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ABSTRACT The theory of complex Pythagorean fuzzy set (CPFS) has been already interpreted. This theory
states that in both polar and Cartesian form the degree of membership and degree of non-membership
are located in a complex plane’s unit disc. However the Cartesian presentation has some drawbacks for
instance, this theory can’t consider the full belongingness (1 + ι1, 0 + ι0) of the element because this value
is not located in the unit disc of a complex plane but in a unit square of a complex plane. Hence, with
the existing Cartesian form of CPFS, the full belongingness of the element can’t be described. Further,
in polar form, the degrees of membership and non-membership are interpreted by amplitude and phase
terms. Where the amplitude acts similar as they act in the Pythagorean fuzzy set (PFS) while phase terms
show the periodicity, direction, or position of the element in a set. However, this description of degrees
of membership and non-membership is confined to the polar structure and is inappropriate for inclusion
in logical operations accompanied by CPFS in Cartesian coordinates. Therefore, in this article, we devise
a theory of CPFS in Cartesian coordinates, where both degrees of membership and non-membership are
in Cartesian form located in a complex plane’s unit disc and containing real and imaginary terms. These
terms are fuzzy functions and carry fuzzy information. We also establish a few critical and basic operations
for CPFS in Cartesian coordinate and then discuss some aggregation operators (AOs) and a multi-attribute
decision-making (MADM) method within CPFS. After that, we employ the established theory in the field of
visualization technology to reveal the applicability and requirement of the proposed theory. We interpreted
the comparison of the deduced theory with certain prevailing theories to portray the supremacy of this work.

INDEX TERMS Complex Pythagorean fuzzy set in Cartesian coordinate, visualization technology, aggre-
gation operators, MADM.

I. INTRODUCTION
Because crisp sets are binary—an element is either totally
in or fully out of the set—they frequently fall short of
providing an accurate representation of real-world occur-
rences. It is challenging to depict circumstances including
uncertainty or ill-defined limits because of this constraint.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

Therefore, Zadeh [1] portrayed the theory of fuzzy set (FS)
in 1965 which is a more adaptable framework that can make
sense of and interpret ambiguous or imprecise data. An FS
permits partial membership, in contrast to crisp sets, which
have well-defined membership functions that assign entries
either wholly within or totally outside the collection. Accord-
ingly, the degree to which an element belongs to the set
can be indicated by its degree of membership, which ranges
from 0 to 1. Different fields, for example, decision-making,
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control systems, pattern identification, and artificial intelli-
gence, have tracked down need for the hypothesis of FS.More
exact and extensive demonstrating of the veritable world is
made conceivable by them, as they give a strong device to
adapting to mind boggling and dubious data. Czogala and
Drewniak [2] initiated monotonic operations in the notion of
FS. Dubois and Prade [3] devised aggregation connectives in
FS. Lin et al. [4] diagnosed excavation systems relying on
FS and machine learning approaches. Kumar et al. [5] inves-
tigated comparative studies in business and management by
using the theory of FS. The operations based on the entropy
for FS theory were developed by Rudas and Kaynak [6].
In situations when the degree of non-membership and

indeterminacy are major factors in decision-making (DM),
FS may not be able to fully reflect the range of uncertainty.
FS has this limitation because it only takes into account
degrees of membership, ignoring degrees of non-membership
and the indeterminacy that goes along with them. This prob-
lem is addressed by intuitionistic FS (IFS), whichwas devised
by Atanassov and Stoeva. [7]. It makes it possible to depict
not just different degrees of membership but also differ-
ent degrees of non-membership and indeterminacy. In the
theory of IFS, the sum of the degrees of membership and
non-membership should be located in [0, 1]. Takeuti and
Titani [8] devised intuitionistic fuzzy logic. De et al. [9]
interpreted certain operations for the model of IFS. Du [10]
investigated operations like division and subtraction within
IFS. Xu [11] and Xu and Yager [12] devised averaging and
geometric AOs for IFS respectively. The group DM and
Heronian AOs for IFS were devised by Liu and Chen [13].
If any element has a degree ofmembership of 0.8 and a degree
of non-membership of 0.4, then 0.8+0.4 = 1.2 > 1. To over-
come this, Yager [14] devised the theory of PFS, which is
the modification of IFS. In the theory of PFS, the sum of the
squares of degrees of membership and non-membership must
located in [0, 1]. Peng and Yang [15] deduced some results
within PFS and Yager [16] devised various applications and
properties of the PFS. Garg [17] investigated confidence
levels AOs in the setting of PFS. Akram et al. [18] devised
Dombi AOswith PFS. Yager [19] devised amulti-criteria DM
(MCDM) approach under PFS.

In 2002, Ramot et al. [20] portrayed complex fuzzy sets
(CFS), unlike traditional FS, utilize a degree of membership,
which is a combination of a degree of membership in a FS
along with a crisp phase value that signifies location within
the set. This degree of membership is represented in polar
coordinates and carries more information than FS, enabling
more efficient reasoning. Ramot et al. [21] discussed complex
fuzzy logic and Zhang et al. [22] initiated some operations
and equalities for CFS. After that, in 2011, Tamir et al. [23]
originated the CFS in the Cartesian coordinate, where the
degree of membership is located in the first quadrant of the
unit square of the complex plane. Rehman [24] established
certain properties and AOs for the Cartesian form of CFS.
Mahmood et al. [25] originated a complex fuzzy N-soft set.

Alkouri and Salleh [26] devised the notion of complex IFS
(CIFS) in polar coordinates, where the degrees of member-
ship and non-membership are located in a complex plane’s
unit disc. After the establishment of CIFS in polar coordinate,
a lot of researchers discussed various theories in CIFS such
as Garg and Rani [27] originated information measures, Garg
and Rani [28] devised AOs and ranking approach, Rani and
Garg [29] devised power AOs and MCDM and Liu and
Wang [30] devisedMCDMapproaches. Ali et al. [31] devised
the Cartesian structure of CIFS by changing the range from a
complex plane’s unit disc to a complex plane’s unit square.
The degrees of membership and non-membership contain
both real and imaginary terms that convey fuzzy information.
Fang et al. [32] devised probability AOs for the Cartesian
framework of CIFS. Rehman and Mahmood [33] devised
a complex intuitionistic fuzzy N-soft set. Ullah et al. [34]
interpreted CPFS within the polar framework and after that
various researchers utilized this polar form of CPFS and
developed various notions such as Hezam et al. [35] devised
geometric AOs for CPFS, Akram et al. [36] discussed Dombi
AOs and Janani et al. [37] devised Einstein AOs for CPFS.
Akram and Naz [38] devised the DM technique in the polar
form of CPFS.

A. MOTIVATION AND CONTRIBUTION
Walters et al. [40] devised a theory of CPFS in 2020.
This theory states that in both polar and Cartesian forms
the degree of membership map from universal set to{
ZM

: ZM
∈ C,

∣∣ZM∣∣ ≤ 1
}
and degree of non-membership

map from universal set to
{
ZN

: ZN
∈ C,

∣∣ZN∣∣ ≤ 1
}
, that is

they are located in a complex plane’s unit disc. However, the
Cartesian presentation of CPFS contradicts the basic notion
of crisp and FS theory as this representation can’t interpret
the full belongingness of the element to the set. When an
element’s degree of membership is 1, it fully belongs to the
set; when it is 0, it does not entirely belong, according to
the theory of crisp sets and FS. Analogously, in the theory
of PFS, an element is said to be fully belonging to the set
when its degree of membership is 1 and non-membership
is 0; in the theory of CFS in Cartesian coordinates, on the
other hand, an element is said to be fully belonging to the
set when its degree of membership is 1 + ι1. From this,
it follows that in the Cartesian form of CPFS, the degree of
non-membership should be 0 + ι0 (ZN

= 0 + ι0) and the
degree of membership for an element to fully belong to a set
should be 1 + ι1 (ZM

= 1 + ι1). However, the degree of
membership in the Walters et al. [40] takes values in the unit
disc of a complex plan, which is

{
ZM

: ZM
∈ C,

∣∣ZM∣∣ ≤ 1
}

and
∣∣ZM∣∣ = |1 + ι1| =

√
12 + 12 =

√
2 = 1.4142 > 1.

As to Ullah et al.’s interpreted idea, the degree of membership
cannot be 1+ ι1. As a result, the element cannot fully belong
to the set in this Cartesian form, which runs counter to the
fundamental ideas of crisp and FS theory. Likewise, in the
case of non-belonging, the degree of membership should be
0 + ι0

(
ZM

= 0 + ι0
)
, and the degree of non-membership
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should be 1 + ι1
(
ZN

= 1 + ι1
)
. Once more, 1 + ι1 cannot

be the degree of non-membership.
Additionally, in different DM problems, the expert can

assign a value (0.9 + ι0.8, 0.2 + ι0.3) to an element based
on their judgment. However, the magnitude of that number,√

(0.9)2 + (0.8)2 = 1.204 > 1, prevents the map for the
degree of membership established by Walters et al. [40] from
giving this value. Because the value is situated in a com-
plex plane’s unit square rather than its unit disc. Moreover,
a large number of other numbers are not part of the unit disc.
Furthermore, in polar form, the amplitude terms or absolute
values of degrees of membership and non-membership are
confined inside [0, 1] and the sum of the squares of degrees
of membership and non-membership contain in [0, 1] and
the phase terms located a position within a set. This inter-
pretation of degrees of membership and non-membership
is confined to the polar structure and can’t model fuzzy
information in Cartesian coordinates. To get over the previ-
ously mentioned problems, this script introduces a novel idea
of CPFS in a Cartesian coordinate by switching the range
from the unit disc of the complex plane to the unit square.
In the Cartesian form of CPFS, the degrees of member-
ship and non-membership contain real and imaginary parts
that convey fuzzy information and are located in a complex
plane’s unit square. Applications for CPFS can be found in
a number of disciplines, including economics, engineering,
and decision sciences, where complex modeling approaches
are necessary for the proper representation and analysis of
inherently complex uncertainties. We also devise fundamen-
tal operational laws for the created CPFS. Furthermore,
we deduce averaging and geometric AOs within the Cartesian
model of CPFS, these AOs are complex Pythagorean fuzzy
(CPF) weighted averaging (CPFWA), CPF ordered weighted
averaging (CPFOWA), CPF weighted geometric (CPFWG)
and CPF ordered weighted geometric (CPFOWG) operators.
Then employing these operators, we initiate a technique of
MADM within CPFS for tackling real-life MADM dilem-
mas that contain CPF information. Finally, in this article,
we devise the application of diagnosed theory in the field of
visualization technology and then reveal the supremacy of the
devised theory by doing a comparison.

