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ABSTRACT Intracranial hemorrhage (ICH) is an emergency and a potentially life-threatening condition.
Automated segmentation of ICH from head CT images can provide clinicians with volumetric measures
that can be used for diagnosis and decision support for treatment procedures. Existing solutions typically
involve training deep learning models to perform segmentation directly on the whole CT image. However,
datasets with segmentation masks are typically very small in comparison with datasets with bounding
boxes. Thus, we propose a two-stage approach that utilizes both bounding boxes and segmentation masks to
help improve segmentation performance. In the first stage, ICH regions are detected and localized with
bounding boxes surrounding the lesion by using a supervised YOLOvS object detector. In the second
stage, the localized ICH foreground is automatically segmented using TransDeepLab, an attention-based
transformer network. Although we utilize both ground-truth bounding boxes and segmentation masks,
different datasets can be used to train each stage. There is no requirement for pairing up bounding boxes and
segmentation masks to train the model. Since bounding box annotations are available in larger quantities
than segmentation masks, our approach allows these large datasets of bounding boxes to be used to improve
ICH segmentation performance. On our dataset of segmentation masks, we demonstrated that our proposed
two-stage YOLOVS + TransDeepLab model outperformed segmentation methods such as SegResNet by 8%
in terms of Dice score. Given ground truth bounding boxes, a Dice score of 0.769 is achieved, outperforming
state-of-the-art methods such as nnU-Net. In sum, our proposed two-stage approach produces more accurate
binary segmentation of ICH for neuroradiologists and these improved measurements could potentially aid
their clinical decision-making process.

INDEX TERMS Brain lesion segmentation, DeepLab, intracranial hemorrhage, object detection, YOLO.

I. INTRODUCTION

Intracranial Hemorrhage (ICH) refers to extravascular accu-
mulation of blood within intracranial spaces. The causes of
ICH are diverse, including head trauma, hypertensive hem-
orrhage, vascular malformations, tumors, cerebral venous
thrombosis, and cerebral amyloid angiopathy, among other
causes [1]. In serious cases, it can lead to permanent neu-
rological damage or even death. ICH is a life-threatening
condition as the 30-day mortality rate for ICH ranges from
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35% to 52%, where only 20% of survivors are expected
to have full functional recovery within 6 months [4]. It is
also quite a common condition. The frequency of acute
ICH worldwide is 24.6 per 100,000 persons per year, with
approximately 40,000 to 67,000 cases per year in the United
States [4]. Thus, there is a need for solutions that can detect
ICH to allow for timely intervention by clinicians.
Non-contrast computed tomography (CT) is the first line
of imaging for neurological diseases. It is also the main
modality used under emergency conditions (such as ICH)
due to its accessibility and speed [2]. To accurately locate
and identify the type of ICH, head CT images are examined
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by neuroradiologists. This process can be challenging and
time-consuming [3]. Acute blood appears hyperdense (white)
on CT, posing little difficulty in diagnosis. However, ICH
detection and interpretation may pose some challenges to
junior radiologists, especially if the amount of bleed is small.
The development of automated detection and segmentation
techniques can aid radiologists in their work [4] and poten-
tially reduce misinterpretation of some common ICH sub-
types, especially by trainee radiologists [5]. Having a fast and
comprehensive algorithm for ICH segmentation could reduce
patient turn-around time and expedite the diagnosis of ICH.

Existing methods rely on traditional statistical modeling
approaches or deep neural networks for semantic segmen-
tation. Traditional statistical modeling approaches such as
Expectation Maximization (EM) algorithm are unsupervised
and do not require training data. However, they do not usually
achieve high segmentation performance because they may
erroneously mark non-ICH regions (such as the skull, calci-
fications, noise, artifacts, etc.) as ICH. Karkkainen et al. [6]
proposed to run EM algorithm on each CT image voxel to
detect voxels that contain ICH, but doing so requires the opti-
mization algorithm to be applied iteratively on every voxel,
which is computationally expensive.

