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ABSTRACT Sudden cardiac death (SCD) is one of the main causes of death in athletes during exercise
and physical activity. By analyzing the results of the ECG classification, doctors can promptly detect
the presence of cardiovascular diseases and implement appropriate treatment measures, thereby reducing
disease progression and the occurrence of complications. Previous studies have typically used machine
learning methods that often required manual feature selection, which could be subjective, time-consuming,
and limited in scope. Additionally, the relationships between features may be overlooked, leading to a
decrease in model performance. Therefore, our proposed approach automatically learns and selects relevant
features, avoiding the issues associated with manual feature selection. In this paper, we introduce the
Grunet deep learning network model, which utilizes convolutional neural networks to automatically extract
features from ECG signals, thereby enhancing feature utilization and representation capabilities. Given the
time-sensitive nature of ECG signals, we introduce gated recurrent units (GRU) to better capture these
features. The gating mechanism of GRU helps manage information flow and facilitates capturing long-
term dependencies. In our experiments conducted on the MIT-BIH Arrhythmia Database and the European
ST-T Database, our proposed method achieved an overall classification accuracy of 99.47% on the European
ST-T Database, with a precision of 98.76% and a recall of 97.92% on the MIT-BIH Arrhythmia Database.
The classification accuracy for classes N and Q reached 100%. The experimental results demonstrate that
our method outperforms existing techniques, significantly reducing the cost of manual intervention and
improving the accuracy of heartbeat classification.

INDEX TERMS Electrocardiogram (ECG), gated recurrent unit (GRU), deep learning, convolutional neural
network(CNN), classify.

I. INTRODUCTION

With an aging population, the number of patients with car-
diovascular diseases is growing exponentially, necessitating
efficient, accurate, and cost-effective automated electrocar-
diogram (ECG) diagnostics [1]. This is particularly crucial in
populations with high-intensity activities, especially among
athletes. Following long-term high-intensity training, athletes
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and young individuals often exhibit a series of ECG changes,
such as bradycardia, early repolarization, increased ventricu-
lar voltage with or without T-wave inversion, atrioventricular
conduction block, bundle branch block, and abnormal Q
waves. Well-trained athletes typically show ECG changes
due to physiological adaptations in response to exercise by
the cardiac autonomic nervous system. These physiologi-
cal ECG changes should be distinguished from uncommon
and exercise-unrelated ECG patterns, which may indicate
underlying cardiovascular diseases. Classifying these ECG

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

59842 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024


https://orcid.org/0009-0000-1902-2929
https://orcid.org/0000-0001-5773-9517

W. Ji, D. Zhu: ECG Classification Exercise Health Analysis Algorithm Based on GRU and CNN

IEEE Access

abnormalities is beneficial for the cardiovascular manage-
ment of athletes, aiding in diagnosing conditions, evaluating
treatment plan risks, and reducing treatment costs [2].

In the realm of machine learning applications for ECG sig-
nal classification, relevant research dates back to the 1990s.
For instance, Ince et al. proposed a machine learning-based
system capable of automatically classifying patient-specific
ECG signals, providing important insights for automated
ECG signal analysis [3]. Additionally, a combined algorithm
based on empirical mode decomposition and Hilbert trans-
form for detecting R-peaks in ECG signals emerged in
2009. However, this algorithm is relatively complex and
involves a substantial number of R-peak detection blocks [4].
Bulbul et al. employed various machine learning techniques
for classifying P, Q, R, S, and T waves in ECG signals,
integrating the BP (Back Propagation) algorithm with the
MLP classifier, as well as the KA (Kernel-Adatron) algorithm
with SVM classifier [5]. Furthermore, Aziz et al. proposed
a novel algorithm utilizing two-event-related moving aver-
ages (TERMA) and fractional Fourier transform (FRFT) for
better analysis of ECG signals [6]. Pham et al. utilized a
random forest classifier to study electrocardiograms between
2 and 5 seconds, effectively leveraging temporal information
rather than individual heartbeats, demonstrating good clin-
ical applicability [7]. Papadogiorgaki et al. used k-Nearest
Neighbors and Random Forests to classify electrocardiogram
signals in 7 different abnormal and normal heart rate cases,
achieving an average Area Under the Curve (AUC) of 99.9%
[8]. While utilizing machine learning algorithms for ECG
signal feature extraction requires expertise and experience,
and feature engineering is challenging with high data quality
requirements and sensitivity to noise and interference, early
machine learning methods for ECG signal classification have
laid the groundwork for the development of subsequent deep
learning methods.