B. APPLICATION OF PROPOSED THEORY
The technique of generating virtual instances of computing
resources, such as servers, storage devices, networks, or oper-
ating systems, is known as virtualization technology. Several
virtual environments can operate on a single physical hard-
ware system thanks to the software that creates these virtual
instances. This technology makes IT framework the execu-
tives more savvy, adaptable, versatile, and asset proficient.
Better asset allotment and the executives are made con-
ceivable by virtualization, which confines actual equipment
from the working frameworks and applications that suddenly
spike in demand for it. Many areas of computing, includ-
ing software development, cloud computing, data centers,
and testing environments, rely on virtualization technology

today. Virtualization empowers server combination in server
farms, which brings down the expense of equipment, energy
use, and space required. It makes it feasible for organi-
zations to rapidly adjust to moving responsibility requests
by permitting them to produce and work virtual machines
(VMs) on request. Virtualization, which makes it possible
to efficiently provide customers with on-demand computer
resources, is also the foundation of cloud computing ser-
vices. Virtualization likewise offers isolated conditions for
application testing in programming improvement and testing,
ensuring stage similarity and dependability. In light of every-
thing, virtualization innovation changes the IT framework
through superior adaptability, smoothed-out administration
techniques, and ideal asset use. Kumar and Charu [39]
investigated the significance of virtualization technology.
Walters et al. [40] provided a comparative investigation of vir-
tualization technologies. Song [41] investigated risks related
to virtualization technology. The performance assessment of
virtualization technologies was devised by Padala et al. [42].
Employing fuzzy logic, a model for assigning resource rec-
ommendations on virtualization technology was devised by
Chompoonuch [43].

The most common way of assessing virtualization tech-
nology is by deciding their exhibition and capacities for
a processing climate. To survey on the off chance that
virtualization technologies are reasonable for arrangement,
this methodology as a rule incorporates taking a gander at
their viability, versatility, and similarity. Evaluators regu-
larly consider factors including generally speaking constancy,
responsiveness of the framework, and asset utilization. The
goal is to figure out which virtualization technology best
suits the remarkable necessities and objectives of the orga-
nization to amplify equipment asset use, further develop
adaptability, and improve the administration of responsibil-
ities that are virtualized. Moreover, reconciliation with the
current IT framework and security contemplations could be
very significant in the choice cycle. Since assessing multiple
attributes andmodels immediately is troublesome, the assess-
ment and determination of virtualization technology can be
seen as a multi-attribute decision-making (MADM) dilemma.
Making informed decisions in MADM requires gauging
choices against different elements. While assessing virtual-
ization technology, decision-makers need to consider a few
attributes, including performance, ease of management, scal-
ability, compatibility, security, and cost. Contingent upon the
special requirements and objectives of the organization, every
one of these characteristics might have differing loads and
levels of importance. Furthermore, the trade-offs and inter-
dependencies among these characteristics add to the com-
plexity, therefore before making a choice, it is crucial to use
MADMapproaches to methodically examine and contrast the
available virtualization choices. Consequently, in this article,
we discuss a case study ‘‘Evaluation and selection of virtu-
alization technologies for cloud-based e-commerce platform.
In this case, we select the finest technology for tackling some
considered problems of cloud-based e-commerce platforms.
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The remaining script is demonstrated: In Section II, the
literature review is interpreted. In Section III, first, we devise
the already interpreted concept of CPFS and discuss the draw-
backs of that concept. Then we deduce a new definition of
the CPFS in Cartesian coordinates and its related operations.
In Section IV, we anticipate averaging and geometric AOs
in the Cartesian framework of CPFS along with connected
properties. In Section V, we reveal the application and appli-
cability of the proposed theory.We also initiate a technique of
MADM within CPFS and discuss the case study. Section VI
of the script contains the comparison of the established theory
and Section VII has the conclusion.

II. LITERATURE REVIEW
This section of the script contains certain prevailing concepts
such as PFS, CFS, and their associated properties.

The theory of PFS was devised by Yager [14] in 2013,
by modifying the notion of IFS.

The PFS YPFS over is interpreted by the degree of
membership GM

YPFS
(υ) : → [0, 1] and degree of non-

membership GN
YPFS

(υ) : → [0, 1] for an element

υ ∈ with the condition that 0 ≤

(
GM

YPFS
((υ))

)2
+(

GN
YPFS

((υ))
)2

≤ 1. Mathematically, a PFS is deduced as

YPFS =

{(
υ,
(
GM

YPFS
(υ) ,GN

YPFS
(υ)
))

|υ ∈

}
Moreover,

GD
YPFS

(υ) =

(
1 −

((
GM

YPFS
(υ)
)2

+

(
GN

YPFS
(υ)
)2)) 1

2

is treated as the degree of indeterminacy. The Pythagorean
fuzzy number (PFN)will identified asYPFS =

(
GM

YPFS
,GN

YPFS

)
.

In a similar article, Yager also devised operations like
complement, union, and intersection for PFS.

Suppose

YPFS−1 =

{(
υ,
(
GM

YPFS−1
(υ) ,GN

YPFS−1
(υ)
))

|υ ∈

}
and

YPFS−2 =

{(
υ,
(
GM

YPFS−2
(υ) ,GN

YPFS−2
(υ)
))

|υ ∈

}
are two PFS, then
1. (YPFS−1)

c

=

{(
υ,
(
GN

YPFS−1
(υ) ,GM

YPFS−1
(υ)
))

|υ ∈

}
2. YPFS−1 ∪ YPFS−2

=


υ,

max
(
GM

YPFS−1
(υ) ,GM

YPFS−2
(υ)
)

,

min
(
GN

YPFS−1
(υ) ,GN

YPFS−2
(υ)
)  |υ ∈


3. YPFS−1 ∩ YPFS−2

=


υ,

min
(
GM

YPFS−1
(υ) ,GM

YPFS−2
(υ)
)

,

max
(
GN

YPFS−1
(υ) ,GN

YPFS−2
(υ)
)  |υ ∈


Zhang and Xu [44] devised how one can find the score and
accuracy values of PFN.

Suppose YPFS =

(
GM

YPFS
,GN

YPFS

)
is a PFN, then the score

value Š (YPFS) and accuracy value (YPFS) are expressed
as below

Š (YPFS) =

(
GM

YPFS

)2
−

(
GN

YPFS

)2
, Š (YPFS) ∈ [−1, 1]

(YPFS) =

(
GM

YPFS

)2
+

(
GN

YPFS

)2
, (YPFS) ∈ [0, 1]

Yager [14] and Yager and Abbasov [45] interpreted some
algebraic operational laws for PFS.

Suppose YPFS−1 =

(
GM

YPFS−1
,GN

YPFS−1

)
and YPFS−2 =(

GM
YPFS−2

,GN
YPFS−2

)
are two PFN and ≥ 0, then

1. YPFS−1 ⊕ YPFS−2

=



((
GM

YPFS−1

)2
+

(
GM

YPFS−2

)2
−

(
GM

YPFS−1

)2 (
GM

YPFS−2

)2) 1
2

,

GN
YPFS−1

GN
YPFS−2


2. YPFS−1 ⊗ YPFS−2

=


GM

YPFS−1
GM

YPFS−2
,((

GN
YPFS−1

)2
+

(
GN

YPFS−2

)2
−

(
GN

YPFS−1

)2 (
GN

YPFS−2

)2) 1
2


3. YPFS−1

=

(1 −

(
1 −

(
GM

YPFS−1

)2) ) 1
2

,
(
GN

YPFS−1

) 
4. YPFS−1

=

(GM
YPFS−1

)
,

(
1 −

(
1 −

(
GN

YPFS−1

)2) )2


In Cartesian coordinates, the CFS was investigated by
Tamir et al. [23] in 2011.

