solutions
(convergence) underscore the proposed algorithm’s superiority over existing MOEAs. The final non-
dominated solution, obtained through fuzzy set theory, highlights simulation results that minimize power
loss, achieve substantial energy savings, and smooth demand, particularly with the integration of BESS
devices. Moreover, optimal network reconfiguration (ONR) is a key strategy for balancing load demand.
Simulation results affirm that minimizing bi-objective and tri-objective functions, coupled with optimal
feeder reconfiguration, significantly reduces power loss and enhances voltage profiles, approaching unity
across all buses. The proposed ONR formulation, in conjunction with DGs and BESS, maximizes the overall
performance of power distribution networks. Furthermore, the paper addresses various time-dependent
constraints of BESS, DG, and ONR, formulating and efficiently solving these constraints by integrating
different constraint-handling techniques with the proposedmulti-objective evolutionary algorithm. The study
contributes to academic discourse and provides practical insights for designingmore efficient and sustainable
power systems in the face of evolving energy landscapes.

INDEX TERMS Distribution network, distributed generation, battery energy storage system, multi-objective
evolutionary algorithm.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilaria De Munari .

58972

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-3669-9361
https://orcid.org/0000-0002-4485-8688
https://orcid.org/0000-0002-1574-9060
https://orcid.org/0000-0001-7383-6798
https://orcid.org/0000-0002-5328-9528
https://orcid.org/0000-0003-0842-9146
https://orcid.org/0000-0002-9872-1695


A. Ali et al.: Dynamic MOO of Grid-Connected DR Along With Battery Energy Storage Management

NOMENCLATURE
ABBREVIATIONS

DG Distributed Generation.
PV Photovoltaic.
WT Wind Turbine.
SS Sub-Station.
BESS Battery Energy Storage System.
RES Renewable Energy resource.
DR Distributed Resources.
MOEAs Multi-objective Evolutionary Algorithms.
BCS Best Compromise Solution.
ONR Optimal Network Reconfigurations.
I-BiCo Improved Bidirectional Co-evolutionry.
GA Genetic Algorithm.
NSGAII Non-dominated Sorting Genetic Algorithms.
ND Non-dominated.
AD Angle-based Density.
CV Constraint Violation.
VD Voltage Deviation.
CEL Cost of Energy loss.
PF Pareto Front.
PS Pareto Set.
HVI Hyper Volume Indicator.
FR Feasibility Ratio.
CDP Constraint Domination Principle.
CMOP Constrained Multi-objective Problem.

INDICES/ VARIABLES/ PARAMETERS

Tn Span length of time.
NDG Total number of DGs.
nl Total number of feeders.
Nb Total number of buses.
bϵ1, ..,Nb Index of a particular bus.
NBESS Total Number of BESS.
PD,QD Active and reactive load demand.
CSS,CDG,CBESS Cost of MW supplied by substation,

DG, and BESS.
Emin
i ,Emax

i Minimum and Maximum MWh capac-
ity of BESS.

δsr Voltage angle difference of branch
between bus s and r.

G((mn)) Transfer conductance of branch
between bus s and r.

S(lq) Actual MVA branch flow limit.
f1 Cost of active power supplied by Grid

Station.
f2 Cost of Energy loss.
f3 Voltage Deviation.
x Decision vector.
h(x) Equality Constraint Function.
g(x) Inequality Constraint Function.
ci(x⃗) ith degree of constraint Violation.
CV(x) Overall Constraint Violation.
C(Pg) Total operating cost of thermal

generators.

p Number of equality constraints.
p-q Number of inequality constraints.
siteDG,sizeDG Optimal site and size of DG.
siteBESS,sizeBESS Optimal site and size of BESS.
t ϵ1, . . . ,Tn Index of particular Time interval.
i sϵ1, . . . ,NDG Index of generator.
j ϵ1, . . . ,NBESS Index of Particular BESS.
l ϵ1, . . . , nl Index of Particular branch/feeder.
m ϵ1, . . . ,NL Index of Particular load bus.
PSS, PDG Active power supplied by SS and DG.
Pch and Pdch Charging and discharging power of

BESS.
NL Number of Load buses.
a Direct cost parameter of SS.
k1,k2,k3 Quadratic cost parameters of DG and

BESS.
C(Ploss), Ploss Cost of active power loss and power

loss in entire time span.
VSS Voltage set point at substation.
Vm Voltage at mth load bus.
SoC(j(ini)) Initial State of Charge.
Qloss Reactive Power loss.
QSS,Qmin

SS ,Qmax
SS Actual, minimum, and maximum

MVAr of SS.
PSS,Pmin

SS ,Pmax
SS Actual, minimum, and maximum MW

of SS.
PDG,Pmin

DG ,P
max
DG Actual, minimum, and maximum MW

of DG.
QDG,Qmin

DG ,Q
max
DG Actual, minimum, and maximum

MVAr of DG.
VDG,Vmin

DG ,V
max
DG Actual, minimum, and maximum volt-

age set point of DG.
Vm,Vmin

m ,Vmax
m Actual, minimum, and maximum volt-

age of load bus.
Sl, Smax

l Actual and maximum MVA branch
flow.

A branch and bus incident matrix.
SoC State of charge.

I. INTRODUCTION
A. LITERATURE REVIEW
According to [1], Distributed Resources (DR) of electric
power are not directly connected to a bulk power trans-
mission system. Distributed Resources (DR), including both
Distributed Generation (DG) and Battery Energy Storage
Systems (BESS), are integral components in the ongoing
evolution of modern power systems. Their collective impact
on sustainability, reliability, and flexibility aligns seamlessly
with the broader objectives of transitioning towards cleaner
and more resilient energy infrastructures. As technological
advancements progress, the pivotal roles played by DG and
BESS are expected to grow, contributing significantly to
a more sustainable and adaptive energy landscape. While
existing studies have individually focused on optimizing the
integration of DG or network reconfiguration at a single
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time, this paper addresses a critical gap by concurrently
considering distribution network reconfiguration and DR
allocation. Recognizing the challenges posed by the inherent
variability of renewable energy sources, the paper introduces
BESS to mitigate the limitations of multiperiod uncertain
wind and solar PV integration. In this comprehensive study,
wind and solar PV-type DGs, along with BESS, are utilized
simultaneously to minimize the cost of energy supplied by
the grid station, cost of energy loss, and voltage deviations
in distribution networks. The optimal site and size deter-
mination of Renewable Energy Sources (RES) and BESS
devices is achieved by formulating a new multi-objective
objective function. An improved I-BiCo multi-objective Evo-
lutionary Algorithm (EA) efficiently solves the proposed
formulation, demonstrating superior convergence, diversity,
and near-global solution identification compared to state-of-
the-art MOEAs. The ONR’s primary objective is to reduce
active power losses in the distribution networks [2]. ONR
is a mixed integer problem that is multi-objective and con-
strained non-linear [3], [4]. In addition to the advantages
of introducing DGs into the power system, network recon-
figuration is often witnessed as an additional approach to
decrease losses in the distribution network. An ideal network
configuration fulfills its operational needs while optimizing
multiple variables, which can be achieved by managing the
open/close status of sectionalizing and tie-switches through-
out the optimal network reconfiguration process. Authors
in [5] conducted the first network reconfiguration success-
fully to decrease active power losses. Multiple research
studies have been undertaken in recent decades to address
the network reconfiguration problem by incorporating extra
parameters for optimization, which include voltage profile,
system reliability indices, etc. Numerous optimization tech-
niques, including genetic algorithms [6], modified honey
bee mating optimization [7], binary group search [8], shuf-
fled frog leaping algorithm [9], NSGAII [10], and artificial
immune systems [11], are employed to perform distribution
network reconfiguration to solve the multi-objective prob-
lems.