The powerful capability of deep learning in feature extrac-
tion has garnered significant attention in recent years, espe-
cially in the medical field, particularly in the classification
of electrocardiogram (ECG) signals. These methods have
proven effective in addressing the differences in ECG sig-
nals among patients, which is crucial for the early detection
of cardiac diseases and accurate classification of abnormal
ECG signals [9]. Researchers such as Acharya et al. have
utilized deep convolutional neural networks to automatically
identify five different types of heartbeats in ECG signals [10].
Kachuee et al. proposed a deep CNN-based heartbeat classi-
fication method capable of accurately classifying five types
of arrhythmias according to the AAMI EC57 standard [11].
Oh et al.’s research combined CNN and LSTM, providing
a new perspective for automated heartbeat diagnosis [12].
Deep learning not only plays a significant role in heartbeat
diagnosis but also holds important value in the diagnosis
of cardiovascular diseases such as myocardial infarction.
Acharya et al. developed a diagnostic tool capable of accu-
rately detecting normal and abnormal ECGs, achieving a high
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accuracy rate of 93.53% even in the presence of noise [13].
Additionally, they presented an innovative approach for diag-
nosing arrhythmias in multiple datasets within leads. Another
study utilized the SqueezeNet model for image classification
through transfer learning, converting ECG signals into scale-
grams for training, yielding a validation score of 0.214 and
a complete test score of 0.205 [14], [15] To improve the
accuracy of automatic classification, Lv et al. proposed a deep
learning method called SEN-BiLSTM. The method utilizes
SENet and BiLSTM jointly for extracting morphological fea-
tures of individual heartbeats, leading to higher adaptability
and accuracy [16]. These research findings not only demon-
strate the application value of deep learning in ECG signal
classification but also pave the way for new possibilities in
future medical diagnostic technologies.

The main contribution of this paper lies in the combination
of CNN and GRU [17] in the initial stage to read simulated
signals from the dataset. The signal is first processed using
a Butterworth high-pass filter to reduce interference from
power line noise, and then further processed using wavelet
transform to reduce electromyographic interference. Auto-
matic feature extraction is carried out using one-dimensional
CNN, and the combination of GRU with CNN compensates
for the insufficient time dependency in the CNN network
for ECG signals. Given the potential presence of long-term
dependencies in ECG signals, recurrent neural networks can
capture these long-term dependencies, thereby improving
classification performance and enhancing the network’s resis-
tance to noise, thus improving its robustness.

Il. RELATED WORK
A. NOISE REDUCTION

Electrocardiography (ECG), as a core diagnostic tool in the
medical field, is primarily used for monitoring and diagnos-
ing heart function. It provides direct evidence of the heart’s
health by accurately capturing and recording the heart’s elec-
trical activity. In clinical practice, ECG plays an irreplaceable
role in the diagnosis of heart diseases such as arrhythmia and
ventricular premature beats.

However, the original ECG signals are not pure and are
often subject to various external interferences, collectively
referred to as ““noise.”” This noise can originate from multiple
sources, such as interference from electromyographic sig-
nals, baseline fluctuations, electromagnetic interference from
power lines, noise caused by poor electrode-skin contact, and
motion artifacts caused by slight patient movement or physi-
ological activities (such as muscle contractions or breathing).
Additionally, thermal noise from the ECG acquisition equip-
ment or other internal interferences may also affect the signal
quality.

To eliminate this noise, researchers have developed various
algorithms and techniques. Some algorithms are based on
classical digital signal processing techniques, such as Fourier
analysis, to improve signal quality by identifying and filtering
out noise within specific frequency ranges. Adaptive filters
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are also commonly used tools that can automatically adjust
their parameters based on input signals to better eliminate
noise [18].

