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ABSTRACT We aim to contribute to deep learning based smart agriculture through semantic segmentation
on crop images from real field environment. The key objective is the precise detection of diseases to
facilitate the automation of agricultural management. The most significant issue is that the disease regions,
serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this
issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an
RoI-attentive image that includes only regions predicted as disease and their surroundings from the input
image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by
guiding the network to re-focus on RoI-associated context based on the initial prediction from the input.
Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be
enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally
demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions.

INDEX TERMS RoI-attention, semantic segmentation, small object detection, crop images, disease.

I. INTRODUCTION
Recently, there has been a growing interest in exploring smart
agricultural approaches that employ advanced technologies
like deep learning, sensors, and data analysis for the efficient
cultivation and management of crops. Various studies have
been conducted to analyze crop images through computer
vision algorithms to measure or predict the degree of crop
growth, or to detect the regions infected with diseases [1], [2],
[3], [4], [5]. In this paper, we aim to contribute to automatic
disease management by accurately segmenting the regions
affected by diseases in crop images.

Segmentation, one of the key research topics in com-
puter vision, enables the precise analysis of digital images
by performing pixel-level classification. Recently, it has
been widely used in various fields such as healthcare [6],
autonomous driving [7], and smart agriculture. Segmentation
for agriculture aims to accurately classify every pixel in a
given crop image into three classes: plant, disease, and BG
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(background) [8], [9]. It is crucial to precisely detect disease
regions for smart agricultural management, and thus, the
regions of the disease class are designated as Regions of
Interest (RoI) in crop images.

However, disease segmentation faces a critical challenge
in accurately recognizing disease regions which are typically
much smaller in size compared to the other plant and BG
classes. Figure 1 shows the severe class imbalance between
the disease and the other classes due to small disease regions.
In Figure 1, the maize images on the left are from the public
dataset [10], and the cabbage ones on the right were cap-
tured by our drone vehicles in the field. Especially, because
crop images are mostly captured in a top-view perspective,
as shown in Figure 1, the challenge of segmenting small
disease regions can be even more prominent. This challenge
can not only compromise the learning efficiency of a segmen-
tation network but also pose significant obstacles in detecting
disease regions, which are our main concern in this work.
Such an issue is not confined to disease segmentation alone,
as most of RoI classes are generally small. For instance, for
the case of autonomous driving, it is crucial to accurately
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FIGURE 1. The examples of top-view crop images with class-imbalance
due to the small size of disease regions (red: healthy plant / green:
disease, black: BG). The left is maize plants with leaf blight, and the right
is cabbages with clubroot.

recognize narrow lanes for safety. Similarly, in healthcare,
it is important to capture small tumors precisely for diagnosis.
Therefore, the segmentation of small RoI classes becomes a
critical hurdle that should be overcome in various industrial
applications.

To address the issue, we propose the concept of RoI-
Attention, which guides the network to intensively reconsider
regions with a high likelihood of being predicted as the RoI
class (the disease class in this paper) and their surround-
ings. RoI-Attention is implemented by providing additional
supervision to the network for masked version of input image
which only represents the regions predicted as disease and
their surroundings. This enables the RA-Net to perform
double-checking for RoI-associated context. The masked
image is not generated through separate preprocessing but by
utilizing the initial segmentation result for the input image,
which corresponds to probabilistic class estimation. Then, the
fusion stage combines the features extracted from the global
input image and its masked version, enhancing representation
power for the small RoI class. Through a simple convolution
operation on the fused features, the final segmentation output
is generated with enhanced prediction performance for the
RoI class. As shown in Figure 2, compared to conventional
segmentation networks that solely perform optimization for
the global input, the proposed RA-Net introduces a sequential
framework that includes double-checking for RoI-associated
context.

We applied the proposed RA-Net for the detection of
leaf-blight disease on maize crop images [10]. Experimental
results show that the proposed method is effective in improv-
ing the predictive performance for the small RoI class of
disease.

II. RELATED WORKS
Small Object Segmentation is a challenging task, and it
demands a precise identification of class-limited number of
pixels in an image and is a lack of geometric cues, resulting in
weak feature representation and low ‘objectness’. Therefore,

TABLE 1. Notation used in the paper.