Due to the increasing demand for electricity and alarm-
ingly rapid fossil fuel depletion, alternative energy sources
have gained enormous attention during the past decade. As a
result, research into integrating distributed generations (DGs)
into distribution networks has received extensive emphasis
[12]. Furthermore, placing a DG in the best locations with
suitable size can mitigate the necessity of reactive power,
improve the voltage profile, and reduce active power loss
and line loading. Numerous researchers have suggested mul-
tiple optimization strategies to solve the formulated problem,
which include conventional, artificial intelligence, and hybrid
intelligent system techniques to solve the optimization prob-
lems [13]. Already carried out studies on the optimal DGs’
integration in the distribution networks have only focused on
the minimization of power loss and treated as a single objec-
tive function employing analytical approaches given in [14]

and [15], heuristic and meta-heuristic methods which consist
of genetic algorithm [8], ant lion optimization algorithm [16],
and mixed integer non-linear programming [17]. The recent
research brings out further objective functions to optimize
DG siting and sizing, including higher voltage stabil-
ity and reduced operational and carbon dioxide emissions
costs. Genetic algorithm-based methods BSOA [18] and GA
[19], computational methods ICA [20], MNLP [21], and
ALOA [17], and hybrid optimization methods Fuzzy [22],
and HPSO [14] are employed to achieve the expected results.
However, these approaches suffer a lot from optimizing
multiple objective functions simultaneously. Using weighted
aggregation also makes the objective functions consume a
long time to solve and find the desired solutions. In the
second scenario, Pareto optimality is implemented to solve
the optimization problems with various objective functions.
Given that the multiple objective functions are optimized
uniformly, the Pareto optimality technique yields Pareto sets
of the best solutions to achieve optimal results. However,
the primary method only produces a single outcome when-
ever each objective’s value is selected. Recent studies have
exploited multi-objective evolutionary algorithms based on
the Pareto optimality concept to find the optimal locations and
sizing of DGs, which comprises NSGAII [23], INSGAII [24],
IMOHS [25], MOShBAT [26], and non-dominated sorting
stochastic fractal search (NSSFS) [27], in an attempt to avoid
this limitation. These evolutionary algorithms render a selec-
tion of Pareto-optimal solutions from which the network can
make a fair decision. The distribution network reconfigura-
tion and DGs’ integration are typically analyzed individually.
Nevertheless, combining these two sub-problems will be a
better choice for the whole power system. There isn’t enough
literature that addresses network reconfiguration along with
optimal DG allocation and sizing. The majority of the authors
regard a single objective function to minimize power loss
in the distributed networks. Researchers in [28], [29], [30],
[31], [32], and [33] point out that comparatively a lesser
amount of power was lost when the DG reconfiguration and
integration were combined and optimized together to find
the optimal solution. Only a few researchers have attempted
to optimize this complex problem with extra objectives.
In [34], the authors employed fuzzy-ACO (ant colony opti-
mization) based on Pareto optimality to minimize active
power loss, increase feeder loading balance balancing, and
improve the voltage profile of the system. One DG on the
PV array and DSTATCOMwere employed to determine their
optimal locations and sizes. Reference [35] used the multi-
objective bang-big crunch technique to calculate the size
of DGs without considering their optimal location. IPSO
was used to solve the multi-objective problem of the cou-
pled reconfiguration and optimal DGs integration [36]. Since
these approaches assessed the weighted sum of the objective
functions, Pareto optimality did not optimize the objectives
evenly. Previously discussed research considered the mod-
els of DGs to be deterministic, while practically, they are
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TABLE 1. Comparison of the proposed model with the most relevant studies.

intermittent in nature, especially renewable energy-based
DGs. Most of the authors in the studied literature have
focused on the optimal placement of distributed genera-
tions (DGs) and reconfiguration for a single period only.
Several other studies on distribution network enhancement
have focused on optimizing distributed generations (DG)
integration or network reconfiguration only. However, lim-
ited research has been conducted on the distribution net-
work reconfiguration and the DG allocation simultaneously.
Renewable DGs allocations in distribution are especially cru-
cial due to environmentally friendly sustainability, such as
no GHG, independent of fuel, reduced losses, and economic
growth. Their importance continues to grow as societies
and utilities strive to transition toward cleaner and more
resilient energy systems. Still, it is highly uncertain, causing
scheduling problems in the power system. The intermittency,
variability, and mismatch between supply and demand are
some issues associated with integrating renewable energy
supplies into the grid. Systems for storing energy in batteries,
or BESS, answer these issues.

B. CONTRIBUTION AND PAPER ORGANIZATION
Battery energy storage systems (BESS) are essential in man-
aging and optimizing renewable energy utilization. They
guarantee a steady and reliable power supply by accruing
surplus energy throughout high generation and discharging

it during demand. It diminishes power variations and keeps
grid stability while plummeting the necessity for costly
power sources. BESS helps the system through emergencies
and variations by augmenting power quality and supplying
auxiliary power. Via this action, the dependability and effec-
tiveness of renewable energy are improved to promote further
economical and durable energy future. The crux of the recent
research work is thoroughly and comprehensively compared
to the proposed algorithm in Table 1.

Table 1 shows that the proposed algorithm reveals an
all-inclusive method by integrating multiple factors not
jointly found in the above literature. This technique effec-
tively combines distributed resources (DRs) that encompass
distributed generation (DG) and battery energy storage sys-
tems (BESS) with the optimal network reconfiguration
(ONR). This algorithm is multi-objective, which includes
both single and multi-period scenarios. It also integrates
deterministic and probabilistic techniques to find a robust
solution. The proposed approach makes significant contri-
butions, which consist of cost minimization (C), energy loss
reduction (CEL), and voltage deviation (VD), which signifi-
cantly outperforms numerous present methods. The proposed
algorithm clearly shows substantial improvement in the mul-
tiple categories compared to other state-of-the-art algorithms,
highlighting its effectiveness and superiority in optimizing
distribution networks.
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This study focuses on the importance of Renewable
Distributed Generators (DGs) and Battery Energy Storage
Systems (BESS) in improving distribution networks’ envi-
ronmental and economic characteristics. It solves the com-
plex challenges posed by renewable energy sources, which
are intermittent and variable, via dynamic multi-objective
network reconfiguration of DGs and BESS. This paper intro-
duces a novel multi-objective Improved Bi-directional coevo-
lutionary algorithm (I-BiCo), which shows the enhancements
in the solutions, validating its efficiency and robustness.
This study substantially contributes by plummeting the cost
of energy delivered, energy loss, and voltage variations.
It also presents a complete approach by concurrently con-
sidering distribution network reconfiguration and optimal
DG and BESS allocation, considering wind and solar power
variability. The proposed algorithm optimizes the sitting
and sizing of renewable energy sources and BESS devices,
improves network reliability, manipulates energy storage,
and exploits a multi-objective optimization framework. The
algorithms are applied at a 72-hour time, incorporating nat-
ural load curves considering local climate data by finding
a promising and holistic solution. This paper thoroughly
validates its applicability against the other Multi-Objective
Evolutionary Algorithms (MOEAs) and demonstrates its
superior convergence, diversity, and solution quality per-
formance. Its multi-dimensional optimization framework
effectively balances the load demand by reducing power
losses, improving voltage profiles, and significantly enhanc-
ing the performance and sustainability of power distribution
networks.