The CFS YCFS over is interpreted by the degree of
membership GM

YCFS
(υ) : → [0, 1] + ι [0, 1] for an element

υ ∈ , where the degree of membership carries a real term
GR

YCFS
(υ) and unreal term GI

YCFS
(υ). Mathematically, a CFS

is deduced as

YCFS =

{(
υ,GM

YCFS
(υ)
)

|υ ∈

}
=

{(
υ,GR

YCFS
(υ) + ιGI

YCFS
(υ)
)

|υ ∈

}
YCFS =

(
GM

YCFS

)
=

(
GR

YCFS
+ ιGI

YCFS

)
will treated as a

complex fuzzy number (CFN).
Suppose YCFS =

(
GM

YCFS

)
=

(
GR

YCFS
+ ιGI

YCFS

)
is a CFN,

then the score value Š (YCFS) and accuracy value (YCFS)

are expressed as below

Š (YCFS) =
GR

YCFS
− GI

YCFS

2
, Š (YCFS) ∈ [−1, 1]

(YCFS) =
GR

YCFS
+ GI

YCFS

2
, (YCFS) ∈ [0, 1]

VOLUME 12, 2024 65841



F. Labassi et al.: Novel Approach Toward CPFSs and Their Applications in Visualization Technology

Rehman [24] devised algebraic operational laws for CFNs.
Suppose YCFS−1 =

(
GM

YCFS−1

)
=

(
GR

YCFS−1
+ ιGI

YCFS−1

)
and YCFS−2 =

(
GM

YCFS−2

)
=

(
GR

YCFS−2
+ ιGI

YCFS−2

)
are two

CFNs with ≥ 0, then
1. YCFS−1 ⊕ YCFS−2

=

(
GR

YCFS−1
+ GR

YCFS−2
− GR

YCFS−1
GR

YCFS−2

+ι
(
GI

YCFS−1
+ GI

YCFS−2
− GI

YCFS−1
GI

YCFS−2

))
2. YCFS−1 ⊗ YCFS−2

=

(
GR

YCFS−1
GR

YCFS−2
+ ιGI

YCFS−1
GI

YCFS−2

)
3. YCFS−1 =

(
1 −

(
1 − GR

YCFS−1

)
+ι

(
1 −

(
1 − GI

YCFS−1

) ))
4. YCFS−1 =

((
GR

YCFS−1

)
+ ι

(
GI

YCFS−1

) )
.

III. THE CONCEPT OF CPFS IN CARTESIAN COORDINATES
In this part, first, we will devise the already interpreted con-
cept of CPFS and discuss the drawbacks of that concept. Then
we will deduce a new definition of the CPFS in Cartesian
coordinates and its related operations.

Walters et al. [40] devised the notion of CPFS as follows
Definition 1 [40]: A CPFS YCPFS is established as

YCPFS =

{(
υ,
(
GM

YCPFS
(υ) ,GN

YCPFS
(υ)
))

|υ ∈

}
Noticed that GM

YCPFS
(υ) :

→
{
ZM

: ZM
∈ C,

∣∣ZM∣∣ ≤ 1
}

is a degree of member-
ship and GN

YCPFS
(υ) : →

{
ZN

: ZN
∈ C,

∣∣ZN∣∣ ≤ 1
}

is
a degree of non-membership such that GM

YCPFS
(υ) =

ZM
= ZRM

+ ιZIM and GN
YCPFS

(υ) = ZN
=

ZRN
+ ιZIN with the condition that 0 ≤

∣∣ZM∣∣2 +∣∣ZN∣∣2 ≤ 1, or GM
YCPFS

(υ) = GMM
YCPFS

(υ) e
ι2π

(
GPM

YCPFS
(υ)
)
and

GN
YCPFS

(υ) = GMN
YCPFS

(υ) e
ι2π

(
GPN

YCPFS
(υ)
)
with the condition

that 0 ≤

(
GMM

YCPFS
(υ)
)2

+

(
GMN

YCPFS
(υ)
)2

≤ 1 and 0 ≤(
GPM

YCPFS
(υ)
)2

+

(
GPN

YCPFS
(υ)
)2

≤ 1. Further, GHYCPFS
(υ) =

GMH
YCPFS

(υ) e
ι2π

(
GPH

YCPFS
(υ)
)
is identified as the degree of hes-

itancy, where GMH
YCPFS

(υ) =

(
1 −

(∣∣ZM∣∣2 +
∣∣ZN∣∣2)) 1

2
and(

GPH
YCPFS

(υ)
)

=

(
1 −

((
GPM

YCPFS
(υ)
)2

+

(
GPN

YCPFS
(υ)
)2)) 1

2

.

In the theory of crisp set and FS, the element fully belongs
to the set when its degree of membership is 1 and does not
fully belong when its degree of membership is 0. Similarly,
in the theory of PFS, the element fully belongs to the set when
its degree of membership is 1 and non-membership is 0 and
not fully belong when the degree of membership is 0 and
non-membership is 1 and in the theory of CFS interpreted
by Tamir et al. [23] the element fully belong to the set when
its degree of membership is 1 + ι1. From this, it is obvious
that in the Cartesian form of CPFS, the degree of membership

for an element to fully belong to a set should be 1 + ι1
which is ZM

= 1 + ι1 and the degree of non-membership
should be 0 + ι0 that is ZN

= 0 + ι0. But in the concept of
the Cartesian form of CPFS, initiated by Walters et al. [40],
the degree of membership takes values in the unit disc of a
complex plan that is

{
ZM

: ZM
∈ C,

∣∣ZM∣∣ ≤ 1
}
and

∣∣ZM∣∣ =

|1 + ι1| =
√
12 + 12 =

√
2 = 1.4142 > 1. Thus according

to the interpreted concept of Walters et al. [40], the degree of
membership can’t be 1+ι1. This means that the element can’t
fully belong to the set in this Cartesian formwhich contradicts
the basic concept of crisp and FS theory. Similarly, for not
belonging the degree of membership should be 0 + ι0 i.e.
ZM

= 0+ ι0 and non-membership should be 1+ ι1 i.e. ZN
=

1+ ι1. Again the degree of non-membership can’t be 1+ ι1.
Moreover, in various DM dilemmas, the expert can give

a value (0.9 + ι0.8, 0.2 + ι0.3) to an element according to
their discretion. But the map for the degree of membership
defined by Walters et al. [40] can’t give this value because
the magnitude of that value

√
(0.9)2 + (0.8)2 = 1.204 >

1 and thus this value is not located in a complex plane’s
unit disc but located in a unit square of a complex plane.
Additionally, many other values do not belong to the unit
disc. To overcome above above-discussed drawbacks, in this
script, a novel concept of CPFS in a Cartesian coordinate
changes the range from the complex plane’s unit disc to the
unit square. The new interpretation is revealed as
Definition 2: An underneath model

YCPFS =

{(
υ,
(
GM

YCPFS
(υ) ,GN

YCPFS
(υ)
))

|υ ∈

}
=

{(
υ,

(
GRM

YCPFS
(υ) + ιGIM

YCPFS
(υ) ,

GRN
YCPFS

(υ) + ιGIN
YCPFS

(υ)

))
|υ ∈

}
is established as CPFS in the Cartesian framework of
complex numbers. Noticed that GM

YCPFS
(υ) and GN

YCPFS
(υ)

are degrees of membership and non-membership which
are located in a complex plane’s unit square. More-
over, GRM

YCPFS
(υ), GIM

YCPFS
(υ), GRN

YCPFS
(υ) and GIN

YCPFS
(υ) ∈

[0, 1] with the property that 0 ≤

(
GRM

YCPFS
(υ)
)2

+(
GRN

YCPFS
(υ)
)2

≤ 1 and 0 ≤

(
GIM

YCPFS
(υ)
)2

+(
GIN

YCPFS
(υ)
)2

≤ 1. The indeterminacy will be deduced

by GD
YCPFS

(υ) =

(
GRD

YCPFS
(υ) + ιGID

YCPFS
(υ)
)
, where

GRD
YCPFS

(υ) =

(
1 −

((
GRM

YCPFS
(υ)
)2

+

(
GRN

YCPFS
(υ)
)2)) 1

2

and GID
YCPFS

(υ) =

(
1 −

(
GIM

YCPFS
(υ)
)2

+

(
GIN

YCPFS
(υ)
)2) 1

2

.

For easiness, in this script, the complex Pythagorean fuzzy
(CPF) number (CPFN) would anticipated as YCPFS =(
GM

YCPFS
,GN

YCPFS

)
=

(
GRM

YCPFS
+ ιGIM

YCPFS
,GRN

YCPFS
+ ιGIN

YCPFS

)
.

Definition 3: Suppose

YPFS−1

=

{(
υ,
(
GM

YCPFS−1
(υ) ,GN

YCPFS−1
(υ)
))

|υ ∈

}
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=


υ,

GRM
YCPFS−1

(υ) + ιGIM
YCPFS−1

(υ) ,

GRN
YCPFS−1

(υ) + ιGIN
YCPFS−1

(υ)

 |υ ∈


and

YPFS−2

=

{(
υ,
(
GM

YCPFS−2
(υ) ,GN

YCPFS−2
(υ)
))

|υ ∈

}
=

{(
υ,

(
GRM

YCPFS−2
(υ) + ιGIM

YCPFS−2
(υ) ,

GRN
YCPFS−2

(υ) + ιGIN
YCPFS−2

(υ)

))
|υ ∈

}
are two CPFS, then
1. (YCPFS−1)

c

=

{(
υ,

(
GN

YCPFS−1
(υ) ,

GM
YCPFS−1

(υ)

))
|υ ∈

}
2. YCPFS−1 ∪ YCPFS−2

=



υ,


max

(
GRM

YCPFS−1
(υ) ,GRM

YCPFS−2
(υ)
)

+ιmax
(
GIM

YCPFS−1
(υ) ,GIM

YCPFS−2
(υ)
)

,

min
(
GRN

YCPFS−1
(υ) ,GRN

YCPFS−2
(υ)
)

+ιmin
(
GIN

YCPFS−1
(υ) ,GIN

YCPFS−2
(υ)
)



|υ ∈


3. YCPFS−1 ∩ YCPFS−2

=



υ,


min

(
GRM

YCPFS−1
(υ) ,GRM

YCPFS−2
(υ)
)

+ιmin
(
GIM

YCPFS−1
(υ) ,GIM

YCPFS−2
(υ)
)

,

max
(
GRN

YCPFS−1
(υ) ,GRN

YCPFS−2
(υ)
)