FIGURE 2. Comparison between the conventional segmentation
framework and the proposed RoI-Attention framework.

it requires more contextual reasoning for accurate detection.
The issue of small object segmentation can be more problem-
atic in the disease segmentation of crop images, which is the
primary concern of our study.

Various studies aim to improve the segmentation per-
formance of small objects. BiSeNetV2 [11] tackles the
issue of losing representation power for small objects dur-
ing down-sampling by incorporating the detail-branch. This
module enhances the descriptor for pixels by providing higher
resolution and deeper channel dimensions. STDC-Seg [12]
complements the encoder-decoder structure with a detail-
aggregation module, leveraging fine-grained information
from edges of objects. HRNet [13] prevents spatial infor-
mation loss by integrating an additional sub-network which
maintains high-resolution features during encoding.

In addition, various methods such as DDRNet [14],
MCINet [15], SFNet [16], SPiN [17], MFNet [18] utilize
multiscale and high-resolution features or employ additional
modules and branches to provide advantageous guidance for
recognizing small objects.

While these techniques may be effective for small object
segmentation, they have the drawback of not being memory
efficient due to the use of additional modules or networks.
Compared to these methods, the proposed RA-Net effi-
ciently improves the recognition ability for small objects
without relying on additional modules and is even based on a
lightweight backbone [19].
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Attention-Based Methods have made remarkable
advancements in the field of computer vision. Refer-
ences [20], [21], [22], [23], [24], and [25] are studies in
medical image processing and they employ Transformer
attentions to recognize small organs or cells in CT images
more accurately. In the field of agriculture, [8] improved the
predictive capability for crops and diseases by using feature
refinement with self-attention and feature fusion with cross-
attention. These methods aim to overcome the limitations
of CNNs, where fine grained information of small objects
is lost during the stride or pooling process, by modeling
the global relationship among pixels through various atten-
tion operations. Furthermore, they enhanced segmentation
performances by utilizing multi-scale feature strategy, like
UNet [26] or DeepLabV3+ [27].
While those attention-based networks may be useful for

accurately detecting small objects, they still pose a challenge
in terms of memory efficiency. The Transformer module
requires complex computations to consider long-term depen-
dencies among pixels, and this can lead to an intensive
increase in the number of model parameters. As the network
becomes more sophisticated, the amount of data required
for optimization tends to increase significantly. For instance,
vision transformer based DPT [28] requires a significant
amount of data for effective training. Because making labels
for segmentation is labor-intensive, this can become an obsta-
cle from a cost perspective. Reducing the resolution of the
input image can alleviate the complexity of the network to
some extent but considering that the disease regions are small
RoI class, this is not an appropriate solution.

Compared to those existing methods, the proposed RA-Net
implements attention based on the network output of the
initial input image. It is noteworthy that the RA-Net can
be simply implemented by reusing the network’s output
with class probabilities without complex modules, while
remaining faithful to the concept of attention that focuses
on important RoI-associated context of the image. Moreover,
it possesses advantages in terms of efficiency and perfor-
mance, compared to transformer networks that prioritize
efficiency like Lawin [29], SegNeXt [30], EfficientViT [31].

ROI-Attention aims to guide the network’s focus towards
more important context within an image. Reference [32]
trains the discriminator to determine authenticity only for
the RoI (leaf) objects of the given images to generate more
plausible leaf images. It masks generated or real images to
allow the discriminator to consider leaf objects only, alleviat-
ing the effort in considering relatively less important non-leaf
regions. In this process, the output of a binary segmentation
network is used as a mask to exclusively represent the leaf
objects in the input image for the discriminator.

Similarly, the proposed RoI-Attention uses the output of
the segmentation network for the global input image to cal-
culate a RoI-Attention map. The estimated map is then used
in the subsequent steps to generate an RoI-attentive image as
shown in Figure 3 or 6. The difference is that the RoI-attentive
image considers not only the RoI predicted regions but

also their surroundings to make the RA-Net double-check
RoI-associated context.

Reverse-Attention [33] is the opposite concept to RoI-
Attention. While RoI-Attention guides the network to focus
on regions with high likelihood of being predicted as the
RoI class and their surroundings, reverse-attention directs the
network to discover unseen regions by erasing the current pre-
dicted regions. Note that the RA-Net is trained to reconsider
important context in the input image based on the current
predicted regions.