The contributions of this work are as follows:
➢ Introducing a novel multi-objective Improved Bi-

directional coevolutionary algorithm (I-BiCo) for
dynamic optimization of distribution networks through
the integration of Renewable Distributed Generators
(DGs) and Battery Energy Storage Systems (BESS)
along with optimal network reconfiguration.

➢ Enhancing environmental and economic performance
of distribution networks by addressing the intermittent
nature of renewable energy sources and optimizing net-
work reconfiguration.

➢ Reducing costs, energy losses, and voltage devia-
tions significantly, outperforming existing state-of-the-
art algorithms in these domains.

➢ Optimizing the siting and sizing of renewable energy
sources and BESS devices to improve network reliabil-
ity, manage energy storage, and exploit a multi-objective
optimization framework.

➢ Applying the algorithms over a 72-hour period to
incorporate natural load curves and local climate data,
offering a holistic solution approach.

➢ Demonstrating superior convergence, diversity, and
solution quality performance compared to other
Multi-Objective Evolutionary Algorithms (MOEAs),
thereby significantly enhancing power distribution net-
works’ performance and sustainability.

The rest of the paper is given as well. Section II presents
the reconfiguration, DR sizing, and allocation mathemati-
cal formulation. Section III describes the I-BiCo Algorithm
implementation for ONR and DR allocation. Section IV
asylums time-varying device modeling and study cases.
Section V covers Simulation Results Analysis and Scenario
Comparison. Section VI concludes the paper.

II. MULTI-OBJECTIVE PROBLEM FORMULATION
This paper presents three objective functions to improve dis-
tribution system performance. The optimal integration and
parallel reconfiguration of DGs serve to reduce the cost of
energy supplied (C), cost of energy loss (CEL), and volt-
age variation (VD) by determining the optimal distribution
network and DG locations and sizes. With the following
mathematical formulation [63], this non-linear mixed integer
non-linear problem is considered a multi-objective optimiza-
tion (MOO) problem.

min F
(
x⃗
)

=
(
ft1

(
x⃗
)
, ft2

(
x⃗
)
, . . . ,ftm

(
x⃗
))

∈Rm

s.t. hti
(
x⃗
)
= 0, i = 1, . . . , p

gti
(
x⃗
)

≤ 0, i = p + 1, . . . , q

x⃗ =

[
x11, x

1
2, . . . ,x

1
n, x

2
1, x

2
2, . . . ,x

2
n, . . . ,x

t
1,

xt2, . . . ,x
t
n
]T

∈ Rn (1)

where, ft1 (x⃗) , ft2 (x⃗) , . . . ,ftm (x⃗) are the proposedm real-valued
conflicting objective functions, Rm shows the objective func-
tion space, hti (x⃗) and g

t
i (x⃗) are p and p − q non-linear equality

and inequality constraints for the tth time slot and x⃗ is the
n-dimensional decision vector of the optimization problem
for the entire time horizon. In the proposed constrained
multi-objective optimization problem (CMOP), the ith degree
of constraint violation at a given decision vector x⃗ can be
computed as;

ci
(
x⃗
)

=

{
max

(
0, hi

(
x⃗
))

, ∀i ≤ p
max

(
0,

∣∣gi (x⃗) − ϵ
∣∣) , else

(2)

whereas ϵ is the tolerance value used to relax the equality
constraints. Usually, in most MOEAs, the degree of overall
constraint violation (CV) for all the constraints is computed
as;

CV (x) =

q∑
i=1

ci
(
x⃗
)

(3)

Decision vector x⃗ is feasible is a feasible search space if a
CV(x⃗) is zero, or else it is an infeasible solution. The follow-
ing sub-sections describe mathematical models of objective
functions, constraints, and decision variables for the optimal
site and size of DG allocation, along with network reconfig-
urations.

A. OBJECTIVE FUNCTIONS
In this paper, three objective functions are formulated to find
the decision variables of ONR and DG allocation considering
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multiperiod time slots. The selection of objective functions
is based on economical, technical, and reliability points of
view. The first objective function is based on an economical
perspective, and it minimizes the cost of energy supplied in
the entire time horizon, which can be calculated as:

f1: Cost =

∑
t∈Tn

Ct
SS

(
PtSS

)
+

∑
i∈NDG

Ct
DGi

(
PtDGi

)

−

∑
j∈NBESS

Ct
BESSj

(
Ptdchj

) (4)

where indices t and i show the particular time interval and
DR (distributed Resource) number, respectively. T and NDG
are the total time and total number of distributed generators.
Csub and CDG The cost parameters of active power supplied
by substation and DGs are measured in $/MWh.

The price of the DG output power is calculated from the
second-order quadratic expression as:

CSS (PSS) = k1 × PSS (5)

CDG (PDG) = k1 × P2DG + k2 × P1DG + k3 (6)

CBESS (PCh) = k1 × P2Ch + k2 × P1Ch + k3 (7)

where CDG,CESS, and Closs are the expressed DGs costs,
charging the cost of ESSs, and cost of energy loss. k1, k2
and k3 DG, BESS, and energy loss are the variable quadratic
cost coefficients. The second objective function considers the
economic and technical aspects and calculates the energy loss
(CEL) cost in the entire time horizon using Equation (8).

f2: CEL =

∑
t∈T

(
αt (Ploss)

)
(8)

whereas αt is the parameter for the cost measured in $/MWh,
Ploss is the total active power loss in the entire time horizon.
Active power loss can be calculated as:

Ploss =

∑
t∈T

(
Ptloss

)
(9)

Ptloss =

∑
(s,r)∈nl

Gsr

(
V2
s + V2

r − 2VsVr cos (θsr)
)

(10)

Meanwhile, nl shows the total number of branches, and
(s, r) is the particular branch between bus s and r. Vm and
Vk are the bus voltages and Gsr is the branch conductance
connected between bus s and r and θsr is the branch voltage
angle difference between bus angles θs and θs. And α is the
Power loss co-efficient equal to 80.49 $/MWh [21].
Nodal voltage magnitude is an important indicator to eval-

uate system security and power quality (PQ). Minimizing
voltage deviation can help guarantee better voltage levels in
the power distribution systems. The third objective function
is related to the security of the distribution network, which is
achieved by minimizing voltage deviation (VD) between bus
and reference bus voltage that can be calculated as given in

Equation (11).

f3: VD =

∑
t∈T

 ∑
m∈NL

|VSS − Vm|
2

 (11)

where m is the particular bus number, and Nb are the total
number of buses in the network. Vref is the voltage at slack
bus, and it is set to 1 p.u in this paper. Vm is the voltage at
a specific bus. Whereas, Ct

sub,C
t
DGi

and Ct
loss are the cost

parameters of power supplied by the substation, DGs, and
losses in the branch. NDG,Nl, and Nb show the total number
of dispatchable and non-dispatchable DGs, branches, and
buses, respectively, and i, l,and b are the indices of each DG,
branch, and bus.