Supervised deep neural networks for segmentation like
Fully Convolutional Networks (FCN) [7] are generally more
accurate than unsupervised approaches. For medical image
segmentation tasks, the U-Net architecture [8] has been very
popular due to its consistent and outstanding performance.
Lately, inspired by the original transformer architecture
used in natural language processing [9], Vision Transformer
(ViT) [10] has been introduced for medical image analysis
to capture long-range dependencies that are missed out by
U-Net [11]. Hybrid architectures that combine U-Net and
ViT have also been proposed. For example, Swin-Unet [12]
has a similar structure as the classic U-Net (down-sampling
encoder, up-sampling decoder, skip-connections, and bottle-
neck layer), but the convolutional blocks are replaced by
Swin Transformer blocks [13] and the patch merging module
performs down-sampling. TransDeepLab [14], an extension
of DeepLab [15], uses Swin Transformer blocks to encode the
image and the bottleneck performs Atrous Spatial Pyramid
Pooling to exploit multi-scale features from the hierarchical
encoder.

Variations of the above-mentioned deep learning mod-
els have been adapted to solve domain-specific challenges
faced when segmenting ICH lesions. For example, a CT
scan comprises a sequence of slices. Introducing RNN and
LSTM can help to capture dependencies across image slices.
Redman et al. proposed a DenseNet + Long-Short Term
Memory (LSTM) approach to perform classification and seg-
mentation using sequential 2D slices [5]. They focused only
on binary classification (presence vs absence of ICH) as the
main task and segmented hemorrhagic regions as auxiliary
tasks. Similarly, Ye et al. [16] proposed a combined model of
convolutional neural networks and recurrent neural networks
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(CNN + RNN) to predict ICH subtypes. As it is also helpful
for clinicians to know the volume of the bleeds for disease
prognosis, Kuo et al. proposed PatchFCN as an end-to-
end network to perform segmentation for each image patch,
resembling how radiologists would carefully study a specific
region in a slice [17]. Another domain-specific challenge is
the issue of data scarcity, which is tackled by AMD-DAS [18]
by using data from other similar domains such as magnetic
resonance imaging (MRI) images of brain tumors. They
trained a generative model to generate pseudo-CT images
from MRI images that contain segmented glioma. These
generated images help to augment the original dataset. While
the target CT image has no ground truth mask, the model
is trained to segment in pseudo-CT space for the task of
Intraparenchymal hemorrhage (IPH) segmentation. Finally,
Zhao et al. [19] proposed to use no-new-Net (nnU-Net) to
quantify the volume of ICH, Intraventricular hemorrhage
(IVH) and peripheral edema in 3D. nnU-Net [20] is based
on the U-Net architecture but adds on automatic configura-
tion of key design choices of a typical image segmentation
pipeline, such as preprocessing, augmentation and network
architecture.

Despite these advancements, several challenges remain in
ICH segmentation. Most existing architectures still require
sizable training data that is infeasible to collect and label.
This is especially the case for segmentation masks of ICH
lesions, which requires expert knowledge from neuroradiol-
ogists. In the case of AMD-DAS [18], segmentation masks
are still required even in their weak supervision approach.
Another important consideration for ICH segmentation is the
runtime of the algorithm, which cannot be too long since ICH
is an emergency. For instance, EM takes 10 times longer than
most deep learning approaches (based on our experiments
shown below in Table 3), making it less suited for clinical
deployment despite its strength of not requiring labelled data.

In this study, we propose a novel technique for ICH seg-
mentation on head CT slices which involves two stages. The
first stage involves training a YOLOv5 model to detect ICH
lesions and draw bounding boxes around them. The second
stage involves training a TransDeepLab model to segment
regions with ICH within each bounding box produced from
the first stage. Such a two-stage pipeline has two main bene-
fits: (1) it leverages the ease of creating ground truth labels
for object detection relative to semantic segmentation, and
(2) the ICH localization prior to segmentation helps to reduce
background noise. Manual annotation of bounding boxes
only involves identifying their coordinates. This is much
easier and quicker than preparing segmentation masks. Thus,
datasets with bounding boxes (e.g. the “‘Brain Hemorrhage
Extended” dataset has annotations for almost 40,000 slices)
are available in larger quantities than datasets with segmenta-
tion masks (if available, usually at most in the hundreds and
much fewer for complex and irregular lesions). Our approach
leverages these large bounding box datasets to maximize
segmentation performance. Although a two-stage approach
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FIGURE 1. lllustration of our two-stage approach.

seems more complex, the runtime of our approach is similar
to single-stage approaches, in part due to the highly optimized
YOLO architecture.