With the rapid development of artificial intelligence and
machine learning technologies, neural networks and other
modern statistical techniques have also been introduced to
ECG denoising. These methods, by learning from a large
amount of noisy and noise-free ECG data, can automatically
identify and eliminate noise components.

Researchers such as Boudraa et al. [19], [20] have con-
ducted in-depth studies on the application of wavelet soft
and hard thresholding methods in EMD denoising. They
conducted denoising experiments on various typical signals,
including ECG signals, and compared the results with median
filtering and wavelet denoising. The results showed that the
EMD denoising method exhibited significant performance
advantages. Tang et al [21], among others, combined EMD
with wavelet soft and hard thresholding methods to conduct
a detailed analysis of denoising effects on ECG signals. The
results indicated that compared to wavelet denoising, EMD
demonstrated superior denoising effects in signal reconstruc-
tion [22]. In the extraction of fetal ECG signals, Cao et al. [23]
proposed a nonlinear adaptive denoising framework based
on time convolutional neural networks (CNN) for effectively
extracting fetal ECG signals from maternal abdominal ECG
recordings. Cui et al. formed the optimal feature set by
the features extracted by one-dimensional CNN and discrete
wavelet transform, and the average classification accuracy
was as high as 98.35% [24]. Furthermore, in 2022, Yang et al.
introduced a denoising method for electroencephalogram
signals based on sparse representation component analysis.
The residual was taken as noise, and the denoised signal
was obtained as the product of a dictionary and sparse
coefficients. This method can be applied for the separation
and identification of electrocardiogram signals, holding sig-
nificant importance for clinical research and pathological
diagnosis [25].

In response to the noise characteristics in ECG signals,
we employ a Butterworth high-pass filter for denoising. The
Butterworth high-pass filter has a smooth frequency response
characteristic, effectively removing low-frequency noise and
baseline drift while retaining the high-frequency components
of the signal. Chest movements caused by respiration may
lead to changes in ECG signals, resulting in respiratory
motion artifacts that affect the analysis and diagnosis of the
ECG. Therefore, after filtering with the Butterworth high-
pass filter, we further utilize wavelet transform to process the
signal, reducing the impact of respiratory motion on the ECG
signal. By combining the use of the Butterworth high-pass
filter and wavelet transform, we can achieve effective denois-
ing of ECG signals, thereby improving the accuracy and
reliability of the electrocardiogram.

B. CNN IN ECG CLASSIFICATION
The machine learning paradigm is heavily influenced by
feature engineering and feature selection. Its fundamental
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principle is to integrate all data information into the signal,
enabling machine learning algorithms to identify and learn
specific patterns. This principle forms the basis of deep
learning, particularly one-dimensional networks such as con-
volutional neural networks (CNN) [26]. Due to the potential
and prospects of deep learning, researchers [27] have begun
to utilize these technologies for the detection and classifi-
cation of various chronic diseases. Since the emergence of
Unet [28] in medical image processing, convolutional neural
networks have once again become a research focus. In 2020,
Zhao et al. [29] and their team utilized a 24-layer convolu-
tional neural network to extract hierarchical features through
different sizes of convolutional kernels and combined them
with softmax for classification, achieving significant results.
However, this method solely relies on convolutional neural
networks and does not fully exploit the long-term dependen-
cies in ECG signals. Addressing this issue, Acharya et al.
proposed an automatic arrhythmia classifier [30]. Subse-
quently, Acharya et al. [31] introduced an automatic CNN
model for distinguishing two different types of ventricular
arrhythmias. The model exhibited high accuracy (93.18%),
high sensitivity (95.32%), and high specificity (94.04%).
Additionally, Kachuee et al. [27] utilized deep residual CNN
for arrhythmia classification and combined t-SNE for fea-
ture visualization. Following the AAMI EC57 standard, this
method accurately identified five types of arrhythmias in the
MIT-BIH arrhythmia database, with an accuracy rate of up to
95.9%. This research provides strong support for automatic
arrhythmia classification. Similar to deep residual CNNs,
Wu et al. proposed a 12-layer deep one-dimensional convo-
lutional neural network, which exhibits good robustness and
noise resistance. This model plays a positive role in clinical
practice [32].

C. RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) have shown excellent
performance in handling sequential data such as wave signals,
natural language, and videos [33]. Due to its unique recursive
structure, RNN can analyze and produce output based on
historical data. Bavani et al. [34] introduced an enhanced
RNN in the classification of arrhythmia diseases, aiming to
effectively combine static and dynamic data features. How-
ever, the short-term memory characteristics of RNN lead to
issues of time consumption and data loss when dealing with
long time series. Long Short-Term Memory (LSTM), as a
variant of RNN, with its powerful learning capability, can
handle longer dependencies [35]. LSTM has demonstrated
outstanding performance in various problems and is widely
used in big data analysis. Ullah et al. [36] utilized LSTM for
multi-class classification of large video datasets, achieving
over 90% classification accuracy. Similarly, Zhou et al. [37]
applied LSTM in the field of natural language processing,
obtaining over 80% classification accuracy. Zheng et al. pro-
posed a novel classification method that combines a 24-layer
deep convolutional neural network with bidirectional long
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short-term memory to delve deeper into the hierarchical and
time-sensitive features of electrocardiogram data [38]. Fur-
thermore, the combination of convolutional neural networks
(CNN) and RNN has garnered significant attention [39].
Similar to LSTM, a Gated Recurrent Unit (GRU) has fewer
parameters and lower computational costs, controlling the
flow of information through reset and update gates. It has a
faster training speed and requires less memory than LSTM.
Therefore, this study combines GRU units with convolutional
neural networks to automatically capture long-term depen-
dencies in ECG signals, enabling faster training and reducing
the risk of overfitting.

ill. METHODOLOGY

The Grunet network designed in this study consists of an
encoder and a decoder, forming an end-to-end network struc-
ture capable of automatically learning features from ECG
signals without the need for manually designing feature
extractors, thus reducing the requirement for domain-specific
expertise. As shown in Fig 1, we employ three times down-
sampling for ECG signal feature extraction, with each down-
sampling module containing a 2 x 2 max-pooling layer, two
BatchNorm layers, and two one-dimensional convolutional
layers. After each downsampling, we introduce GRU units
to enhance the network’s ability to capture long-term depen-
dencies within the ECG signals. In the upsampling module,
we utilize bilinear interpolation for feature restoration and
employ Concatenation to merge corresponding position fea-
tures, enabling the utilization of more feature information
during the upsampling process for improved classification
performance. Finally, the classification is performed using the
OutConv module, which includes a one-dimensional convo-
lutional layer and a linear layer.

As shown in Figure 2, the GRU combines the input infor-
mation x; at the current time and the hidden state /4;_; at
the previous moment to obtain the output y; of the currently
hidden node and pass the currently hidden state 4, to the next
node. The GRU removes the cell state in favor of a hidden
state to transmit information, so its parameters are lowered,
which makes training faster and less prone to overfitting.

The h; is determined by two parts, the first is to update the
door z;, and the second is to reset the door 7;.

First, using Equation 1, the r; is calculated:

re =0 (Wp-[h—1, x]) (H

Then, using the value of the r;, the candidate hidden state
h; is calculated, as shown in Equation 2:

h, = tanh(W-[r;, x;]) 2)
The formula for updating the door z; is as follows:
2 = oW lhi—1,x]) (3)

We used one layer of GRU, so we used /4, as input to the next
layer of convolution to extract features further.
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IV. EXPERIMENT

A. DATASET

We use the MIT-BIH Arrhythmia Database from the Mas-
sachusetts Institute of Technology and the European ST-T
Database from the European Society of Cardiology as the
dataset for our experiments. The MIT-BIH database consists
of 48 half-hour two-channel ambulatory ECG recordings,
with each channel sampled at 360 Hz and digitized with an
11-bit resolution within a range of £10 mV. Each record,
totaling approximately 110,000 annotations, was indepen-
dently annotated by two cardiac experts. The European ST-T
Database includes 367 episodes of ST segment change, and
401 episodes of T-wave change, with durations ranging from
30 seconds to several minutes, and peak displacements rang-
ing from 100 microvolts to more than one millivolt. Each
record is two hours in duration and contains two signals, each
sampled at 250 samples per second with 12-bit resolution
over a nominal 20 millivolt input range.