B. CONSTRAINTS
1) CONSTRAINTS OF EQUALITY AND INEQUALITY
The equality constraints are the equations that ensure a bal-
ance of power in the network, where both the active and
reactive power generated must be equal to the load demand
and losses in the network.

∑
t∈T

PtSS +

∑
i∈NESS

Ptdchi +
∑
i∈NDG

PtDGi
−

∑
b∈Nb

(
PtDb

+ Ploss
)

−

∑
i∈NESS

Ptchi

 = 0 (12)

∑
t∈T

Qt
SS +

∑
i∈NDG

Qt
DGi

−

∑
b∈Nb

(
Qt
Db

+ Qloss

) = 0 (13)

where, Psub and Qsub does the mainstream sub-station supply
the active and reactive power, PD and QD are the active
and reactive demand, Ploss and Qloss presents the active and
reactive power loss in the network. Ptchi and PtDchi shows the
charging and discharging power of energy storage devices.

2) INEQUALITY CONSTRAINTS
The inequality constraints are the operating limits of the
equipment, components in the power system, and security
constraints on the line and load buses.

Pmin
SS ≤ PSS ≤ Pmax

SS ;Qmin
SS ≤ QSS ≤ Qmax

SS (14)

Pmin
DGi

≤ PDGi ≤ Pmax
DGi

;Qmin
DGi

≤ QDGi ≤ Qmax
DGi

(15)∑
i∈NDG

PDGi ≤

∑
j∈Nb

PD,j (16)

∑
i∈NDG

QDGi ≤

∑
j∈Nb

QD,j (17)

Vmin
DGi

≤ VDGi ≤ Vmax
DGi

(18)

Vmin
m ≤ Vm ≤ Vmax

m (19)

Stl ≤ Smax
l (20)

nl = Nb − 1 (21)
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det (A) =

{
1 or − 1, (radial network)
0 (not radial)

(22)

SoCt
j = SoCt−1

j +

ηjPtdchj
Emax
j

−

Ptchj
ηjEmax

j
(23)

SoCj(ini) = SoCt−1
j = 1.8 MWh (24)

0.1∗Emax
j ≤ SoCj ≤ 0.9 ∗ Emax

j (25)

0 ≤ Ptchj ≤ 0.5MW and 0 ≤ Ptdchj ≤ 0.5MW
(26)

where the state of charge (SoC) of the BESS for each time
step shown with SOCt

i. Note that BESS units’ charging and
discharging phases are identical to avoid the internal energy
exchange between BESS units at each time interval. Ref-
erences [64], [65], Emax

i maximum capacity of the storage
device that is set to 1.8 MWh.

Equations (14) and (15) define the main substation’s active
and reactive power limits, identified as the reference bus in
this analysis. Equations (16) to (17) set forth the cumulative
power constraints of Distributed Generators (DGs), ensuring
the total active and reactive power generated remains within
or equal to the total demand. Voltage constraints for the
PV and PQ buses are addressed in Equations (18) and (19),
respectively, while Equation (20) pertains to the MVA branch
flow limit. Equations (21) to (22) establish the radiality
constraints of the distribution system, ensuring its tree-like
structure. Matrix A, the connection matrix or branch and bus
incident matrix, plays a pivotal role in network configuration,
where Aij = 1 indicates that the ith branch is linked from bus
j, Aij = −1signifies that the ith branch is connected to bus i
and Aij= 0 confirms no connection between the ith branch
and jth bus. Equations (24) to (26) outline the inequality
constraints for the Battery Energy Storage Systems (BESS),
representing intertemporal constraints linked to various peri-
ods. The forward-backward sweep method is utilized for load
flow calculation, ensuring all equality constraints specified
in Equations (12) and (13) are adhered to. In contrast, the
inequality constraints detailed in Equations (14) to (26) are
managed using the Representative Constrained Domination
Principle (CDP), a constraint handling technique elaborated
in section IV of this paper. This comprehensive approach
ensures a robust and efficient optimization of the power
distribution network.

3) DECISION VECTOR
In this paper, the Decision vector x comprises continuous and
integer variables. Mathematically, the vector x is given as.

x = [siteDG,S, sizeDG,S, siteDG,W, sizeDG,W, siteBESS,

sizeBESS,VDG,CBL] (27)

In this paper, the decision vector shown in Equation (27)
comprised of the site of wind type DG siteDG,W, size of
wind type DG sizeDG,W, site and size of solar PV type DG
siteDG,S, sizeDG,S respectively, the voltage set point of all
the generator buses VDG, and selection of tie switches CBL

this variable is set to the number of loops in the network.
The decision vector is comprised of integer and continuous
variables.

III. IMPLEMENTATION OF I-BICO ALGORITHM FOR ONR
AND DG ALLOCATION
ONR and DG allocation are multi-objective mixed integer
non-linear problems that challenge the existing MOEAs due
to their small feasible search space and constraints in both
the objective and control variable space. To address this
lacuna, this paper proposes an I-BiCo-constrained MOEA
that employs the constraint domination principle (CDP) to
handle constraints. In this paper, the CDP is employed, which
is a simple and efficient constraint handling technique (CHT)
[63], and it compares the pairs of individuals using the fol-
lowing rules:

• If both solutions x⃗u and x⃗v are infeasible, select x⃗u if
CV(x⃗u) < CV(x⃗v).

• x⃗u is feasible and x⃗v is infeasible, select the feasible one,
i.e., x⃗u.

• If both x⃗u and x⃗v are feasible, then select x⃗u if for all the
objective functions fi(x⃗u) ≤fi(x⃗v).

A. IMPLEMENTATION OF MULTI-OBJECTIVE IMPROVED
BIDIRECTIONAL COEVOLUTIONARY (I-BICO) ALGORITHM
Multiperiod ONR, along with DG allocation, is a mixed
integer-constrained non-linear large-scale distribution prob-
lem. It is challenging for the MOEAs to achieve a
well-converged and evenly distributed Pareto Front (PF).

In the literature, most of the existingMOEAs prioritize fea-
sible solutions, leading to two issues: firstly, the population
may become stuck in local optimal feasible regions. Second,
since the population only grows on the feasible side, the
search space may not be entirely explored. The conventional
approach of optimizing feasible solutions may only result
in the population being trapped in local feasible or optimal
feasible regions, limiting its ability to efficiently drive the
solutions towards the true or global PF. To overcome these
issues, an I-BiCo algorithm [66] along with the integration
of CDP [63] is proposed in this paper, which coevolves both
feasible (main) and infeasible (archive) populations to drive
the solutions towards the PF. This is achieved by searching the
space from both the feasible and infeasible sides of the search
space. In addition, a novel angle-based density (AD) selection
technique is developed to update the archive population. This
scheme preserves the diversity of the search space, makes it
easier to find more feasible regions, and keeps the infeasible
solutions close to the PF. Four steps can be used to explain
the I-BiCo algorithm. First, a random beginning population is
generated, and each population’s goal functions and overall
constraint violation (CV) are assessed. The second stage
entails creating an offspring population (Qt) by cooperating
and interacting between the archive (promising infeasible
solutions) and main (feasible search space) populations to
create high-quality offspring. In a binary tournament, parents
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are chosen for the mating pool. Parents are picked from
the combined population of the main (Pt) and archive (At)
populations if the length of the archive population (∥At∥) is
less than population size N. Otherwise, the main and archive
populations are contrasted using angle-based density (AD)
and constraint violation, respectively, to pick the parents. Two
solutions, x1 and a1, are picked at random from Pt and At,
respectively, to determine the parent p1, the solution with the
smallest CV value is chosen. The random selection of x2 and
a2 from Pt and At respectively, yields the choice of p2, which
is the one with the larger AD value. The following is how the
proposed algorithm determines AD. The proposed algorithm
obtains AD as given below:

In the opening, normalize the objective function space,
say jth solutions of objective functions F′

i

(
vj

)
=(

f′1
(
vj

)
, f′2

(
vj

)
, . . . ,f′m

(
vj

))
using ideal Zi

min and nadir Z
i
max
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f′i
(
xj

)
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fi − Zi
min

Zi
max − Zi

min

, i = 1, 2, . . . ,m (28)

After that, the vector angle between F′
(
xj

)
and F′ (xk)

solutions selected from Ut is computed as

θ ′
xj,xk= arccos

∣∣∣∣∣ F′
(
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)
· F′ (xk)∥∥F′

(
xj

)∥∥ ∥F′ (xk)∥

∣∣∣∣∣wherexk ∈ Pt ∩ xk ̸= xj

(29)

Next, each solution is ranked based on the angle between
them. The larger the angle, the higher the rank of the solution,
making it a promising candidate for mating selection. The
third step involves updating the main population Pt+1, which
drives the search toward the PF from the feasible side of the
search space. To do this, the main population is combined
with the offspring population Qt, and solutions are divided
into feasible S1 and infeasible S2 sets. If the number of
feasible solutions in S1 is less than the population size N,
then the first (N−S1) infeasible solutions from the sorted
set S2 are selected. If the number of feasible solutions in
S1 is greater than N, non-dominated sorting is applied to S1
to obtain the PF of different ranks, such as F1, . . . ,Fk, and
so on, where F1 is the highest rank. The solutions with the
highest rank are assigned to Pt+1, followed by the second-
highest rank, and so on until the size of Pt+1 is equal to N
or greater than N. If the size of Pt+1 exceeds N, then the
crowding distance (CD) operator is used to eliminate some
of the solutions in the last front [63]. The fourth and final
step involves updating the archive population for the next
iteration At+1, The accountable entity for developing non-
dominated, infeasible solutions is aimed at enhancing the
variety of the Pareto front [66]. The algorithm considers CV
as an additional objective function M+1th, making the orig-
inal constrained problem an unconstrained multi-objective
problem, given as:

minF(x) = (f1(x),f2(x), . . . ,fm(x),CV(x))T (30)

This helps in generating promising, non-dominated, infea-
sible solutions. Next, the solutions are ranked using ND
sort [63] to determine the PF, and capable infeasible solutions
are selected based on CV (M+1 objective function) and AD
as described in Equation (28). Figure 1 displays the flow
diagram of the proposed algorithm.

IV. MODELING OF TIME-VARYING DEVICES AND STUDY
CASES
This paper has optimized multiperiod ONR and the optimal
DR allocation problem using an I-BiCo Algorithm. The opti-
mal site and size of RES-type DGs and BESS are considered.
Non-dispatchable solar PV type DGs are implemented to
integrate active power only (operate at unity pf). However,
wind-type DGs locally inject variable reactive power that
highly supports the voltage profile of the distribution system
and reduces active power loss to some extent. The simu-
lations are conducted on the 33 IEEE bus power system,
as illustrated in Figure 2. The optimization period is 72 h for
each representative summer, winter, and spring/fall day) to
account for the seasonal effects. Forecasted RES active power
integration and load demand for the entire time period are
shown in Figure 3. At first, base-case load flow calculations
are performed for the test systemswithout DR sources. Active
power losses in selected days of 24 hours are found to be
4.215 MW per day. The base kV and MVA of the proposed
test network are 12.66kV and 10 MVA; usually, it has five tie
switches allocated at 33, 34, 35, 36, and 37 branches. The
corresponding line impedances and the active and reactive
power can be found in Ref. [67], with the increased active
power load demand shown in Figure 3 (b).

The energy loss for each time frame is determined by per-
forming a load flow analysis for each period, considering the
average load and distributed generation (DG) output for the
corresponding period. This analysis is based on the network
configuration established through the optimization process
for the specific time frame. The data associated with the
installed DGs, and BESS are taken from [67] and [68].

Three solar PV and three wind generators of 1MW rated
capacity each are selected to be installed at the optimal
site of the 33-bus test system. Six BESS are installed with
having maximum capacity of 1.8 MWh each with the min-
imum and maximum charging and discharging capacity of
0.5 MW each are selected to be installed in the proposed
test system. In this research paper, we offer a simultaneous
solution to the optimization problem of network reconfig-
uration and optimal allocation of both DGs and BESS.
Furthermore, the time-varying nature of the load recognizes
that the optimization problem in existing literature typically
assumes a constant power generation model for renewable
DGs. By accounting for the time variation in both load and
DG generation, we aim to provide network managers with
a more accurate and realistic solution for optimal network
configuration and DG sizes and locations. To achieve this,
we calculate the hourly power outputs of solar PV and
wind-type DGs using their respective power generation func-
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FIGURE 1. Flow diagram of the proposed algorithm.

FIGURE 2. Layout of proposed IEEE 33-bus network.

tions alongside load forecasts for an average day during the
summer season, which serves as the reference period for our
optimization study. The curves of the hourly variance in a

load of an average summer day as an example of study along
with the variable market price of power produced by the grid,
output power of solar PV type DG, and actual active and
reactive demand converted from p.u load curve are illustrated
in Figure 3 (a), (b).

The proposed formulation finds the scheduling of grid
energy supplied according to load variation and the DGs’
rated power. The proposed problem is resolved with the
I-BiCo algorithm, aiming to simultaneously reduce two and
three competing objective functions as specified in Equa-
tions (4), (8), and (11) that are the total cost of energy
supplied (f_1), cost of energy loss (f_2) and voltage devi-
ation (f_3) in the entire time horizon. We consider the
two scenarios for testing our proposed method for find-
ing the realistic multiperiod optimal network reconfigura-
tion and DG and BESS allocation in a multi-period time
horizon.
Scenario 1: Optimal site and size of DG along with BESS

without reconfiguration
Scenario 2: Optimal site and size of DG and BESS with

optimal network reconfiguration ONR
Each scenario is run on two study cases comprised of

bi-objective and tri-objective functions to find the various
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FIGURE 3. Time-dependent input quantities: a) Cumulative uncertain integration of three wind and three solar PV generation, b) Load
demand and cumulative DG injection.

decision variables. These study cases are included of Simul-
taneous minimization of:
Case 1: Total cost of energy supplied by grid station Vs.

cost of energy loss.
Case 2: Total cost of energy supplied by grid station

Vs. cost of energy loss Vs. VD. The simulation results are
discussed in the next section from the point of intended objec-
tives and Pareto front characteristics. The Pareto optimal
solution of the proposed bi and tri objective function is deter-
mined using the I-BiCo Algorithm. The proposed approach
for simultaneously optimizing network reconfiguration and
integration of DR is implemented using MATLAB’s envi-
ronmental programming. All experiments in this article
were conducted on the platform developed by Tian et al.
(PlatEMO) [69]. All the codes are run on corei7 PCMATLAB
2021b version 9.10.