Two-stage approaches have been successfully used in other
domains. Yi et al. [21] proposed a framework with two
branches: detection and segmentation. Object detection helps
the segmentation branch to focus within the region of interest
by cropping region of interest patches. They introduced skip
connections between the detection and segmentation branch
and performed instance normalization with learned statis-
tics within the bounding box. This removes the statistics of
neighboring objects and recovers morphological details of
the main object to be segmented. In contrast, we trained a
segmentation model to accurately segment the lesion with
complex shapes within the detected bounding box. Other
closely related works include architectures that are capable
of simultaneous detection and segmentation. Bhattacharya
implemented Mask RCNN on ICH segmentation, which typ-
ically requires both ground-truth bounding boxes as well as
segmentation masks to be provided simultaneously during
training [22]. On the other hand, our approach allows the
detection and segmentation stages to be trained independently
with different datasets. In addition, our two-stage approach
is more flexible as it allows the use of any combination of
detection model and segmentation model, while Mask RCNN
presents as a single architecture used for both tasks and
changing parts of the architecture could present significant
technical challenges in terms of code implementation.

Additionally, while YOLO was mostly used for object
localization, Jiang et al. [23] proposed to use YOLO to local-
ize the 6 key points for each tooth in the panoramic film
to determine the stage of periodontal bone loss. To reduce
the interference of various structures around the tooth,
U-Net was used to obtain the contour of each tooth before the
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localization step. Our method shares the idea of zooming into
the region of interest, but we used YOLO to localize the lesion
before segmentation. Bai et al. [24] proposed YUSEG which
consists of an ensemble of YOLOvV5 models as the first stage
to obtain the bounding boxes, and an Eff-UNet as the model
used in the second stage to perform cell instance segmenta-
tion for each detected box. This is similar to our proposed
approach, but do we not use an ensemble of detection models.
Furthermore, in this paper, we conducted a more thorough
study of various combinations of detection and segmentation
models to find the optimal combination.

Overall, the key contributions of our work are: (i) a
two-stage approach of ICH segmentation that leverages
the abundance of bounding box annotations to improve
downstream segmentation performance, (ii) our experiment
results demonstrated the superiority of two-stage approaches
over single-stage approaches while having similar runtime,
(iii) the finding that out of the various detection and segmen-
tation models tested, YOLOv5+TransDeepLab was the best
combination for ICH lesion segmentation.

Il. METHOD

Figure 1 provides an overview of how training is done in our
proposed two-stage approach. Given a CT image, lesions are
detected with bounding boxes in the first stage via YOLOVS
(which is finetuned on BHX, a dataset with bounding boxes
of ICH lesions). During the second stage, the weights in
YOLOVS are frozen. Lesions are segmented by processing
only the parts of the images within bounding boxes and
the TransDeepLab model is trained using a separate dataset
containing segmentation masks only. Note that all the seg-
mentation models in the experiments including our second
stage model only perform binary segmentation.
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A. DATA PREPROCESSING

The proposed pipeline accepts head CT slices in the Digital
Imaging and Communications in Medicine (DICOM) format,
which is the convention for medical data. These DICOM
slices are converted to 512 x 512 pixel arrays. Pixel inten-
sities in these arrays are represented in Hounsfield Units
(HU). HU is a dimensionless unit used in CT images and
its scale ranges from approximately —1024 to +3071 HU
where —1000 HU represents the density of air and 42000
represents dense bone tissue. However, the default HU range
usually provides poor contrast between normal brain tissue
and ICH tissue. Hence, the contrast of each CT slice is
adjusted through a process known as Windowing (Contrast
Stretching) [25]. In this process, the window width and
window level of each CT slice are adjusted. For the ICH
detector, window width and level values were obtained from
the DICOM metadata. After windowing, the pixel intensities
are scaled to the range of 0 to 255.