In this paper, we experimentally verified that the pro-
posed RoI-Attention, which focuses on RoI-related context,
is more superior to reverse-attention in detecting small RoI
regions. In addition, RoI-Attention is more versatile as it can
be applied to multi-class segmentation (plant, disease, and
BG in this paper), making it more useful compared to the
reverse-attention based methods [33], [34], [35] that only
assume binary segmentation.

III. PROPOSED METHOD
Our task is multi-class segmentation of crop images [10]
with three classes (plant, disease, and BG). The most cru-
cial issue is the small size of the RoI class, disease, which
makes accurate detection challenging. The goal of our study
is to improve the segmentation performance of small dis-
ease regions in crop images. The core idea is to guide
the network to re-segment the RoI-associated regions which
exclusively contain initially predicted regions as the disease
class and their surroundings. For this purpose, we generate an
RoI-attentive image IRoI that contains the only RoI-associated
context.

The RoI-attention map that selectively extracts RoI-related
context is produced by RMM (RoI-Mask Module) using
the initial segmentation, Pinit of the global input image, I .
The attention map serves as a mask that covers less impor-
tant context in predicting disease regions from I . Therefore,
RoI-Attention can be easily implemented leveraging IRoI ,
the masked version of I , as an additional input. It is note-
worthy that IRoI relies solely on Pinit which is generated
by optimizing the cross-entropy loss without any separate
preprocessing.

With the RoI-attentive image IRoI as an additional input,
the RA-Net can be trained to reconsider RoI-related context
necessary for accurately segmenting disease regions. There-
fore IRoI serves as an augmented data since the network,
trained on I , implements additional training for IRoI . Then,
the feature representationsFinit andFRoI for the global input I
and RoI attentive image IRoI are finally combined to enhance
the representation power for disease regions. Utilizing the
fused feature, the RA-Net can produce a final output Pfin
which achieves more accurate performance compared to Pori.
We used ERFNet [19] as a baseline network that constituting
the RA-Net. In this section, we provide the detailed expla-
nation of the proposed RA-Net architecture in Figure 3 and
RMM in Figure 6.
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FIGURE 3. The overall architecture of RA-Net. RMM is a RoI-Mask Module which is also depicted in Figure 4. Blue arrow means 1 × 1 convolution, and
ERFNet was used for network.

A. RA-NET
RoI-Attention is implemented by using the output of the
initial segmentation network Pinit for the global input image
I . Furthermore, to generate a final prediction, it is essen-
tial to combine the feature embedding outputs of both the
initial and RoI-Attention segmentation stages. Therefore,
RA-Net consists of three sequential stages in total: the
initial segmentation stage, the RoI-Attention segmentation
stage, and the fusion stage. Each stage is optimized for
the corresponding GT. This process can be summarized as
refining the prediction of the initial segmentation stage by
using the RoI-Attention segmentation and fusion stage. Note
that the networks used in the first and second stages share
weights and differ only in their inputs. The final fusion stage
fuses feature embedding outputs Finit and FRoI from the stage
one and two to improve the feature representation for the RoI-
associated context. In the following sections, we will provide
detailed descriptions of three sequential stages.

B. INITIAL SEGMENTATION STAGE
This stage produces high-dimensional feature embedding,
Finit which is used in the fusion stage and the segmentation
output, Pinit corresponding to class probabilities. The feature
embedding is from the last decoding layer of the network,
as it has not only high resolution but also sufficient semantic
information. Note that Finit has c channels and it is set to
32. As the stage is identical to the training process of a
conventional segmentation network, except for the part that
calculates Finit , the optimization of Pinit suffers from the
coarse disease prediction. The purpose of our study is to
generate Pfin, which shows higher predictive performance for
disease than Pinit , using additional stage with RoI-Attention.

FIGURE 4. Visualized process of RMM. The M̂ask is used as RoI-Attention
map.

FIGURE 5. Visualized process of RMM for the car object in the Cityscapes
dataset.

To implement the RoI-Attention, Pinit and I are passed to the
RMM of the second stage.