+ιmax
(
GIN

YCPFS−1
(υ) ,GIN

YCPFS−2
(υ)
)



|υ ∈


Definition 4: Suppose YCPFS =

(
GM

YCPFS
,GN

YCPFS

)
=(

GRM
YCPFS

+ ιGIM
YCPFS

,GRN
YCPFS

+ ιGIN
YCPFS

)
is a CPFN, then the

score value is expressed as below

Š (YCPFS) =
1
2


(
GRM

YCPFS

)2
−

(
GRN

YCPFS

)2
+

(
GIM

YCPFS

)2
−

(
GIN

YCPFS

)2
 ,

Š (YCPFS) ∈ [−1, 1]

and the accuracy value would be analyzed as

(YCPFS) =
1
2


(
GRM

YCPFS

)2
+

(
GRN

YCPFS

)2
+

(
GIM

YCPFS

)2
+

(
GIN

YCPFS

)2
 ,

(YCPFS) ∈ [0, 1]

Based on Def (4), we have the underlying result.
Definition 5: Suppose YCPFS−1 =

(
GM

YCPFS−1
,GN

YCPFS−1

)
=

(
GRM

YCPFS−1
+ ιGIM

YCPFS−1
,GRN

YCPFS−1
+ ιGIN

YCPFS−1

)
, and

YCPFS−2

=

(
GM

YCPFS−2
,GN

YCPFS−2

)
=

(
GRM

YCPFS−2
+ ιGIM

YCPFS−2
,GRN

YCPFS−2

+ιGIN
YCPFS−2

)
are two CPFNs, then

1. If Š (YCPFS−1) < Š (YCPFS−2) then YCPFS−1 <

YCPFS−2

2. If Š (YCPFS−1) > Š (YCPFS−2) then YCPFS−1 >

YCPFS−2
3. If Š (YCPFS−1) = Š (YCPFS−2) then we have

i. If (YCPFS−1) < (YCPFS−2) then YCPFS−1 <

YCPFS−2
ii. If (YCPFS−1) > (YCPFS−2) then YCPFS−1 >

YCPFS−2
iii. If (YCPFS−1) = (YCPFS−2) then YCPFS−1 =

YCPFS−2

Definition 6: Suppose YCPFS−1 =

(
GM

YCPFS−1
,GN

YCPFS−1

)
=

(
GRM

YCPFS−1
+ ιGIM

YCPFS−1
,GRN

YCPFS−1
+ ιGIN

YCPFS−1

)
, and

YCPFS−2

=

(
GM

YCPFS−2
,GN

YCPFS−2

)
=

(
GRM

YCPFS−2
+ ιGIM

YCPFS−2
,GRN

YCPFS−2

+ιGIN
YCPFS−2

)
are two CPFNs and ≥ 0. Then

1. YCPFS−1 ⊕ YCPFS−2

=




(
GRM

YCPFS−1

)2
+

(
GRM

YCPFS−2

)2
−

(
GRM

YCPFS−1

)2 (
GRM

YCPFS−2

)2


1
2

+ι


(
GIM

YCPFS−1

)2
+

(
GIM

YCPFS−2

)2
−

(
GIM

YCPFS−1

)2 (
GIM

YCPFS−2

)2


1
2

,

GRN
YCPFS−1

GRN
YCPFS−2

+ ι
(
GIN

YCPFS−1
GIN

YCPFS−2

)


2. YCPFS−1 ⊗ YCPFS−2

=



GRM
YCPFS−1

GRM
YCPFS−2

+ ιGIM
YCPFS−1

GIM
YCPFS−2

,
(
GRN

YCPFS−1

)2
+

(
GRN

YCPFS−2

)2
−

(
GRN

YCPFS−1

)2 (
GRN

YCPFS−2

)2


1
2

ι


(
GIN

YCPFS−1

)2
+

(
GIN

YCPFS−2

)2
−

(
GIN

YCPFS−1

)2 (
GIN

YCPFS−2

)2


1
2



3. YCPFS−1 =



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) ) 1
2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) ) 1
2

,(
GRN

YCPFS−1

)
+ ι

(
GIN

YCPFS−1

)



4. YCPFS−1 =



(
GRM

YCPFS−1

)
+ ι

(
GIM

YCPFS−1

)
,(

1 −

(
1 −

(
GRN

YCPFS−1

)2) ) 1
2

+ι

(
1 −

(
1 −

(
GIN

YCPFS−1

)2) ) 1
2


Theorem 1: SupposeYCPFS−1 =

(
GM

YCPFS−1
,GN

YCPFS−1

)
=(

GRM
YCPFS−1

+ ιGIM
YCPFS−1

,

GRN
YCPFS−1

+ ιGIN
YCPFS−1

)
, and YCPFS−2
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=

(
GM

YCPFS−2
,GN

YCPFS−2

)
=

(
GRM

YCPFS−2
+ ιGIM

YCPFS−2
,

GRN
YCPFS−2

+ ιGIN
YCPFS−2

)
are

two CPFNs and , 1, 2 ≥ 0, then the underneath hold.
1. YCPFS−1 ⊕ YCPFS−2 = YCPFS−2 ⊕ YCPFS−1
2. YCPFS−1 ⊗ YCPFS−2 = YCPFS−2 ⊗ YCPFS−1
3. (YCPFS−1 ⊕ YCPFS−2) = YCPFS−1 ⊕ YCPFS−2
4. (YCPFS−1 ⊗ YCPFS−2) = YCPFS−1 ⊗ YCPFS−2
5. 1YCPFS−1 ⊕ 2YCPFS−1 = ( 1 + 2) YCPFS−1
6. Y 1

CPFS−1 ⊗ Y 2
CPFS−1 = Y 1+ 2

CPFS−1

7.
(
Y 1
CPFS−1

)
2

= Y 1 2
CPFS−1.

Proof:
1. From Def (6)

YCPFS−1 ⊕ YCPFS−2

=




(
GRM

YCPFS−1

)2
+

(
GRM

YCPFS−2

)2
−

(
GRM

YCPFS−1

)2 (
GRM

YCPFS−2

)2


1
2

+ι


(
GIM

YCPFS−1

)2
+

(
GIM

YCPFS−2

)2
−

(
GIM

YCPFS−1

)2 (
GIM

YCPFS−2

)2


1
2

,

GRN
YCPFS−1

GRN
YCPFS−2

+ ι
(
GIN

YCPFS−1
GIN

YCPFS−2

)



=




(
GRM

YCPFS−2

)2
+

(
GRM

YCPFS−1

)2
−

(
GRM

YCPFS−2

)2 (
GRM

YCPFS−1

)2


1
2

+ι


(
GIM

YCPFS−2

)2
+

(
GIM

YCPFS−1

)2
−

(
GIM

YCPFS−2

)2 (
GIM

YCPFS−1

)2


1
2

,

GRN
YCPFS−2

GRN
YCPFS−1

+ ι
(
GIN

YCPFS−2
GIN

YCPFS−1

)


= YCPFS−2 ⊕ YCPFS−1

2. Similarly, 2 can prove.
3. By Def (6)

YCPFS−1 =



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) ) 1
2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) ) 1
2

,(
GRN

YCPFS−1

)
+ ι

(
GIN

YCPFS−1

)



YCPFS−2 =



(
1 −

(
1 −

(
GRM

YCPFS−2

)2) ) 1
2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−2

)2) ) 1
2

,(
GRN

YCPFS−2

)
+ ι

(
GIN

YCPFS−2

)


Now take the right side, as shown at the bottom of the next

page.

1. Similar to 3.
2. Since

1YCPFS−1 =



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) 1
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) 1
) 1

2

,(
GRN

YCPFS−1

)
1
+ ι

(
GIN

YCPFS−1

)
1



2YCPFS−1 =



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) 2
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) 2
) 1

2

,(
GRN

YCPFS−1

)
2
+ ι

(
GIN

YCPFS−1

)
2


Let, as shown at the bottom of page 9.

3. Similar to 5.
4. By Def (6)

Y 1
CPFS−1

=



(
GRM

YCPFS−1

)
1
+ ι

(
GIM

YCPFS−1

)
1
,(

1 −

(
1 −

(
GRN

YCPFS−1

)2) 1
) 1

2

+ι

(
1 −

(
1 −

(
GIN

YCPFS−1

)2) 1
) 1

2


(
Y 1
CPFS−1

)
2

=



((
GRM

YCPFS−1

)
1
)

2

+ ι

((
GIM

YCPFS−1

)
1
)

2

1 −

((
1 −

(
GRN

YCPFS−1

)2) 1
)

2


1
2

+ι

1 −

((
1 −

(
GIN

YCPFS−1

)2) 1
)

2


1
2



=



(
GRM

YCPFS−1

) 1
2
+ι
(
GIM

YCPFS−1

) 1
2(

1 −

(
1 −

(
GRN

YCPFS−1

)2) 1 2
) 1

2

+ι

(
1 −

(
1 −

(
GIN

YCPFS−1

)2) 1 2
) 1

2


= Y 1 2

CPFS−1.