In our implementation of the Expectation Maximization
(EM) method, the CT slices underwent skull and calcifi-
cation removal. Skull tissue and calcification in the brain
appear as bright white regions on CT images due to their
high density, even though both are normal and benign tissues
respectively. Acute ICH regions also appear white on a CT
image, albeit being slightly dimmer. Consequently, if an ICH
lesion is located adjacent to the skull and/or benign calcifica-
tion is present in a CT slice, the detection and segmentation
algorithm may output false positives for the skull / calcifica-
tion pixels. To address this problem, we removed pixels with
intensity greater than 250 for each CT slice, which removes
most skull / calcification pixels. At this point, the CT pixel
arrays are saved as PNG files to speed up data loading for
ICH detector at runtime. However, such preprocessing is not
necessary for other supervised segmentation models.

B. DATA AUGMENTATION

We incorporated various types of data augmentation to train
our models robustly and increase the size of the training
dataset. When training the detection model, the following
data augmentations were applied: augmentation of (hue, satu-
ration, value) properties, translation, scaling, horizontal flips
and creation of image mosaics. During the training of the seg-
mentation model, random flipping and random 90° rotation
were applied.

C. LESION DETECTION

In the first stage of the pipeline, lesion detection is per-
formed by marking them out with bounding boxes. You Only
Look Once (YOLO) is a family of state-of-the-art network
architectures for the task of object detection [26]. There
have been multiple iterations of the YOLO architecture, with
YOLOVS being the previous state-of-the-art version that is
most widely used. YOLOVS has 5 pre-trained networks to
choose from [27] and [28] each with a different number
of trainable parameters (e.g., YOLOvS5n and YOLOV5x).
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The choice of pre-trained YOLOVS5 network is made based
on hardware constraints and the desired trade-off between
detection speed and accuracy. Based on the hardware con-
straints and the high accuracy required for our use case, the
YOLOVS5I network (i.e., the second largest YOLOVS pre-
trained network) was chosen for our task. To choose the
YOLOVS hyperparameters that have the greatest influence
on ICH detection accuracy, a Genetic Algorithm (GA) was
used. We chose GA since other methods like grid search
are infeasible due to the very large search spaces associated
with YOLOVS5’s set of 29 hyperparameters. To perform lesion
detection on head CT images, the 512 x 512 pre-processed
CT images are provided as inputs to the YOLOv5 model. This
produces bounding boxes that are subsequently used in the
second stage.

D. LESION SEGMENTATION

In the second stage of the pipeline, we trained Trans-
DeepLab [14], one of the state-of-the-art hybrid U-Net+
Transformer models for segmentation [12]. Instance segmen-
tation is performed within the bounding box, classifying the
pixel as background or foreground, where the foreground
represents the lesion. We fine-tuned the segmentation model
on our dataset (dataset details presented in the next section)
by adhering to the original TransDeepLab training configu-
ration, such as resizing input image size to 224 x 224x3)
via bicubic interpolation and duplicating the third channel 3
times. The output channel of the last convolutional layer of
TransDeepLab is set to 2.

It is important to note that the source of bounding boxes
for use in the second stage is different during training and
inference. During model training of the second stage, since
most datasets of annotation masks did not contain bounding
box coordinates, instead we obtained the bounding boxes
generated from the ground truth lesion mask using the
mask_to_boxes algorithm from the PyTorch library. Then,
we cropped the image region within the detected bound-
ing boxes and subsequently resized the cropped region to
224 x 224 before segmentation was performed by Trans-
DeepLab. The segmentation mask produced from the second
stage is then resized to the size of the original bounding box.
Similar steps were also performed during model inference,
but the predicted bounding box from the first stage is used
since no ground truth is accessible. In the scenario where
multiple bounding boxes are predicted by the first stage,
they are combined into one by creating the smallest possible
bounding box that would encompass all predicted boxes. This
new bounding box is then used to crop the image and follows
the same resizing steps as described above.