V. ANALYSIS OF SIMULATION RESULTS AND
COMPARISON OF SCENARIOS
The optimal site and size of DG and BESS is a constrained
multi-objective optimization problem (CMOP) involving
conflicting objective functions and various dynamical con-
straints. Due to constraints, CMOPs’ Pareto-optimal solu-
tions will likely lie on constraint boundaries. The ultimate
goal of MOEAs is to obtain well-converged and evenly dis-
tributed PF. However, it is difficult to achieve that goal,
primarily because of constraints. Multi-objective evolution-
ary algorithms (MOEAs) aim to find high-quality, non-
dominated solutions in a single simulation run.

A. COMPARISON OF PROPOSED ALGORITHM WITH THE
OTHER MOEAs
Quality measurement of non-dominated (ND) solutions con-
sists of three objectives: i) convergence means minimum
distance between the ideal point and PF, ii) diversity final
non-dominated solutions are evenly distributed and maxi-
mum spread. Performance assessment ofMOEAs should take
all of these objectives into account. Researchers have spent
considerable effort evaluating the goodness of a solution set
obtained by MOEAs. It means that the final non-dominated
solutions of MOEAs must have better convergence, diversity,
and spread. For a fair comparison between the MOEAs,
various performance metrics have been proposed in the past.
In this work, convergence, and diversity measures of different
MOEAs have been done using a well-known hypervolume
indicator (HVI) performance metric. HVI metric requires a
reference point (preferably a point close to the nadir point)
that is [1 1 1] for the normalized objective functions. On a
given problem, when comparing different PFs, the PF with
the largest HVI is considered the best. To access the per-
formance of the proposed I-BiCo algorithm, it is compared
with the recently implemented MOEAs at each iteration. The
parameters of all the compared algorithmswere kept identical
to their original papers. Whereas population size N in all the
cases is 40, and 5000 maximum number of iterations (G) are
adopted. Statistical performance based on HVI of the pro-
posed algorithm compared with the other recently designed
state-of-the-art MOEAs of all the cases and the simulation
results are summarized in Table 2.
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TABLE 2. Statistical comparison of state-of-the-art MOEAs with the proposed algorithm at 100% FR.

It is worth mentioning that no constraint violation is
observed in any trial run of all case studies. The simulation
results presented in Table 2 above indicate that, in the major-
ity of circumstances, the proposed approach performs better
or is nearly similar to existing techniques, as determined by
the best and worst HV values. In Table 2, bold, dark high-
lighted results are the best, and half-dark is the second-best
value. In both of the scenario’s bi-objective and tri-objective
functions, the proposed algorithm finds the maximum HV
values compared to all the other MOEAs. Regarding the best
compromise solution (BCS), in SC1 of Case1, NSGAII [63]
finds the best value of objective functions 1; however, the
proposed algorithm is at second. In the same SC1 and Case 1,
the proposed algorithms outperform in terms of the second
objective function. The proposed algorithm finds the least
minimum and maximum second objective, and the second
best is obtained in CCMO [71]. However, the best value of f_1
The minimum and maximum values are obtained in NSGAII.
In both scenarios, SC1 and SC2, considering minimizing
complex tri-objective functions, the proposed algorithm out-
performs all the other MOEAs. The second best, in most
cases, is found in NSGAII. From the statistical Table 2, it is
shown that the proposed algorithm outperforms compared to
most of the MOEAs in both the Cases of SC1 and SC2. From
the statistical simulation results, the comparative perfor-
mance of MOEAs from the first to the last iteration. At each
iteration, hypervolume indicators (HVIs) are employed to
assess the efficacy of multi-objective optimization algorithms
(MOEAs). Multi-objective optimization involves optimizing
multiple conflicting objectives simultaneously, and the goal
is to find a set of solutions that represents a trade-off among

these objectives. HVIs provide a quantitative measure of the
quality of the solutions obtained by a MOEA regarding the
volume they cover in the objective space. Moreover, HVI
measures the volume of the dominated space between the
Pareto front (set of non-dominated solutions) and a reference
point in the objective space at each iteration. The higher the
hypervolume, the better the performance of the algorithm,
as it indicates the obtained solutions cover a larger portion
of the objective space. Therefore, Figure 4 shows the con-
vergence based on HVI in all the iterations. Analyzing the
convergence curve, it becomes evident that, in most cases,
NSGA initially converges faster; however, after half of the
iterations, the proposed algorithm outperforms by achieving
superior Hypervolume (HVI) values. This is attributed to
the proposed algorithm’s convergence strategy, which selects
representative infeasible solutions while HV plots only the
feasible solutions. As the iteration progresses, a significant
portion of the population becomes feasible, leading to the
rapid convergence of HV in the proposed algorithm compared
to other MOEAs.

B. FINAL PARETO FRONT AND ANALYSIS OF BEST
COMPROMISE SOLUTION
The optimization of the suggested multi-objective problem
occurs for the entire time sequence within a single simula-
tion run. This comprehensive approach considers the time
sequence variance in renewableDGs and load, exemplified by
a typical summer day. A comparison of final non-dominated
solutions in the objective space, called Pareto Front (PF),
of the proposed algorithm with the other MOEAs for all the
study cases is depicted in Figure 5.
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FIGURE 4. Convergence comparison HV of state-of-the-art method from initial to final solution.

Figure 5 demonstrates the ability of the proposed algorithm
to effectively balance conflicting objective functions in a
complex distribution system problem. In SC1 of Case1, both
CCMO [71] and CMOQLMT [70] are stuck in local optimal;
however, NSGAII [63] finds the minimum value of f_1. SC1
of Case2, the PF of the proposed algorithm outperforms com-
pared to CCMO [71], NSGAII [63], and CMOQLMT [70],
which are stuck in the local optimal solution. PF of most of
the MOEAs doesn’t converge due to dimensions of decision
variables. In the proposed optimization problem, there are
744 decision variables in both cases of SC1 and 864 decision
variables in SC2. In Figure 5, the best compromise solution
(BCS) [72], with the slightly larger marker size, is considered
the best solution in the entire population of the final non-
dominated solution that simultaneously provides the optimal
values of objective functions without discrimination. In this
case, the fuzzy set theory is put forward to help the net-
work manager to extract this best compromise solution, to be
applied to the power system, referring to the hour that pro-
vides the best values of objective functions. Furthermore, for
better visibility Figure 6 shows the trade-off between various

objective functions of SC1 and SC2 of proposed algorithm
individually.

Figure 6 shows that in Case 1 of SC1 and SC2, population
members find the discontinuous PF with the better trade-off
between the objective functions. In tri-objective functions,
population members are widely distributed, and data tips
with larger marker sizes show the BCS. SC1, Case 1 (Top-
Left Plot): This plot shows a two-dimensional Pareto front
for bi-objective optimization. The axes represent cost and
another objective, labeled CEL [$/h]. The population mem-
bers (depicted as triangles) find a discontinuous Pareto front
(PF), indicating gaps in the trade-off curve where no optimal
solutions exist. SC2, Case 1 (Bottom-Left Plot): Similar to
SC1 Case 1, this plot shows the bi-objective optimization
results for a different scenario. The Pareto front is more
continuous than SC1, with the population members aligning
along a precise trade-off curve. SC2, Case 1 (Bottom-Left
Plot): Similar to SC1 Case 1, this plot shows the bi-objective
optimization results for a different scenario. The Pareto front
is more continuous than SC1, with the population mem-
bers aligning along a clear trade-off curve. SC2, Case 2
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FIGURE 5. Comparison of final non-dominated solution of all the scenarios of bi and tri-objective functions of the
proposed algorithm with the state-of-the-art MOEAs.