IV. COMPLEX PYTHAGOREAN FUZZY AOS
This part of the article contains averaging and geo-
metric AOs in the Cartesian framework of CPFS along
with connected properties. The collection of CPFS would
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be devised as YCPFS−ḟ =

(
GM

YCPFS−ḟ
,GN

YCPFS−ḟ

)
=(

GRM
YCPFS−ḟ

+ ιGIM
YCPFS−ḟ

,GRN
YCPFS−ḟ

+ ιGIN
YCPFS−ḟ

)
, ḟ = 1,

2, . . . , ϱ in this article.
Definition 7: Suppose CPFWA :

(
YCPFS−ḟ

)ϱ
→

YCPFS−ḟ, if

CPFWA
(
YCPFS−1, YCPFS−2, . . . , YCPFS−ϱ

)
=

ϱ

⊕

ḟ = 1
Ξ

−ḟYCPFS−ḟ

then CPFWA is deduced as CPFWA operator over YCPFS−ḟ.
Noted that Ξ =

(
Ξ −1, Ξ −2, . . . ,Ξ −ϱ

)
is a

YCPFS−1 ⊕ YCPFS−2 =



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) ) 1
2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) ) 1
2

,(
GRN

YCPFS−1

)
+ ι

(
GIN

YCPFS−1

)



⊕



(
1 −

(
1 −

(
GRM

YCPFS−2

)2) ) 1
2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−2

)2) ) 1
2

,(
GRN

YCPFS−2

)
+ ι

(
GIN

YCPFS−2

)



=




1 −

(
1 −

(
GRM

YCPFS−1

)2)
+ 1 −

(
1 −

(
GRM

YCPFS−2

)2)
−

(
1 −

(
1 −

(
GRM

YCPFS−1

)2)) (
1 −

(
1 −

(
GRM

YCPFS−2

)2) )


1
2

+ι


1 −

(
1 −

(
GIM

YCPFS−1

)2)
+ 1 −

(
1 −

(
GIM

YCPFS−2

)2)
−

(
1 −

(
1 −

(
GIM

YCPFS−1

)2)) (
1 −

(
1 −

(
GIM

YCPFS−2

)2) )


1
2

(
GRN

YCPFS−1

) (
GRN

YCPFS−2

)
+ ι

(
GIN

YCPFS−1

) (
GIN

YCPFS−2

)



=



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) (
1 −

(
GRM

YCPFS−2

)2) ) 1
2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) (
1 −

(
GIM

YCPFS−2

)2) ) 1
2

(
GRN

YCPFS−1
GRN

YCPFS−2

)
+ ι

(
GIN

YCPFS−1
GIN

YCPFS−2

)



=



1 −

1 −


(
GRM

YCPFS−1

)2
+

(
GRM

YCPFS−2

)2
−

(
GRM

YCPFS−1

)2 (
GRM

YCPFS−2

)2




1
2

+ι

1 −

1 −


(
GIM

YCPFS−1

)2
+

(
GIM

YCPFS−2

)2
−

(
GIM

YCPFS−1

)2 (
GIM

YCPFS−2

)2




1
2

(
GRN

YCPFS−1
GRN

YCPFS−2

)
+ ι

(
GIN

YCPFS−1
GIN

YCPFS−2

)


= (YCPFS−1 ⊕ YCPFS−2)
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weight vector with 0 ≤ Ξ
−ḟ ≤ 1,∑ϱ

ḟ=1
Ξ

−ḟ = 1,

Theorem 2: The aggregated result over YCPFS−ḟ by utiliz-
ing CPFWA operator will be analyzed as
CPFN and

CPFWA
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)
=



(
1 −

ϱ∏
ḟ=1

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ϱ∏
ḟ=1

(
1 −

(
GIM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

,

ϱ∏
ḟ=1

(
GRN

YCPFS−ḟ

)Ξ
−ḟ

+ι
ϱ∏

ḟ=1

(
GIN

YCPFS−ḟ

)Ξ
−ḟ


(1)

1YCPFS−1 ⊕ 2YCPFS−1

=



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) 1
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) 1
) 1

2

,(
GRN

YCPFS−1

)
1
+ ι

(
GIN

YCPFS−1

)
1



⊕



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) 2
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) 2
) 1

2

,(
GRN

YCPFS−1

)
2
+ ι

(
GIN

YCPFS−1

)
2



=




1 −

(
1 −

(
GRM

YCPFS−1

)2) 1

+ 1 −

(
1 −

(
GRM

YCPFS−1

)2) 2

−

(
1 −

(
1 −

(
GRM

YCPFS−1

)2) 1
)(

1 −

(
1 −

(
GRM

YCPFS−1

)2) 2
)


1
2

+ι


1 −

(
1 −

(
GIM

YCPFS−1

)2) 1

+ 1 −

(
1 −

(
GIM

YCPFS−1

)2) 2

−

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) 1
)(

1 −

(
1 −

(
GIM

YCPFS−1

)2) 2
)


1
2

(
GRN

YCPFS−1

)
1
(
GRN

YCPFS−1

)
2
+ ι

(
GIN

YCPFS−1

)
1
(
GIN

YCPFS−1

)
2



=



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) 1
(
1 −

(
GRM

YCPFS−1

)2) 2
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) 1
(
1 −

(
GIM

YCPFS−1

)2) 2
) 1

2

(
GRN

YCPFS−1

)
1+ 2

+ ι
(
GIN

YCPFS−1

)
1+ 2



=



(
1 −

(
1 −

(
GRM

YCPFS−1

)2) 1+ 2
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2) 1+ 2
) 1

2

(
GRN

YCPFS−1

)
1+ 2

+ ι
(
GIN

YCPFS−1

)
1+ 2


= ( 1 + 2) YCPFS−1
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Proof: Let ϱ = 2. Then we have

Ξ −1YCPFS−1

=



(
1 −

(
1 −

(
GRM

YCPFS−1

)2)Ξ −1
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2)Ξ −1
) 1

2

,(
GRN

YCPFS−1

)Ξ −1

+ι
(
GIN

YCPFS−1

)Ξ −1


Ξ −2YCPFS−2

=



(
1 −

(
1 −

(
GRM

YCPFS−2

)2)Ξ −2
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−2

)2)Ξ −2
) 1

2

,(
GRN

YCPFS−2

)Ξ −2

+ι
(
GIN

YCPFS−2

)Ξ −2


and

CPFWA (YCPFS−1, YCPFS−2)

= Ξ −1YCPFS−1 ⊕ Ξ −2YCPFS−2

=



(
1 −

(
1 −

(
GRM

YCPFS−1

)2)Ξ −1
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−1

)2)Ξ −1
) 1

2

,(
GRN

YCPFS−1

)Ξ −1

+ι
(
GIN

YCPFS−1

)Ξ −1



⊕



(
1 −

(
1 −

(
GRM

YCPFS−2

)2)Ξ −2
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−2

)2)Ξ −2
) 1

2

,(
GRN

YCPFS−2

)Ξ −2

+ι
(
GIN

YCPFS−2

)Ξ −2



=



(
1 −

2∏
ḟ=1

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

2∏
ḟ=1

(
1 −

(
GIM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

,

2∏
ḟ=1

(
GRN

YCPFS−ḟ

)Ξ
−ḟ

+ι
2∏

ḟ=1

(
GIN

YCPFS−ḟ

)Ξ
−ḟ



Thus, for ϱ = 2, Eq. (1) is satisfied. Let Eq. (1) is valid for
ϱ = ß, that is

CPFWA (YCPFS−1, YCPFS−2, . . . , YCPFS−ß)

=



(
1 −

ß∏
ḟ=1

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ß∏
ḟ=1

(
1 −

(
GIM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

,

ß∏
ḟ=1

(
GRN

YCPFS−ḟ

)Ξ
−ḟ

+ι
ß∏

ḟ=1

(
GIN

YCPFS−ḟ

)Ξ
−ḟ


Now to reveal that for ϱ = ß + 1, Eq. (1) is valid. Since

CPFWA (YCPFS−1, YCPFS−2, . . . YCPFS−ß+1)

= CPFWA (YCPFS−1, YCPFS−2, . . . YCPFS−ß) ⊕ YCPFS−ß+1

=



(
1 −

ß∏
ḟ=1

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ß∏
ḟ=1

(
1 −

(
GIM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

,

ß∏
ḟ=1

(
GRN

YCPFS−ḟ

)Ξ
−ḟ

+ι
ß∏

ḟ=1

(
GIN

YCPFS−ḟ

)Ξ
−ḟ



⊕



(
1 −

(
1 −

(
GRM

YCPFS−ß+1

)2)Ξ −ß+1
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS−ß+1

)2)Ξ −ß+1
) 1

2

,(
GRN

YCPFS−ß+1

)Ξ −ß+1

+ι
(
GIN

YCPFS−ß+1

)Ξ −ß+1



=



(
1 −

ß+1∏
ḟ=1

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ß+1∏
ḟ=1

(
1 −

(
GIM

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

,

ß+1∏
ḟ=1

(
GRN

YCPFS−ḟ

)Ξ
−ḟ

+ι
ß+1∏
ḟ=1

(
GIN

YCPFS−ḟ

)Ξ
−ḟ


= CPFWA (YCPFS−1, YCPFS−2, . . . YCPFS−ß, YCPFS−ß+1)

This reveals that for ϱ = ß+ 1, Eq. (1) is valid and hence for
all ϱ.
Next, we have a connected property that is idempotency.
Proposition 1: If YCPFS−ḟ = YCPFS i.e., GRM

YCPFS−ḟ
=

GRM
YCPFS

, GIM
YCPFS−ḟ

= GIM
YCPFS

, GRN
YCPFS−ḟ

= GRN
YCPFS

and
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GIN
YCPFS−ḟ

= GIN
YCPFS

, ∀ḟ, then

CPFWA
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)
= YCPFS−ḟ

Proof: As YCPFS−ḟ = YCPFS∀ḟ that is GRM
YCPFS−ḟ

=

GRM
YCPFS

, GIM
YCPFS−ḟ

= GIM
YCPFS

, GRN
YCPFS−ḟ

= GRN
YCPFS

and

GIN
YCPFS−ḟ

= GIN
YCPFS

, then

CPFWA
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)