C. RoI-ATTENTION SEGMENTATION STAGE
This stage performs the proposed RoI-Attention, that can
alleviate the burden on the network by concentrating on the
disease-associated context without less important plant and
BG information. To calculate the RoI-Attention map which
generates IRoI by masking I , Pinit from the initial stage is
used. Table 2 and Figure 4 show the process of RMM to
generate the RoI-Attention map. In addition, Figure 5 demon-
strates that the proposed RMM is applicable to images on
various domains. It simply provides the process of generating
IRoI for the segmentation in autonomous driving using the
Cistyscapes dataset [43].
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TABLE 2. The overall process of RMM.

FIGURE 6. Attention map and its IRoI according to the dilation margin m.

RMMfirst calculates the confidence score map S by apply-
ing the softmax function to Pinit along the channel axis. Each
channel of S represents the probability of each pixel in the
image being predicted as one of the classes: plant, disease,
and BG. As our focus is placed on disease-associated context
at this stage, we extract the score map corresponding to the
disease class only, denoted as Sdisease. The disease score map
Sdisease has values between 0 and 1, as each score represents
the probability of being predicted as the disease class. It gen-
erates a mask by extracting regions with scores higher than a
specific threshold τ , thereby containing only the regions with
high confidences of the disease class.

Note that, the proposed RoI-Attention stage additionally
re-segments regions with high likelihood of being predicted
as the disease class but also their surroundings. Therefore,
by applying a dilation operation to the mask , surroundings of
the predicted disease region can be included. A dilated mask
m̂ask is used as an RoI-Attention map, and IRoI is calculated
by multiplying I with m̂ask . The dilation operation of [36]
was used and the margin m adjusts the dilation rate. A larger
margin allows a broader surrounding context of the disease
predicted regions as shown in Figure 6.

Through this process IRoI can be easily calculated from
the output of the initial segmentation stage, which is train-
able. The network used in the initial stage takes IRoI as
an additional input and outputs FRoI and PRoI . Through

FIGURE 7. Domain gap in BG classes between I and IRoI , (black: BG, red:
plant, green: disease).

this additional supervision, the network can double-check
disease-associated context, thereby improving the disease
recognition ability of the network. Furthermore, it can also
enhance its training performance by the augmented data IRoI .

D. FUSION STAGE
This stage takes Finit and FRoI from the first and second
stage to produce a final prediction Pfin. In fact, this stage
complements the shortcomings of the initial segmentation
stage, which is a typical training process of a segmentation
network. By adding FRoI to Finit , the representation power
of Finit for the disease-associated context can be enhanced.
Afterward, a simple convolution operation is performed to
produce Pfin, which achieves better predictive performance
on disease rather than Pinit .

E. TRAINING
There exist three segmentation outputs P init , PRoI , and Pfin,
in total and each output is optimized with the cross-entropy
loss for its corresponding GT. However, there is a remark-
able point to consider when training PRoI . Since IRoI is a
masked version of I , there inevitably occurs a significant
loss of meaningful information in the image. As shown in
Figures 3 and 5, most of pixel values in IRoI are 0, excluding
the disease predicted regions and their surroundings. This can
be problematic when calculating the cross-entropy loss for
PRoI , as IRoI has not only a significant imbalance between the
BG (pixels with 0) and the other classes but also a prominent
domain gap between the BG classeswhen compared to I . This
can hinder the stable convergence of the network. As shown
in Figure 7, in I , the BG class includes weeds and bare soil,
while in IRoI , pixels with a value of 0 are treated as the BG
class.

To address this issue, when calculating the cross-entropy
loss for PRoI , we utilize pixel weights, giving more weights
to the regions predicted as disease. We use the score map of
the disease class (Sdisease in Table 2 and Figure 4) as pixel
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weights, which are calculated from the output of the initial
segmentation stage. As IRoI focuses on regions where disease
class is likely to be predicted in I , assigning higher weights
to pixels with high confidence scores for the disease class
is a valid approach. This allows for the natural exclusion of
unnecessary regions (pixels with 0 in IRoI ) during the loss
calculation. It is possible to reduce calculation errors for the
BG class when the cross-entropy loss for PRoI is computed.
In summary, the total loss is given by as below.