Overall, our proposed two-stage approach involves using
YOLOVSI in the first stage for lesion detection and Trans-
DeepLab in the second stage for lesion segmentation. Each
stage is trained independently. Performing lesion detection in
the first stage helps the second stage to focus on the object of
interest. To maximize the accuracy, we ensured via manual
inspection that the ground truth bounding box fully covers
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FIGURE 2. Examples of ground truth segmentation masks visualized along with the segmentation masks produced by our
proposed two-stage ICH segmentation pipeline and other state-of-the-art segmentation models. Ground truth masks are shown
in blue, and the predicted masks produced by various segmentation models are shown in red, overlaid on the ground truth

segmentation masks.

the lesion segmented during training. Also, we note that in
our implementation, the ground truth bounding boxes only
contain a single subtype of lesion per box.

IIl. EXPERIMENTS AND RESULTS

In this section, we provide details about the datasets used,
experiment setup, and results of our experiments. We then
compare the performance of our pipeline to existing ICH
segmentation techniques.

A. TRAINING DATASETS

Two data sources were used in this study: Qure.ai CQ500
dataset [29] and the Radiological Society of North America
(RSNA) Intracranial Hemorrhage dataset [30]. The CQ500
dataset contains 491 head CT scans, with a total of 193,317
CT slices, while the RSNA dataset contains 874,035 head
CT slices. Both datasets contain head CT slices of various
subtypes of ICH. However, the CT images are only annotated
with expert radiologists’ reads regarding the presence of ICH
in each CT slice and its subtype. They do not provide seg-
mentation masks of the ICH lesions.

To train the detection model in the first stage, we used
annotations from the Brain Hemorrhage Extended (BHX)
dataset [31]. BHX is an extension of the CQ500 dataset that
provides 39,668 ground-truth bounding box annotations for
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five types of acute ICH (subdural, epidural, subarachnoid,
intraparenchymal, intraventricular) that are present in a total
of 23,409 CQS500 CT slices. We used the BHX bounding
boxes and their corresponding CT slices in CQ500 for ICH
detection experiments using YOLOVS, with an 80:10:10 split
for the training, validation, and test sets.

In addition, due to the paucity of openly accessible ICH
segmentation masks, we manually curated a dataset with the
supervision of a team of neurologists from our local hospital.
A total of 347 randomly selected CT slices were taken
from both datasets (approximately 70 slices for each of the
five ICH types). Specifically, we annotated 100 CQ500 CT
slices and 247 RSNA CT slices. These annotations include
both ground-truth bounding boxes as well as segmentation
masks for ICH tissues in the CT slices. The annotations were
completed with the guidance of doctors and radiologists from
the National Neuroscience Institute (NNI), Singapore [32].
In our experiments, we used 279 slices for training, 32 for
validation and 36 for testing. Note that all slices contain
lesions. Examples of these segmentation maps are shown in
blue in Figure 2 (under the column ‘Gold Standard’).

B. EVALUATION METRICS
To evaluate the performance of the first stage in the pipeline
(object detection tasks), mean Average Precision (mAP) was
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computed at an Intersection over Union (IOU) threshold of
0.5, more commonly known as mAP@0(.5. The performance
of our segmentation stage was evaluated using two standard
segmentation metrics, namely the IOU score and the Dice
coefficient, also known as F1 score. Specifically, our method
first performs segmentation on the image in the bounding
box, which needs to be resized to the model input size. Then,
the predicted mask was resized back to the size of the original
box and overlaid on the original mask according to the box
location. The Dice coefficient and IOU score at the second
stage are computed using the final predicted mask and the
original ground truth mask of each slice.

C. EXPERIMENT SETUP

Our two-stage pipeline involves a combined architecture
of YOLOvS with TransDeepLab. To justify this selection,
we conducted experiments on alternative single-stage meth-
ods and experimented with various model combinations for
two-stage methods. For single-stage methods, we compared
against both unsupervised and supervised approaches. EM is
an unsupervised algorithm, while DUCK-Net [33], SegRes-
Net [34], SwinUnet [12], U-Net [8] and Feature Pyramid
Network (FPN) [35] are deep, supervised segmentation net-
work architectures. For two-stage methods, the use of a
two-stage detection and segmentation approach allows for
many combinations of architectures, and it is not clear which
will be the best for ICH segmentation. Thus, we experimented
with two widely used detection models (YOLOVS5 and Faster
RCNN) and three segmentation models (EM, SwinUnet and
TransDeepLab). It is important to note again that for these
two-stage models, inputs to the segmentation models are parts
of the images that were within the bounding box, instead of
using the whole image.