B. DATA PREPROCESSING

To address baseline drift in the ECG signals caused by incom-
plete skin-electrode contact or motion artifacts, we applied
a Butterworth high-pass filter for noise reduction. The But-
terworth high-pass filter, known for its smooth frequency
response characteristics, effectively removes baseline drift.
The processing effect is shown in figure 3 and figure 4.(The
two datasets are processed in the same way, and only the
MIT-BIH dataset preprocessing results are shown here)
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FIGURE 3. Signal after removing baseline drift.
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FIGURE 4. Comparison of the processed signal with the original signal.

Chest movements due to respiration can lead to changes
in ECG signals, producing respiratory motion artifacts that
affect the analysis and diagnosis of ECGs. We used the
wavelet transform to reduce the effect of respiratory motion
on the ECG signal. The effect is shown in figure 5:

In the process of ECG signal acquisition, it will be inter-
fered with by the electromagnetic field generated by the
operation of the power system, including transmission lines,
transformers, motors, and other equipment, resulting in a
noise of 50/60Hz, which is called power frequency inter-
ference. To remove the interference caused by these noises,
we use Butterworth’s low-pass filtering can also be used to
remove power frequency interference, that is, to remove the
high-frequency part of the signal and smooth out the signal.
The effect is shown in figure 6:

According to the standards provided by the AAMI (Amer-
ican Heart Association), heartbeats are divided into five
categories, which are N, S, V, F, and Q. Therefore, we first
select the data with a specific label that is required for each
record and discard the points with the remaining labels. Since
a full heartbeat cycle is about 0.6 seconds to 0.8 seconds,
we intercepted 300 data points before and after the R wave,
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FIGURE 6. Signal diagram after low-pass filtering.

which is just enough to meet the requirements of the heartbeat
classification and meet the AAMI standard.

C. EVALUATION INDICATORS

We use accuracy, recall, and F1 score as evaluation metrics
to assess the performance of the network model. Where TP
(True Positive) represents the number of samples correctly
predicted as positive by the model, TN (True Negative)
represents the number of samples correctly predicted as neg-
ative, FP (False Positive) represents the number of samples
incorrectly predicted as positive, and FN (False Negative)
represents the number of samples incorrectly predicted as
negative by the model.

Accuracy is acommonly used evaluation metric to measure
the predictive accuracy of a classification model across the
entire dataset. The accuracy metric can be calculated using
the following formula:

TP + TN

ACC =
TP + FP + TN + FN

@

Precision measures how many of the samples that the
model predicts to be positive are true positives. The precision

VOLUME 12, 2024



W. Ji, D. Zhu: ECG Classification Exercise Health Analysis Algorithm Based on GRU and CNN

IEEE Access

TABLE 1. Comparison of the effects of different filters and their
combinations on the classification effect.

TABLE 2. Comparison of the effects of different modules and their
combinations on the classification effect.