=



(
1 −

ϱ∏
ḟ=1

(
1 −

(
GRM

YCPFS

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ϱ∏
ḟ=1

(
1 −

(
GIM

YCPFS

)2)Ξ
−ḟ
) 1

2

,

ϱ∏
ḟ=1

(
GRN

YCPFS

)Ξ
−ḟ

+ι
ϱ∏

ḟ=1

(
GIN

YCPFS

)Ξ
−ḟ



=



(
1 −

(
1 −

(
GRM

YCPFS

)2)∑ϱ

ḟ=1
Ξ

−ḟ
) 1

2

+ι

(
1 −

(
1 −

(
GIM

YCPFS

)2)∑ϱ

ḟ=1
Ξ

−ḟ
) 1

2

,(
GRN

YCPFS

)∑ϱ

ḟ=1
Ξ

−ḟ

+ι
(
GIN

YCPFS

)∑ϱ

ḟ=1
Ξ

−ḟ


=

(
GRM

YCPFS
+ ιGIM

YCPFS
,GRN

YCPFS
+ ιGIN

YCPFS

)
=

(
GM

YCPFS
,GN

YCPFS

)
= YCPFS

The following property of the CPFWA operator is
monotonicity.
Proposition 2: Take two gatherings of CPFNs YCPFS−ḟ =(
GM

YCPFS−ḟ
,GN

YCPFS−ḟ

)
=

(
GRM

YCPFS−ḟ
+ ιGIM

YCPFS−ḟ
,GRN

YCPFS−ḟ

+ιGIN
YCPFS−ḟ

)
, and Y#

CPFS−ḟ
=

(
GM

Y#
CPFS−ḟ

,GN
Y#
CPFS−ḟ

)
=(

GRM
Y#
CPFS−ḟ

+ ιGIM
Y#
CPFS−ḟ

,GRN
Y#
CPFS−ḟ

ιGIN
Y#
CPFS−ḟ

)
, ḟ = 1, 2, . . . , ϱ.

If GRM
YCPFS−ḟ

≤ GRM
Y#
CPFS−ḟ

, GIM
YCPFS−ḟ

≤ GIM
Y#
CPFS−ḟ

GRN
YCPFS−ḟ

≥

GRN
Y#
CPFS−ḟ

, and GIN
YCPFS−ḟ

≥ GIN
Y#
CPFS−ḟ

∀ḟ, then

CPFWA
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)
≤ CPFWA

(
Y#
CPFS−1, Y#

CPFS−2, . . . Y
#
CPFS−ϱ

)
Proof: As we have that

GRM
YCPFS−ḟ

≤ GRM
Y#
CPFS−ḟ

⇒

(
GRM

YCPFS−ḟ

)2
≤

(
GRM

Y#
CPFS−ḟ

)2

1 −

(
GRM

YCPFS−ḟ

)2
≥ 1 −

(
GRM

Y#
CPFS−ḟ

)2

⇒

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ

≥

(
1 −

(
GRM

Y#
CPFS−ḟ

)2
)Ξ

−ḟ

⇒

ϱ∏
ḟ=1

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ

≥

ϱ∏
ḟ=1

(
1 −

(
GRM

Y#
CPFS−ḟ

)2
)Ξ

−ḟ

⇒ 1 −

ϱ∏
ḟ=1

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ

≤ 1 −

ϱ∏
ḟ=1

(
1 −

(
GRM

Y#
CPFS−ḟ

)2
)Ξ

−ḟ

⇒

1 −

ϱ∏
ḟ=1

(
1 −

(
GRM

YCPFS−ḟ

)2)Ξ
−ḟ


1
2

≤

1 −

ϱ∏
ḟ=1

(
1 −

(
GRM

Y#
CPFS−ḟ

)2
)Ξ

−ḟ


1
2

Similarly, we have1 −

ϱ∏
ḟ=1

(
1 −

(
GIM

YCPFS−ḟ

)2)Ξ
−ḟ


1
2

≤

1 −

ϱ∏
ḟ=1

(
1 −

(
GIM

Y#
CPFS−ḟ

)2
)Ξ

−ḟ


1
2

Now, since,

GRN
YCPFS−ḟ

≥ GRN
Y#
CPFS−ḟ

⇒

(
GRN

YCPFS−ḟ

)
≥

(
GRN

Y#
CPFS−ḟ

)
⇒

(
GRN

YCPFS−ḟ

)Ξ
−ḟ

≥

(
GRN

Y#
CPFS−ḟ

)Ξ
−ḟ

⇒

ϱ∏
ḟ=1

(
GRN

YCPFS−ḟ

)Ξ
−ḟ

≥

ϱ∏
ḟ=1

(
GRN

Y#
CPFS−ḟ

)Ξ
−ḟ

Similarly, we have

ϱ∏
ḟ=1

(
GIN

YCPFS−ḟ

)Ξ
−ḟ

≥

ϱ∏
ḟ=1

(
GIN

Y#
CPFS−ḟ

)Ξ
−ḟ

Consequently,

CPFWA
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)
≤ CPFWA

(
Y#
CPFS−1, Y#

CPFS−2, . . . Y
#
CPFS−ϱ

)
The following property of the CPFWA operator is
Boundedness.
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Proposition 3: If

Y−

CPFS =

min
ḟ

{
GRM

YCPFS−ḟ

}
+ ιmax

ḟ

{
GIM

YCPFS−ḟ

}
,

max
ḟ

{
GRN

YCPFS−ḟ

}
+ ιmin

ḟ

{
GIN

YCPFS−ḟ

}


and

Y+

CPFS =

max
ḟ

{
GRM

YCPFS−ḟ

}
+ ιmin

ḟ

{
GIM

YCPFS−ḟ

}
,

min
ḟ

{
GRN

YCPFS−ḟ

}
+ ιmax

ḟ

{
GIN

YCPFS−ḟ

}
 ,

then we have

Y−

CPFS ≤ CPFWA
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)
≤ Y+

CPFS

Proof: This can be proved by employing proposi-
tions (1) and (2).
Definition 8: Suppose CPFWA :

(
YCPFS−ḟ

)ϱ
→

YCPFS−ḟ, if

CPFOWA
(
YCPFS−1, YCPFS−2, . . . , YCPFS−ϱ

)
=

ϱ

⊕

ḟ = 1
Ξ

−ḟYCPFS−1
(
ḟ
)

then CPFOWA is deduced as CPFOWA operator over
YCPFS−ḟ. Noted that Ξ =

(
Ξ −1, Ξ −2, . . . ,Ξ −ϱ

)
is

a weight vector with 0 ≤ Ξ
−ḟ ≤ 1,

∑ϱ

ḟ=1
Ξ

−ḟ = 1, and
(1 (1) , 1 (2) , . . . ,1 (ϱ)) is a permutation of (1, 2, . . . , ϱ)

such that 1
(
ḟ − 1

)
≥ 1

(
ḟ
)
, for ḟ = 2, 3, . . . , ϱ.

Theorem 3: The aggregated result over YCPFS−ḟ by utiliz-
ing CPFOWA operator will be analyzed as CPFN and

CPFOWA
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)

=



1 −

ϱ∏
ḟ=1

(
1 −

(
GRM

YCPFS−1(ḟ)

)2
)Ξ

−ḟ


1
2

+ι

1 −

ϱ∏
ḟ=1

(
1 −

(
GIM

YCPFS−1(ḟ)

)2
)Ξ

−ḟ


1
2

,

ϱ∏
ḟ=1

(
GRN

YCPFS−1(ḟ)

)Ξ
−ḟ

+ι
ϱ∏

ḟ=1

(
GIN

YCPFS−1(ḟ)

)Ξ
−ḟ


Next, we deduce the CPFWG operator.
Definition 9: Suppose CPFWG :

(
YCPFS−ḟ

)ϱ
→

YCPFS−ḟ, if

CPFWG
(
YCPFS−1, YCPFS−2, . . . , YCPFS−ϱ

)
=

ϱ

⊗

ḟ = 1

(
YCPFS−ḟ

)Ξ
−ḟ

then CPFWG is deduced as CPFWG operator over YCPFS−ḟ.
Noted that Ξ =

(
Ξ −1, Ξ −2, . . . ,Ξ −ϱ

)
is a weight

vector with 0 ≤ Ξ
−ḟ ≤ 1, and

∑ϱ

ḟ=1
Ξ

−ḟ = 1.

Theorem 4: The aggregated result over YCPFS−ḟ by utiliz-
ing CPFWG operator will be analyzed as CPFN and

CPFWG
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)

=



ϱ∏
ḟ=1

(
GRM

YCPFS−ḟ

)Ξ
−ḟ

+ι
ϱ∏

ḟ=1

(
GIM

YCPFS−ḟ

)Ξ
−ḟ

,(
1 −

ϱ∏
ḟ=1

(
1 −

(
GRN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ϱ∏
ḟ=1

(
1 −

(
GIN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2


(2)

Proof: Let ϱ = 2. Then we have

(YCPFS−1)
Ξ −1

=



(
GRM

YCPFS−1

)Ξ −1

+ι
(
GIM

YCPFS−1

)Ξ −1
,(

1 −

(
1 −

(
GRN

YCPFS−1

)2)Ξ −1
) 1

2

+ι

(
1 −

(
1 −

(
GIN

YCPFS−1

)2)Ξ −1
) 1

2


(YCPFS−2)

Ξ −2

=



(
GRM

YCPFS−1

)Ξ −2

+ι
(
GIM

YCPFS−1

)Ξ −2
,(

1 −

(
1 −

(
GRN

YCPFS−1

)2)Ξ −2
) 1

2

+ι

(
1 −

(
1 −

(
GIN

YCPFS−1

)2)Ξ −2
) 1

2


and,

CPFWG (YCPFS−1, YCPFS−2)

= (YCPFS−1)
Ξ −1 ⊗ (YCPFS−2)