Our YOLOVS object detection network was trained on
bounding box coordinates and ICH subtype labels for
200 epochs with batch size 64, and with 29 hyperparame-
ters as determined by a Genetic Algorithm (as explained in
Section III). We obtained optimal results with YOLOVS using
an IOU threshold of 0.6 for non-max suppression. YOLOv5
obtained the following results on the test set: mAP@0.5 =
0.974, mAP@0.5:0.95 = 0.794. For the second stage, our
TransDeepLab model was trained for 300 epochs with a
learning rate of 0.01 and batch size of 8 using stochastic gra-
dient descent (SGD) decaying optimizer. Our training method
was stated in Section II-D.

For the implementation of the other single-stage models,
we followed their original training configurations (such as
optimizer and loss function), except that we reduced their
number of parameters such that it became closer to our model
in terms of size. This helps to ensure a fair comparison.
For instance, we trained nnU-Net with its default data aug-
mentation such as foreground oversampling but reduced the
base number of features to 24. For other models such as
DUCK-Net, SegResNet and SwinUNet, we only performed
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rotation and flipping as data augmentation. These models
were trained with 300 epochs on the same training dataset.

D. COMPARING SINGLE-STAGE AND DOUBLE-STAGE
METHODS

Table 1 shows the segmentation performance comparison
between our method and alternative methods (single-stage
and two-stage methods). From Table 1, it is evident that
directly using an unsupervised approach such as EM pro-
duces very low Dice scores. However, when EM was used in
a two-stage approach (e.g. Faster RCNN + EM, YOLOvS5 +
EM), the Dice score was much higher (0.557) and even
outperformed most supervised single-stage models (e.g.
U-Net [8] and more recent models like DUCK-Net [33]).

TABLE 1. Lesion segmentation performance for our method and
state-of-the-art methods.

Dice score IntersectAion
Method (F1 score) over union
(I0U)
Ground truth boxes +
TransDeepLab 0.769 0.657
YOLOVS5 +
Two-stage TransDeepLab 0.605 0.478
YOLOVS5 + SwinUnet 0.597 0.473
YOLOvS + EM 0.557 0.436
Faster RCNN + EM 0.480 0.356
nnU-Net [20] 0.665 0.566
DUCK-Net [33] 0.523 0.416
SegResNet [34] 0.522 0.411
Single-stage SwinUnet [12] 0.513 0.472
U-Net [8] 0.458 0.351
FPN [35] 0.390 0.332
EM [6] 0.197 -

When the second stage is replaced by supervised models
(i.e. combination of YOLOVS5 and TransDeepLab), the Dice
score improved by around 5% to 0.605. While well-optimized
supervised approaches such as nnU-Net [20] obtained a Dice
score of 0.665, we note that an optimal setup of our two-stage
pipeline (i.e. predicted bounding boxes matches the ground
truth) was able to achieve the best segmentation performance
in terms of both evaluation metrics (Dice score of 0.769, IOU
of 0.657). Further analysis of the confusion matrix revealed
that this improvement over nnU-Net is driven primarily by
higher true positives and lower false negatives. Additionally,
further experiments done to compare these two models in a
5-fold cross-validation setting reveal that the improvement is
statistically significant, with a p-value of 2.3 x 10™* (two-
sample t-test).