Ltotal = −
1

H ·W
(
∑H

i=1

∑W

j=1

∑C

c=1

[
yij − log

(
pinitij

)]
+ wij ·

[
yRoIij − log

(
pRoIij

)]
+

[
yij − log

(
pfinij

)]
where yij is GT, P ij is a network output, and wij is a pixel
weight.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
The proposed network is trained with the field images
infected with leaf blight of the maize plant dataset [10].
There are 110 images for training in total and 10 images
for validation. In training, the resolution of the input image
is 512 × 512 and batch size 3 are used for training. The
proposed RA-Net was designed by extending ERFNet [18]
which is known for its lightweight structure. It was imple-
mented using the PyTorch framework on a PC with NVIDIA
RTX 3090 GPU. We adopted the Adam optimizer for loss
optimization, and initial learning 1e-3.

B. QUANTITATIVE EVALUATION WITH EXISTING METHODS
Various experiments have been conducted to demonstrate that
proposed RA-Net is superior for detecting small RoI disease.
As an evaluation metric, IoU (Intersection over Union) for
each plant and disease class was used. It represents the ratio
of the overlapping area between the predicted segmentation
result and the GT label to the entire area. As our primary
focus is placed on disease regions, and the prediction of the
plant regions is relatively easy, we paid more attention to
the disease IoU for evaluating the predictive performance of
the methods. Furthermore, among the comparison methods
utilized, the top 5 with superior disease IoU were com-
pared using different evaluation metrics as shown in Table 6,
namely Symmetric Best Dice(SBD) [44] and Dice coeffi-
cient(Dice) [45]. Both evaluation metrics indicate that the
RA-Net, excels in detecting disease.

First, we show the superiority of our RA-Net by com-
paring it with the baseline network ERFNet [19], and the
networks specialized in small object segmentation. As shown
in Table 3, the proposed network demonstrates superior per-
formance in disease segmentation while being efficient in
terms of the number of parameters. Without the hierarchical
structure [17], [26], multi-scale feature strategy [13], [14],
[15], [18], [27], and additional modules or guidance [11],
[12], [13], [16], [17], RA-Net effectively improves the rep-
resentation power of disease. It can also be observed that

TABLE 3. Comparison with baseline (ERFNet) and the existing small
object segmentation methods.

RA-Net is more efficient and performs better than [37], which
focuses on network lightweighting.

Second, many of Transformer-based methods rely on
highly complex operations, leading to heavy-weight archi-
tectures. As confirmed in Table 4, when compared with the
Transformer based methods which require more parameters
than the baseline [19], the proposed network is not only
memory efficient but also effectively guides the network
to focus on disease-associated context. This demonstrates
that in case with limited number of training data, the use
of complex operations can hinder the proper convergence
of the network as in [41] or fail to deliver the expected
improvements. For instance, [29] and [30], despite emphasiz-
ing efficiency as a strong point, require more parameters than
the RA-Net and exhibit underfitting in terms of predictive
performance. In addition, despite using the large number of
network parameters, [28] exhibits poor performance, com-
pared to the RA-Net. The cases of [28] and [41] suggest that
complex networks with large parameters may not be always
helpful for good crop image segmentation, particularly for
insufficient amount of training data available. Because mask-
ing segmentation labels is generally labor-intensive, complex
Transformer-based methods is not appropriate for smart
agriculture. In this regard, the proposed RA-Net has the
advantage of being data-efficient.

In addition, there also exist Transformer-based approaches
[25], [31] with a fewer number of parameters, compared to
the baseline. However, they show inferior performance to
the RA-Net. This implies that focusing on the efficiency and
simplicity of the network can lead to a failure in achieving the
most critical goal, improving disease prediction performance.
In contrast to thesemethods, our proposed RA-Net effectively
avoids the underfitting in disease prediction.

Third, the proposed RoI-Attention has a concept oppo-
site to Reverse-Attention based methods [33], [34], [35].
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TABLE 4. Comparison with Transformer-based methods.

TABLE 5. Comparison with reverse-attention based methods.

TABLE 6. Comparison with To5 methods using SBD & Dice.