Ξ −2

=



(
GRM

YCPFS−1

)Ξ −1

+ι
(
GIM

YCPFS−1

)Ξ −1
,(

1 −

(
1 −

(
GRN

YCPFS−1

)2)Ξ −1
) 1

2

+ι

(
1 −

(
1 −

(
GIN

YCPFS−1

)2)Ξ −1
) 1

2


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⊗



(
GRM

YCPFS−1

)Ξ −2

+ι
(
GIM

YCPFS−1

)Ξ −2
,(

1 −

(
1 −

(
GRN

YCPFS−1

)2)Ξ −2
) 1

2

+ι

(
1 −

(
1 −

(
GIN

YCPFS−1

)2)Ξ −2
) 1

2



=



2∏
ḟ=1

(
GRM

YCPFS−ḟ

)Ξ
−ḟ

+ι
2∏

ḟ=1

(
GIM

YCPFS−ḟ

)Ξ
−ḟ

,(
1 −

2∏
ḟ=1

(
1 −

(
GRN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

2∏
ḟ=1

(
1 −

(
GIN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2



Thus, for ϱ = 2, Eq. (2) is satisfied. Let Eq. (2) is valid for
ϱ = ß, that is

CPFWG (YCPFS−1, YCPFS−2, . . . YCPFS−ß)

=



ß∏
ḟ=1

(
GRM

YCPFS−ḟ

)Ξ
−ḟ

+ι
ß∏

ḟ=1

(
GIM

YCPFS−ḟ

)Ξ
−ḟ

,(
1 −

ß∏
ḟ=1

(
1 −

(
GRN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ß∏
ḟ=1

(
1 −

(
GIN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2



Now to reveal that for ϱ = ß + 1, Eq. (2) is valid. Since

CPFWG (YCPFS−1, YCPFS−2, . . . YCPFS−ß+1)

=CPFWG (YCPFS−1, YCPFS−2,. . .YCPFS−ß) ⊗ YCPFS−ß+1

=



ß∏
ḟ=1

(
GRM

YCPFS−ḟ

)Ξ
−ḟ

+ι
ß∏

ḟ=1

(
GIM

YCPFS−ḟ

)Ξ
−ḟ

,(
1 −

ß∏
ḟ=1

(
1 −

(
GRN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ß∏
ḟ=1

(
1 −

(
GIN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2



⊗



(
GRM

YCPFS−ß+1

)Ξ −ß+1

+ι
(
GIM

YCPFS−ß+1

)Ξ −ß+1
,(

1 −

(
1 −

(
GRN

YCPFS−ß+1

)2)Ξ −ß+1
)2

+ι

(
1 −

(
1 −

(
GIN

YCPFS−ß+1

)2)Ξ −ß+1
) 1

2



=



ß+1∏
ḟ=1

(
GRM

YCPFS−ḟ

)Ξ
−ḟ

+ι
ß+1∏
ḟ=1

(
GIM

YCPFS−ḟ

)Ξ
−ḟ

,(
1 −

ß+1∏
ḟ=1

(
1 −

(
GRN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2

+ι

(
1 −

ß+1∏
ḟ=1

(
1 −

(
GIN

YCPFS−ḟ

)2)Ξ
−ḟ
) 1

2


= CPFWG (YCPFS−1, YCPFS−2, . . . YCPFS−ß, YCPFS−ß+1)

This reveals that for ϱ = ß+ 1, Eq. (2) is valid and hence for
all ϱ.
Next, we have a connected property that is idempotency.
Proposition 4: If YCPFS−ḟ = YCPFS i.e., GRM

YCPFS−ḟ
=

GRM
YCPFS

, GIM
YCPFS−ḟ

= GIM
YCPFS

, GRN
YCPFS−ḟ

= GRN
YCPFS

and

GIN
YCPFS−ḟ

= GIN
YCPFS

, ∀ḟ, then

CPFWG
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)
= YCPFS−ḟ

The following property of the CPFWG operator is mono-
tonicity.
Proposition 5: Take two gatherings of CPFNs YCPFS−ḟ =(
GM

YCPFS−ḟ
,GN

YCPFS−ḟ

)
=

(
GRM

YCPFS−ḟ
+ ιGIM

YCPFS−ḟ
,GRN

YCPFS−ḟ

+ιGIN
YCPFS−ḟ

)
, and Y#

CPFS−ḟ
=

(
GM

Y#
CPFS−ḟ

,GN
Y#
CPFS−ḟ

)
=(

GRM
Y#
CPFS−ḟ

+ ιGIM
Y#
CPFS−ḟ

,GRN
Y#
CPFS−ḟ

ιGIN
Y#
CPFS−ḟ

)
, ḟ = 1, 2, . . . , ϱ.

If GRM
YCPFS−ḟ

≤ GRM
Y#
CPFS−ḟ

, GIM
YCPFS−ḟ

≤ GIM
Y#
CPFS−ḟ

GRN
YCPFS−ḟ

≥

GRN
Y#
CPFS−ḟ

, and GIN
YCPFS−ḟ

≥ GIN
Y#
CPFS−ḟ

∀ḟ, then

CPFWG
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)
≤ CPFWG

(
Y#
CPFS−1, Y#

CPFS−2, . . . Y
#
CPFS−ϱ

)
The following property of the CPFWA operator is
Boundedness.
Proposition 6: If

Y−

CPFS =

min
ḟ

{
GRM

YCPFS−ḟ

}
+ ιmin

ḟ

{
GIM

YCPFS−ḟ

}
,

max
ḟ

{
GRN

YCPFS−ḟ

}
+ ιmax

ḟ

{
GIN

YCPFS−ḟ

}

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and

Y+

CPFS =

max
ḟ

{
GRM

YCPFS−ḟ

}
+ ιmax

ḟ

{
GIM

YCPFS−ḟ

}
,

min
ḟ

{
GRN

YCPFS−ḟ

}
+ ιmin

ḟ

{
GIN

YCPFS−ḟ

}
 ,

then we have

Y−

CPFS ≤ CPFWG
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)
≤ Y+

CPFS

Definition 10: Suppose CPFOWG :
(
YCPFS−ḟ

)ϱ
→

YCPFS−ḟ, if

CPFOWG
(
YCPFS−1, YCPFS−2, . . . , YCPFS−ϱ

)
=

ϱ

⊗

ḟ = 1

(
YCPFS−1

(
ḟ
))Ξ

−ḟ

then CPFOWG is deduced as CPFOWG operator over
YCPFS−ḟ. Noted that Ξ =

(
Ξ −1, Ξ −2, . . . ,Ξ −ϱ

)
is

a weight vector with 0 ≤ Ξ
−ḟ ≤ 1,

∑ϱ

ḟ=1
Ξ

−ḟ = 1, and
(1 (1) , 1 (2) , . . . ,1 (ϱ)) is a permutation of (1, 2, . . . , ϱ)

such that 1
(
ḟ − 1

)
≥ 1

(
ḟ
)
, for ḟ = 2, 3, . . . , ϱ.

Theorem 5: The aggregated result over YCPFS−ḟ by utiliz-
ing CPFOWG operator will be analyzed as CPFN and

CPFOWG
(
YCPFS−1, YCPFS−2, . . . YCPFS−ϱ

)

=



ϱ∏
ḟ=1

(
GRM

YCPFS−1(ḟ)

)Ξ
−ḟ

+ι
ϱ∏

ḟ=1

(
GIM

YCPFS−1(ḟ)

)Ξ
−ḟ

,1 −

ϱ∏
ḟ=1

(
1 −

(
GRN

YCPFS−1(ḟ)

)2
)Ξ

−ḟ


1
2

+ι

1 −

ϱ∏
ḟ=1

(
1 −

(
GIN

YCPFS−1(ḟ)

)2
)Ξ

−ḟ


1
2


V. APPLICATION
Here, we will reveal the application and practicality of our
proposed theory by solving a multi-attribute decision-making
(MADM) dilemma in the field of virtualization technology.
For that first, we devise a technique of MADM within the
Cartesian coordinate of CPFS by employing the invented
operators and then discuss a case study ‘‘evaluation and
selection of virtualization technologies for cloud-based e-
commerce platform.

A. AN APPROACH OF MADM WITHIN CPFS
Consider

{
V −1,V −2, . . . ,V −ϱ

}
as a class of ϱ alterna-

tives and
{
Bab−1,B −2, . . . ,B −ρ

}
as a class of ρ attributes

in a MADM dilemma. In this dilemma, the decision expert
has to assess these alternatives by considering these attributes.
As the attributes have their significance decision expert will
describe their weight Ξ =

(
Ξ −1, Ξ −2, . . . ,Ξ −ρ

)

with 0 ≤ Ξ
−

≤ 1 and
∑ρ

=1
Ξ

−
= 1 according to

their significance and his/her choice. The assessment values
of these alternatives will be in themodel of the Cartesian form

of CPFNs which is YCPFS−ḟ =

(
GM

Y
CPFS−ḟ

,GN
Y
CPFS−ḟ

)
=(

GRM
Y
CPFS−ḟ

+ ιGIM
Y
CPFS−ḟ

,GRN
Y
CPFS−ḟ

+ ιGIN
Y
CPFS−ḟ

)
, where

GRM
Y
CPFS−ḟ

,GIM
Y
CPFS−ḟ

,GRN
Y
CPFS−ḟ

,GIN
Y
CPFS−ḟ

∈ [0, 1] and 0 ≤(
GRM

Y
CPFS−ḟ

)2

+

(
GRN

Y
CPFS−ḟ

)2

≤ 1, and 0 ≤

(
GIM

Y
CPFS−ḟ

)2

+(
GIN

Y
CPFS−ḟ

)2

≤ 1, which develops a CPF decision matrix

DCPFS . The decision expert can cope with this dilemma by
employing the below steps
Step 1: Most of the time, in MADM issues, the attributes

are two sorts that are benefit and cost types. To normalize
such sort of attributes we have the underneath formula

(NCPFS)
N

=



GRM
Y
CPFS−ḟ

+ ιGIM
Y
CPFS−ḟ

,

GRN
Y
CPFS−ḟ

+ ιGIN
Y
CPFS−ḟ

 for benefit typeGRN
Y
CPFS−ḟ

+ ιGIN
Y
CPFS−ḟ

GRM
Y
CPFS−ḟ

+ ιGIM
Y
CPFS−ḟ

 for cost type

Step 2: For aggregating the CPF decision matrix, any of
the designed operators (CFPWA, CFPOWA, CFPWG, and
CFPOWG) would be utilized.
Step 3: For ordering alternatives, the score values of the

aggregated outcomes of the alternatives would be deduced.
In the case of the same score values of two different alterna-
tives, accuracy values would be deduced.
Step 4: Based on step 3, the alternatives would be ranked.