Overall, the results in Table 1 demonstrate the superior-
ity of two-stage segmentation approaches over single-stage
methods. These results provide empirical evidence demon-
strating the value of using bounding boxes to narrow the field
of view of the segmentation model, helping it to improve
segmentation performance.
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E. ABLATION STUDIES

Since YOLOV5 + TransDeepLab was the best-performing
combination of models, an ablation study was performed to
better understand the contributions of each stage of our pro-
posed pipeline. We compared our proposed two-stage model
to a direct approach of image segmentation using Trans-
DeepLab. Note that in the two-stage model, while the model
in the first stage performs object classification of lesion
subtype, the second stage (segmentation model) was only
trained on a binary segmentation task (presence / absence
of ICH). For this ablation study, a separate TransDeepLab
model was trained to segment ICH lesions regardless of
the lesion subtype in the image and without any guidance
from the bounding box. This segmentation model was trained
for 600 epochs with SGD decaying optimizer. In Table 2,
we observed that even after training the new segmentation
model for twice as many epochs as the other segmentation
models (which used 300 epochs), the segmentation perfor-
mance of the single-stage TransDeepLab model was still
lower than our method.

TABLE 2. Lesion segmentation performance for our 2-stage method and
direct image segmentation.

Dice score Intersect‘ion
Method (F1 score) over union
(I0U)
Ground truth boxes + 0769 0.657
Two-stage TransDeepLab
YOLOVS5 + 0.605 0478
TransDeepLab . 4
Single-stage TransDeepLab [14] 0.566 0.446
YOLOvS5-Seg 0.480 0.380

We also trained a segmentation head using the body of
the trained YOLOvVS. During the conduct of our experi-
ments, the authors of YOLOv5 had not implemented its
segmentation head. Hence, we trained a segmentation head
for YOLOVS, referred to as YOLOv5-seg in Table 2. We used
a combination of 4 convolutional layers, 3 up-sampling layers
and 2 Bottleneck Cross Stage Partial modules to up-sample
the latent vector to the segmentation mask. As compared to
the current official implementation of the segmentation head
(Proto module) [27], we have more layers in our version of
the model: we implemented two blocks, each containing a
convolutional layer, up-sampling layer, and the YOLO C3
dense block. Between these two blocks, we also had two
convolutional layers and an up-sampling layer. We trained
the end-to-end YOLOVS5-Seg model on the union of training
and validation set until convergence is reached, with a batch
size of 3 and stepped learning rate from 0.001. Our results in
Table 2 demonstrated that our proposed two-stage method is
more performant than the direct use of TransDeepLab as the
segmentation model.

Overall, it is evident from the ablation study that Trans-
DeepLab performs better than YOLOvV5 with a segmentation
head attached, possibly suggesting that the second stage has a
larger contribution to the overall performance. However, our
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proposed approach of using the bounding boxes to narrow
the field of view exposed to the segmentation model helps
to further boost the performance. When ground truth bound-
ing boxes are used, this improves segmentation performance
by over 20% as compared to a single-stage TransDeepLab
model, clearly showing the value of our two-stage pipeline.

F. COMPUTATIONAL COMPLEXITY

Since ICH is an emergency, it is important to ensure that
the time taken to perform model inference is not too long.
To record the time taken by each model to produce its pre-
dictions, we recorded the time before and after the model
performs an inference of each image in the test set. This
excludes the data preprocessing time of the model. The aver-
age inference time and standard deviation for each model are
reported in Table 3. All experiments were performed on a
server equipped with an Nvidia A100 GPU (PCle 4.0, 80GB
HBM2).

TABLE 3. Inference runtime of each model and their standard deviation.

Prediction time
Method (seconds)
YOLOVS + TransDeepLab

Two-stage (Proposed method[; 0.52+2.49
YOLOVS5 + SwinUnet 0.31£1.98
YOLOvV5 + EM 3.75£4.56

DUCK-Net [33] 0.48 £2.03
SegResNet [34] 0.34+1.89

Single-stage SwinUnet [12] 0.24+1.98
U-Net [8] 0.28 +1.31
EM [6] 3.68 £4.56
TransDeepLab [14] 0.45+2.49

From Table 3, it is evident that most models can perform
segmentation in around 0.3-0.5 seconds. This amounts to
approximately 15 seconds for a typical head CT scan with
30 slices. Also, two-stage models are not significantly slower
than single-stage models. This can be attributed to the highly
optimized implementation of YOLOvS which allows it to
perform detection 5-10 times quicker (~0.07 seconds) than
the time taken for segmentation. We note that the high stan-
dard deviation throughout all prediction timings could be
attributed to caching effects that occur at the start of the
model inference. However, the mean prediction time reported
remains representative of the average runtime for each slice.