While Reverse-Attention focuses on unseen regions based on
the current prediction, RoI-Attention focuses on the regions
predicted as disease and their surroundings in the initial
prediction. As shown in Table 5, the proposed RA-Net shows
better predictive performance for disease than [33], [34], and
[35]. Since they only assume binary segmentation, we per-
formed binary segmentation separately for the plant and
disease classes and then aggregated the results.

Lastly, to generate the final prediction Pfin, RA-Net
requires sequential optimization of the outputs from I and

TABLE 7. Comparison with Pinit from the initial stage.

TABLE 8. Comparison with a margin m.

TABLE 9. Comparison with channel dimension c .

TABLE 10. Comparison with various losses for PRoI .

IRoI in the preceding two stages. Therefore, ERFNet, the
baseline network, consists of RA-Net is trained with both
I and IRoI . As shown in Table 7, the inference results
derived from P init showed superior performance compared
to ERFNet which is trained with I only. Therefore, it was
confirmed that IRoI , which contains the disease-associated
context only, can serve as an effective data augmentation
technique for training disease segmentation network. Fur-
thermore, it was observed that the proposed RoI-Attention
framework is more effective in addressing class-imbalance
compared to the OHEM Loss (Online Hard Example
Mining) [42].

V. ABLATION STUDIES
There exist two hyper-parameters for the implementation of
RA-Net. One is the margin m used in the RoI-Attention
stage with RMM which determines the dilation rate. The
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FIGURE 8. Qualitative comparison with the existing methods.

other is the channel dimension c of feature embeddings at the
decoding stage. To investigate the effect of hyper-parameters

on the performance of the network, ablation studies were
conducted.
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First, the effect of the margin was verified. As shown in
Table 8, employing an RoI-Attention map with margin has
significant benefit compared to the case of no margin which
considers RoI predicted regions only. This stems from the fact
that disease predictions at the initial segmentation stage are
coarse during the early stages of training. Therefore, if the
only disease predictions are used as the RoI-Attention map,
it becomes challenging to obtain meaningful IRoI due to the
coarse predictions in the early training stages. By incorporat-
ing the surroundings of regions with disease predicted regions
through dilation operations, it is possible to address the issues
caused by coarse predictions of early training stages. It was
also observed that increasing the margin beyond a certain
threshold does not significantly contribute to performance
improvement.

Second, the channel dimension of feature embedding can
be considered as the number of feature descriptors for each
pixel. As shown in Table 9, increasing the channel dimension
sufficiently can provide a slight improvement in detecting
small disease area. However, excessively increasing the chan-
nel dimension can lead to overfitting, so it requires careful
tuning to find an appropriate balance.

Lastly, when calculating the cross-entropy for the PRoI , the
score map of the disease class Sdiseasederived from Pinit is
used as pixel weights. The experiments have verified that the
weighted cross-entropy for the optimization of PRoI is bene-
ficial for training RA-Net. Table 10 shows the effectiveness
of the weighted cross-entropy in addressing class imbalance
and the domain gap issue of the BG class which occurs during
the RMM process.

VI. CONCLUSION
In this paper we proposed a novel framework to address
the challenge of small RoI objects in segmentation. Through
our proposed RA-Net, we have confirmed its superior per-
formance in detecting small disease regions compared to
existing methods. RoI-Attention, the core idea of RA-Net,
guides the network to re-examine the regions predicted as
disease and their surroundings. This approach enhances the
network’s recognition ability for small disease regions with-
out relying on complex modules such as Transformer. Our
study is note-worthy in that RoI classes in segmentation, are
mostly local regions that are hard to detect. Therefore, our
proposed framework is not limited to segmentation for smart
agriculture and is easily applicable to any other segmentation
tasks.

The current RoI-Attention implemented by the RoI-Mask
Module (RMM), utilizes dilation operation that is dependent
on hyperparameters. It needs improvement given that the
appropriate setting of the dilation margin can have an impact
on performance. Future work will be done by exploring
methods that can adaptively consider the RoI-related context
without relying on hyper-parameters.

Furthermore, although segmentation is a useful method
for smart agriculture, there is currently a scarcity of datasets
suitable for disease segmentation. And most of them are not

from the real field environments but rather from laboratory
settings. Our follow-up research aims to contribute to the
advancement of deep-learning based smart agriculture.
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