(Bottom-Right Plot): As in SC1 Case 2, this plot visualizes
the tri-objective optimization results for SC2. The distribution
of population members again suggests a range of trade-off
solutions. The highlighted data point with a more significant
marker size represents the Best Compromise Solution (BCS),
which indicates the best trade-off solution according to a
specific criterion. Table 3 shows the decision variables of
BCS of SC1 of both cases, in which tie line switches are fixed:
33, 34, 35, 46, and 37.

Table 3 details the optimal locations and capacities for solar
and wind-distributed generators (DGs) and Energy Storage
Systems (ESS) without network reconfiguration. It contrasts
two cases over 24 hours: Case 1 considers bi-objective func-
tions (total cost of energy from the grid station versus cost
of energy loss), while Case 2 adds a third objective function,
voltage deviation (VD). For solar DGs in Case 1, the peak
generation of 1.77 MW occurs at noon with DGs located at
buses 7, 14, and 7, while theminimumgeneration of 0.07MW
happens at 06:00 and 20:00 hours at buses 30, 24, 8, and 16,

30, 24, respectively. In Case 2, the maximum solar output
of 1.757 MW is achieved with DGs at buses 20, 25, and
29; the least generation of 0.062 MW is at 20:00 hours at
buses 30, 20, and 19. Solar power is absent outside irradiation
periods. Wind turbines (WTs), unlike solar DGs, generate
power continuously. In Case 1, WTs at buses 16, 16, and
25 produce a maximum of 2.04 MW at 01:00 hour and a
minimum of 1.24 MW at 24:00 hour at buses 24, 30, and 18.
For Case 2, the peak of 2.32 MW occurs at 01:00 with WTs
at buses 11, 11, and 20, and the lowest output of 1.09 MW at
24:00 hour at buses 33, 28, and 15.

BESS units support the grid by discharging during power
deficits and charging when excess power is available, demon-
strating varying charge and discharge rates throughout the
day. This information is crucial for enhancing energy sys-
tem efficiency and stability, particularly as the integration of
renewable energy sources increases. Table 3 lists the optimal
Solar PV and Wind Turbines sites under specific columns,
with their sizes indicated in megawatts. Solar PV remains
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FIGURE 6. Final non-dominated solutions of the proposed algorithm of all the scenarios considering bi-objective and tri-objective
functions.

TABLE 3. Optimal site and size of SolarPV and wind DG and ESS (without optimal network reconfiguration).

at 0 MW throughout both cases, signifying no contribution
to the generation capacity. In comparison, wind power varies
between 1.30 MW and 2.32 MW in Case 1 and 1.09 MW
and 2.32 MW in Case 2, reflecting its fluctuating input.
BESS sizes also change across the day, illustrating the need
for adaptive storage solutions. In rapid, Table 3 provides

a snapshot of how renewable energy sources and storage sys-
tems are optimally utilized across a daywithout reconfiguring
the network. In contrast, Table 4 presumably extends this
analysis to scenarios that include optimal network reconfig-
uration. Table 4 provides a 24-hour overview of the optimal
placement and sizing of solar and wind-distributed generators
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TABLE 4. Optimal site and size of SolarPV and wind DG and ESS (with optimal network reconfiguration).

TABLE 5. Optimal feeder reconfiguration of bi-objective and tri-objective functions of SC2.

(DGs) and Battery Energy Storage Systems (BESS) within
the power grid, incorporating network reconfiguration. The
results are categorized into two cases based on the optimiza-
tion objectives: Case 1 focuses on bi-objective functions—the
cost of energy supplied by the grid versus energy loss cost,
and Case 2 includes the additional objective of voltage devi-
ation (VD).

In Case 1, solar DGs produce a maximum of 1.72 MW
at noon (12:00) at buses 31, 24, and 18, aligned with solar
irradiance availability. Theminimum solar output is 0.07MW
during early morning and late evening (06:00 and 20:00
hours) at buses 17, 32, 9, 4, 13, and 20, reflecting the diurnal
pattern of solar energy availability. Similarly, in Case 2, solar
power peaks at 1.71 MW with DGs located at buses 17, 19,
and 12, while the lowest generation of 0.07 MW is noted at
20:00 hours at buses 14, 29, and 32. Wind Turbines (WTs)
generate power consistently across the period. For Case 1,
the peak wind generation of 2.01 MW occurs at 01:00 and
02:00 hours at buses 26, 30, 5, and 14, 14, 25, while the lowest
output of 1.26 MW is at midnight (24:00 hour) at buses 15,
6, 6. In Case 2, the maximum wind power of 2.18 MW is
produced at 4:00 hours on buses 25, 22, and 9, with a mini-
mum of 1.12 MW at midnight on buses 12, 25, and 12. The
BESS units strategically charge and discharge in response
to the power grid’s supply and demand, ensuring a stable
energy flow. Their operational patterns, as shown in Table 4,
support the grid by releasing energy when there is a deficit
and storing it when there is an excess. The data reflects the
complex dynamics of optimizing grid performance through
network reconfiguration, generation scheduling, and energy
storage management. The analysis underscores the necessity

of an integrated approach to grid management that prioritizes
cost efficiency, reliability, and sustainability. Table 5 provides
a schedule of tie switch configurations over 24 hours, detailed
for both bi-objective and tri-objective optimization of SC2.

The bus numbers connected by the tie switches for each
hour are listed in Table 5 for each time slot. This schedule
aligns with the network reconfiguration point that was cov-
ered in the paragraphs that came before it. For example, in the
bi-objective case, tie switches are scheduled to be connected
at hour 1 at busses 5, 13, 23, 32, and 33. The buses at hour nine
are busses 7, 14, 26, 32, and 33. This pattern illustrates the
network’s ability to adapt and optimize the trade-off between
energy loss expenses and the overall cost of energy supplied
by the grid station across a 24-hour timeframe.

Furthermore, in the case of the tri-objective scenario, the
tie switches located at busses 3, 13, 21, 25, and 29 are
turned on at hour 1. This adapts to maximize energy cost
and loss as well as voltage variation (VD) throughout the
day. The performance of solar DGs, wind turbines, and BESS
units demonstrates how vital this 24-hour scheduling is to
the network’s resilience and adaptability, as it guarantees
that the system functions effectively under a range of load
circumstances and generating capabilities. The schedule con-
siders the fluctuating power generated by renewable energy
sources while helping t. The scheduling demonstrates that the
network reconfiguration is dynamic and actively controlled
in response to the power system’s dynamic characteristics,
such as the patterns of renewable energy sources’ generation
and the behavior of energy storage devices. As the paragraphs
addressing Table 5’s results make clear, this active manage-
ment is essential to preserving grid stability and maximizing
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FIGURE 7. Comparison of objective functions of all the scenarios with each other.

the efficient use of dispersed generation resources and stor-
age systems. Figure 7 compares the base case loading and
the loading of all the scenarios of all the cases, DG injec-
tions, and charging and discharging of BESS devices. At low
loading conditions, DG injects to balance the load demand
along with charging of BESS devices; overall load due to
the charging effect of BESS is increased, and hence, load
demand is slightly varied and flattened. Meanwhile, power
from the grid is near zero at low load conditions, increasing
as demand peaks and decreases again. BESS devices are
charged maximum when the load is off and discharged when
the load is increased. Figure 7 also clearly shows that the
proposed formulations find the best scheduling of DG and
BESS devices in dynamic time-varying situations.