IV. DISCUSSION

Overall, our results demonstrated the value of a two-stage
approach where lesion detection is first performed before
lesion segmentation. On our manually curated dataset of
segmentation masks, the proposed two-stage approach was
shown to outperform baseline models such as U-Net and
state-of-the-art models such as SegResNet [31] by around
8%. We perceived that this performance improvement is due
to the availability of larger datasets to train the first stage
of the architecture. In the first stage, the model has learned
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to propose the region of interest, alleviating the difficulty
of training an end-to-end segmentation model on the whole
image.

Ablation studies demonstrated that the introduction of the
detection stage before segmentation gives a 4%-8% boost in
segmentation performance as compared to direct segmenta-
tion, further affirming the value of our proposed two-stage
approach. Interestingly, the YOLOvVS5-Seg model performed
worse than SwinUnet and SegResNet. One of the reasons
could be that the simple YOLOvV5 segmentation head that
up-samples the latent representations is less well-fitted than
the other larger segmentation models on this task. Another
key insight from the ablation study is the large increase in
performance when using ground truth bounding boxes instead
of those predicted by YOLOVS5. There remains some room
for improvement in terms of lesion detection performance
(mAP@0.5 =0.974, mAP@0.5:0.95 = 0.794) and the results
obtained from using the ground truth show the best results
that could be obtained by our proposed two-stage approach.
If our two-stage model were to be implemented in clinical
settings, neuroradiologists could make simple adjustments
to the bounding box coordinates as a much quicker way of
improving Dice scores (as compared to manually editing or
creating the segmentation masks). These simple adjustments
will also create improved bounding box labels that the model
could use for fine-tuning the detection model and consequen-
tially improve segmentation performance in the second stage,
eventuating in the high Dice score of 0.769.

In terms of runtime, two-stage approaches that are
supervised (i.e. YOLOvS + TransDeepLab, YOLOvVS +
SwinUnet) have insignificant overhead as compared to
single-stage methods, making them equally suitable for clin-
ical deployment. Even though a two-stage approach that uses
unsupervised segmentation (i.e. YOLOv5 4+ EM) was able
to outperform several single-stage segmentation models, the
long runtime (approximately 10 times longer than many other
non-EM approaches in Table 3) makes it less feasible for
clinical deployment in emergency use cases. However, two-
stage approaches with EM could potentially find applications
in other less time-sensitive use cases where segmentation
masks are not available at all.

Our proposed approach has been demonstrated for largely
regular lesions and it might be less useful for segmenting
lesions or structures that are large and irregular. For instance,
segmentation masks of white matter or grey matter are spread
across a large area and the resultant bounding box would have
been large, limiting the utility of the first stage. On the other
hand, future work could evaluate our two-stage approach
on other datasets where lesions/structures are regular and
segmentation masks are scant but bounding boxes can be
easily demarcated, e.g. brain tumor segmentation, subcortical
segmentation.

Another limitation of our approach is that our lesion
dataset contains mostly one lesion subtype for each image.
Therefore, we were able to obtain a bounding box in the
ground truth mask that covers the lesion well. Future work in
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this research direction should robustly test more complicated
scenarios such as CT images with multiple small lesions or
multiple co-existing subtypes in the same slice.

Finally, our experiments are limited to 2D slices and future
work in this area could explore the use of 3D datasets.
This remains difficult considering the scarcity of datasets
with segmentation masks. Alternatively, models that consider
the sequential relationship across slices could be incorpo-
rated in the segmentation model in our two-stage framework,
potentially improving the Dice scores further.

V. CONCLUSION

In this study, we have proposed a two-stage approach to ICH
segmentation and demonstrated how it can leverage large
datasets of bounding box annotations to improve downstream
segmentation performance. This is especially useful consid-
ering how datasets of segmentation masks are typically very
small. With this improved model, neuroradiologists could
incorporate more accurate estimates of lesion measurements
into their clinical decision-making process. Our proposed
approach could also generalize to other medical image seg-
mentation problems with small datasets.
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