B. CASE STUDY ‘‘EVALUATION AND SELECTION OF
VIRTUALIZATION TECHNOLOGIES’’
The multidimensional issue that a multinational company has
with an e-commerce platform is improving its infrastructure
to satisfy the needs of a continually expanding and erratic user
base. This is an analysis of the issue:

• Scalability Challenge: Consistently, client traffic on
their site varies at various levels, cresting during occa-
sions and exceptional events. To stay aware of these
varieties, customary framework finds it challenging
to powerfully scale assets, which could bring about
lackluster showing, hindered benefits, and displeased
shoppers.

• Performance Bottlenecks: Client disturbance and dimin-
ished change rates can result from slow site loads,
lazy exchange handling, and coldhearted UIs. The
framework’s failure to distribute and oversee assets
productively compounds these performance issues and
makes it more challenging for them to give a consistent
client experience.
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TABLE 1. The assessment values of virtualization technologies which was devised by IT expert.

TABLE 2. The aggregating values of virtualization technologies after employing devised operators.

TABLE 3. The score values of virtualization technologies.

• Security Concerns: It is significant to shield pri-
vate client data, monetary information, and exchange
records. Traditional framework setups, then again, could
never have areas of strength for the actions expected
to prepare for information breaks, unlawful access, and
impedance between different stage parts, leaving them
open to serious security concerns.

• Costs Inefficiency: Underutilization causes wasteful
asset allotment and conceivable performance bottle-
necks while overprovisioning brings about unneces-
sary framework costs. It’s always difficult to strike
a balance between cost-effectiveness and performance
needs, especially as their platform keeps expanding and
changing.

Their e-commerce platform is confronted with issues of
infrastructure cost-efficiency, security, scalability, and perfor-
mance. To meet these issues and secure the platform’s future
growth and success, a thorough assessment of virtualization
technologies is needed to choose the best option that can
improve performance, reduce infrastructure costs, increase
security, and expand resources dynamically. To tackle these
issues and for the selection of best virtualization technology
for the e-commerce platform the IT expert of the company
considered the underneath 4 virtualization technologies

V −1 (Docker): Using lightweight containerization to
quickly deploy microservices and efficiently use resources,
albeit it might not be as isolated as traditional hypervisor-
based virtualization.

TABLE 4. The ranking of virtualization technologies.

V −2 (KVM (Kernel − based Virtual Machine)): Ideal
for cases needing high security and resource isolation, this
technology leverages hardware virtualization extensions to
provide strong isolation and performance near to native.

V −3 (VMware vSphere): This virtualization platform
with mature features and strong management capabili-
ties is appropriate for enterprise-grade deployments, but
it may have more administration overhead than other
solutions.

V −4 (Microsoft Hyper − V ): This system offers a
compromise between performance, isolation, and admin-
istration overhead while integrating seamlessly with Win-
dows environments and giving robust support for Microsoft
applications.

To access these the IT expert, consider the following
4 attributes

B −1 (Performance): Evaluating how well the virtualiza-
tion technology manages peak loads while preserving high
throughput and low latency.

B −2 (Resource Utilization) : To guarantee maxi-
mum cost-effectiveness, assess how well the virtualization
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TABLE 5. The comparison outcomes of the deduced and existing theories.

technology makes use of hardware resources like CPU, mem-
ory, and storage.

B −3 (Isolation): To avoid interference and preserve secu-
rity and stability inside the e-commerce platform, robust
isolation between virtual instances must be ensured.

B −4(Management Cost): Examining how simple it is
to build and maintain virtualized instances, as well as the
administrative cost involved.

The IT expert assessed the virtualization technologies
relying on the considered four attributes and expressed his
assessment values in the term of CPFN in Cartesian coordi-
nate, which created a CPF decision matrix as portrayed in
Table 1.
The IT expert also provides weight (0.15, 0.26, 0.32, 0.27)

to the attribute according to his expertise about the attributes.
To get the finest virtualization technology, the MADM tech-
nique with CPFS would be used
Step 1: All attributes are considered as benefit sort so no

requirement of normalization.
Step 2: For aggregating the CPF decision matrix, the

designed operators (CFPWA, CFPOWA, CFPWG, and
CFPOWG) have been utilized and the results are devised in
Table 2.
Step 3: For ordering virtualization technologies, the score

values of the aggregated outcomes of the virtualization tech-
nologies have been deduced and portrayed in Table 3.
Step 4: Based on step 3, the virtualization technologies are

ranked, which is devised in Table 4.
Following a careful analysis, we determined that by using

the CPFWA operator in the MADM procedure V −2 that is
KVM is the finest virtualization technology for e-commerce
platforms and by using the other operators in the DM process
V −1 that is Docker is the finest virtualization technology
for e-commerce platforms.

VI. COMPARISON
Comparison of the invented work with certain work is critical
for describing the significance and supremacy of the devised
work. Thus, here, we are going to compare the interpreted

TABLE 6. The ranking is based on the deduced and existing theories.

theory with certain existing theories which are demonstrated
below

❖ The theory of IF AOs, was established by Xu [11] in
2007 and Xu and Yager [12] in 2006.

❖ The theory of an approach to DM in PFS was devised by
Yager [19] in 2013.

❖ The idea of confidence level AOs and DM approach
within PFS was devised by Garg [17] in 2017.

❖ The notion of probability complex fuzzy AOs and DM
approach was interpreted by Rehman [24] in 2023.

❖ The theory of probability CIF AOs and MCDM tech-
nique was established by Fang et al. [32] in 2024.

❖ The notion of Geometric AOs and multi-criteria group
DM technique within the polar structure of CPFS was
demonstrated by Hezam et al. [35] in 2023.

❖ CPF Dombi AOs and their DM technique within
the polar structure of CPFS were originated by
Akram et al. [36] in 2021.

❖ CPF Einstein AOs and their DM technique within
the polar structure of CPFS were originated by
Janani et al. [37] in 2022.
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To compare these theories with initiated theory, let us recon-
sider the information in Table 1, which is in the model
of the Cartesian form of CPFS. After applying the pre-
vailing and initiated theories the overall result is portrayed
in Tables 5 and 6.
From the outcomes of Tables 5 and 6, none of the prevailing

theories solved the information of Table 1, and the reason
for that is discussed as: The theory of Xu [11] and Xu and
Yager [12] failed because it can merely solve the information
in the environment of IFS and are not structured for coping
with information that has extra fuzzy information. The theo-
ries that were developed by Yager [19] and Garg [17] were
unsuccessful because these theories are not capable of tack-
ling information along with extra fuzzy information which
is 2nd dimension. The probability complex fuzzy AOs cope
2nd dimension (extra fuzzy information) but can’t tackle with
non-membership and that was the reason for the failure of
this theory. The theory of probability CIF AOs failed because
there are some assessment values in Table 1, that the sum of
their degrees of membership and non-membership is greater
than 1, for example, 0.45 + 0.79 > 1, and complex intu-
itionistic FS can’t model such information. But the invented
structure can model such information because in the invented
structure the sum of the square of degree of membership and
non-membership should be between 0 and 1.

Further, the geometric, Dombi, and Einstein AOs and their
related DM approaches failed to solve the information in
Table 1, even these operations and DM approaches are in
the model of CPFS. However, these notions are in the polar
structure of CPFS and can’t be overcome with the Cartesian
complex data. Thus, the development of the invented oper-
ators and MADM technique was the requirement of today’s
world as there are no such structures and operators exist in
the literature. Furthermore, the invented operators and an
approach of MADM can reduce to the Cartesian structure of
CIFS and CFS, PFS, IFS, and FS.

VII. CONCLUSION
This script provided a fresh idea of CPFS in a Cartesian
coordinate by changing the range from the unit disc of the
complex plane to the unit square, hence resolving issues with
the prevailing theory of CPFS. The degrees of membership
and non-membership in the Cartesian version of CPFS are
situated in the unit square of a complex plane and comprise
real and imaginary components that transmit fuzzy informa-
tion. For the developed CPFS, we additionally developed
basic operating laws. Additionally, we derived geometric
and averaging operators (AOs) for the CPFWA, CPFFOWA,
CPFWG, and CPFFOWG operators in the Cartesian model
of CPFS. Next, using these operators, we implemented a
MADM method inside CPFS to address real-world MADM
problems that includeCPF data. In this article, we have finally
developed the application of diagnosed theory in the sphere of
visualization technology, and through comparison, we have
shown the superiority of the developed theory.

In the future, we would like to work on the practical usage
and application of this theory in various industries. Also we
would like to expand this concept in various notion such as
complex hesitant FS [46], bipolar complex fuzzy set [47] and
bipolar complex fuzzy soft set [48] etc.
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