In Figure 7, the impacts of Distributed Generation (DG)
injections and the charging and discharging of Battery Energy
Storage System (BESS) devices over a 24-hour period are
compared between the base-case load and the loading of all
scenarios across the cases. When there are low-loading sit-
uations, DGs provide electricity to balance the load demand

while also assisting with BESS device charging. Due to the
charging actions of the BESS, this combined action causes
a little change and flattening of the overall load, indicat-
ing an optimal supply and demand balance. At these times,
almost little power is taken from the grid, demonstrating how
well-distributed generators (DGs) satisfy load requirements,
which rise as demand peaks and fall after that. The BESS
devices are controlled strategically, charging to capacity dur-
ing periods of low load and discharging during periods of
high load. This cycling pattern is aptly illustrated by Figure 7,
which shows howDG and BESS devices are dynamically and
efficiently scheduled in response to time-varying conditions.
Compared with the base case, the active power, expressed
in Megawatts (MW), is shown for two situations (SC1 and
SC2) over two instances. The basic scenario is intended to
show how well the power system functions without solar,
wind, or BESS integration. Furthermore, Figure 7’s BESS
charging and discharging lines illustrate themany tactics used
all day to control power levels successfully. These tactics
outline how BESS might reduce power demand variations
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FIGURE 8. Box plot and mean of (a) Active Power Loss and (b) Voltage Profile with and without ONR of the entire time horizon.

and create a more dependable and effective energy system.
The power profile of the grid is significantly impacted by
the addition of DGs and different BESS techniques, as seen
by smoother curves and lower peak demands. In BESS and
DG integrated scenarios, BESS energy resource management
results in constant power levels, flattening peaks, and fill-
ing valleys throughout the day. As essential components of
contemporary power networks, this emphasizes the strategic
application of DG and BESS and suggests increased grid
resilience and efficiency. Additionally, Figure 8 displays the
power loss and box plot of the voltage profile across thewhole
horizon for each studied situation.

Figure 8 (a) gives a detailed comparison across various
scenarios (SC1 and SC2) and cases (Base Case, Case 1, and
Case 2). It displays the power loss in megawatts (MW) across
a 24-hour period. The base case typically shows the highest
power loss at various times, indicating inefficiencies operat-
ingwithout integrating solar andwindDGs or BESS. SC1 and
SC2 in both case 1 and case 2 exhibit lower losses. In contrast,
with SC2, Case 2 shows the most significant reduction of
power losses, suggesting the optimal usage of DGs and BESS
in that scenario. Figure 8 (b) compares voltage profiles in

the different scenarios. It plots voltage per unit (p.u.) over
24 hours, with markers indicating mean values. The base
case showsmore volatility and generally lower voltage levels.
Voltage stability improves with the introduction of DG and
BESS into the power system, as evidenced by the narrower
boxplots and higher mean voltage levels in SC1 and SC2
compared to the base case. The SC2 in case 2 shows the
almost unity voltage (p.u) throughout the time span validation
of the optimal network configurations and integration of DGs
and BESS. These graphical representations underscore the
benefits of integrating DG and BESS into power systems
for reducing losses and maintaining voltage stability. The
comparison of BCS solution of the entire time horizon of
Scenario 1 (without network reconfiguration) and Scenario 2
of cases 1 and 2 (simultaneously optimization of bi and tri-
objective functions) is presented in Table 6.

Simulation of results shown in Table 6 compares the
cost of energy supplied versus the cost of energy loss
for case 1 and adds the Voltage Deviation (VD) objective for
case 2. Table 6 details the most frequently selected sites
for photovoltaic (PV) solar panels, wind turbines (WT), and
Battery Energy Storage Systems (BESS), along with their
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TABLE 6. Comparison of Simulation results of Base Case, Case 1, and Case 2 of both the scenarios.

respective sizes in MWh/day and costs associated with each
component of the system (C_DG) for distributed generation
costs, C_BESS for battery storage costs, and CEL for energy
loss costs). In Scenario 1 (SC1), solar panels are most often
placed at sites 7, 14, and 30 for case 1, and at sites 30,
30, and 25 for case 2, while in Scenario 2 (SC2), they are
placed at sites 6, 30, and 7 for case 1, and 15, 18, and 30 for
case 2. Wind turbines follow a similar pattern of placement
across both scenarios and cases. The most frequent sites
for BESS vary more significantly, with six different sites
chosen for each scenario and case. The PV and WT sizes
and the BESS’s charging and discharging capacity are given
to show how much energy each system provides or uses
daily. Table 6 also shows the voltage variation (VD), power
supplied by the mainstream substation, and the daily costs of
energy loss (CEL), distributed generation (CDG), and battery
storage (CBESS). Furthermore, the efficiency of the grid’s
power distribution is indicated by the reported power loss
(P_loss). A thorough overview of the cost-effectiveness and
operational efficiency of the various energy generating and
storage systems under the multiple optimization scenarios
and instances is provided in Table 6. It examines the effects
of different optimization techniques while accounting for
the interactions between energy production, storage, and the
physical layout of the grid.

VI. CONCLUSION
This paper introduces a thorough algorithm for improving
the efficiency of power distribution networks. It achieves
this by integrating distributed resources, which include
DGs and BESs, with efficient network reconfiguration. The

study employs a cutting-edge multi-objective optimization
method, i.e., an Improved Bidirectional Coevolutionary (I-
BiCo) algorithm, to substantially decrease energy costs,
power losses, and voltage variations. The combination of
solar PV and wind DGs, BESs, and optimal power flow
can dramatically improve the distributed networks’ flexibil-
ity, dependability, and sustainability while plummeting the
intrinsic volatility of renewable energy sources. Through
several simulations and comparisons, the research validates
the algorithm’s effectiveness. It establishes that the proposed
method surpasses the current Multi-Objective Evolutionary
Algorithms (MOEAs) regarding convergence, variety, and
solution quality. This paper yields considerable develop-
ments in the optimization of power distribution by offering
strategies and recommendations for evolving effective and
eco-friendly power systems in a continually varying energy
environment. This research underlines the significance of
BESS in refining grid stability and reducing power variations,
particularly when integrating unpredictable renewable energy
sources. Tshis paper presents a complex ONR approach
to optimize the utilization of renewable energy, minimiz-
ing costs and inefficiencies and incorporating distributed
generators with battery energy storage systems. The study
focuses on the development and advantages of distributed
resource allocation andmulti-period optimumnetwork recon-
figuration, encompassing technical and economic goals. This
study not only underlines the importance of comprehensive
methodologies for improving the efficiency of power dis-
tribution networks but also provides valuable insights and
ideas that will contribute to the future advancement of energy
system management and sustainability.
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