Method ACCURACY Precision Recall F1 score Model ACCURACY Precision Recall F1 score
Butterworth RNN 0.9863 0.9707 0.9374 0.9525
low-pass filter 0.9736 0.9441 09111 0.9257 CNN 0.9932 0.9789 0.9779 0.9765
Butt th . . . .
Butterwor 0.9861 0.9684 0.9303 0.9472 GRU 0.9871 0.9728 0.9443 0.9574
high-pass filter GRU+CNN (
Wavelet Grunet) 0.9956 0.9876 0.9792 0.9833
0.9823 0.9516 | 0.9195 | 0.9340 rune
transform
high-pass filter TABLE 3. Comparison of the average accuracy of the proposed
0.9816 0.9426 0.9161 0.9285 architecture with other existing architectures in classification.
+
low-pass filter
Paper DATABASE Model Accuracy
high-pass filter
F tal. [41 MIT-BIH | CNN+STFT | 98.85%
. 0.9834 | 09513 | 09207 | 0.9348 arag etal. [41] it J
Wavelet Madan et al. [42] MIT-BIH LSTM 98.1%
transform ResNet+S
- 0,
. Khan et al. [43] MIT-BIH MOTE 97.9%
low-pass filter Lu et al. [44] MIT-BIH CNN 96.83%
+ 0.9840 0.9613 | 0.9225 | 0.9402 Zhengetal.[45] | MIT-BIH ES'\'II"\I\I/I 97.96%
tWavfeIet AlexNet
ransform Hsu et al. [46] MIT-BIH and 96.28%
low-pass + ResNet
h'vgvh'palsst" 0.9863 0.9707 | 0.9374 | 0.9525 Gaddam etal. [47] | MIT-BIH AlexNet 93.44%
avele Bavani et al. [35] MIT-BIH | DT+RNN 91%
. optimized o
Atal et al. [48] MIT-BIH CNN 93.19%
can be calculated by the following formula: Wasimuddin et European CNN 96.29%
TP al.[49] ST-T
PRE=—— Q) Jiang et al.[50] European | yivinns | 93.7%
TP + FP ST-T
.. European o
Recall measures how many of the true positive examples Barbosa et al.[51] STT CNN+MLP 98%
are successfully predicted by the model to be positive. The Merdjanovska et | European CNN 99.39%
. . (]
recall rate can be calculated by the following formula: al.[52] ST-T
P Our MIT-BIH | CNN+GRU | 99.56%
REC=——— (6) our E”;"T”ia" CNN+GRU | 99.47%
TP + FN -

The F1 score is a blended average of precision and recall,
taking into account the performance of precision and recall.
The F1 score can be calculated by the following formula:

_ 2 x PRE x REC

Fl = (N
PRE x REC

D. EXPERIMENTAL RESULTS

1) NOISE REDUCTION EXPERIMENT

We use the Butterworth high-pass filter to eliminate the

interference of baseline drift and further use the Butterworth

low-pass filter to process the interference of the power fre-

quency for noise reduction. The processed signal is used as

the input of the wavelet transform, and through the final

wavelet transform, we successfully reduce the effect of respi-

ratory artifacts in the ECG signal on the classification effect.

The specific experimental results are shown in table 1.

This series of noise reduction experiments provides impor-
tant data preparation for our subsequent construction of the
network structure. Through these experiments, we verified
the importance of noise reduction processing to improve the
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classification effect and laid the foundation for the next work.
These results provide strong support for our research and
provide an important reference for our subsequent network
structure construction and classification effect.

2) ABLATION EXPERIMENT

After determining the data processing approach, we con-
ducted ablation experiments to validate the effectiveness of
the modules. We separately employed replacement schemes
using RNN and CNN and then combined them to verify the
final classification performance. According to the results in
Table 2, our average classification accuracy reached 99.56%,
with a precision of 98.76%, recall of 97.92%, and an F1
Score of 98.33%. These results indicate that our modules
played a crucial role in improving classification accuracy
after undergoing ablation experiment validation. This further
confirms the effectiveness of our method in data processing
and module combination, providing strong support for our
research work.
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FIGURE 8. European ST-T classification confusion matrix.

3) COMPARATIVE TEST
To validate our proposed method, we compared our results
with current and standard methods in terms of datasets,
methodology, and accuracy, as shown in Table 3. It is
worth mentioning that our method has achieved good
results in MIT-BIH Arrhythmia Database and European ST-T
Database, respectively, and has obvious advantages over other
methods. These results suggest that the proposed method has
an important competitive advantage in the current research
field and maybe a strong choice for future research and
application. These findings provide strong support for the
feasibility and effectiveness of our method and lay a solid
foundation for further development in this field.

We plotted the confusion matrix for the five-class classi-
fication of the MIT-BIH Arrhythmia Database. According
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to figure 7, it can be observed that the model categorizes
the electrocardiogram signals into five classes: N, S, V, E,
and Q, and displays the classification performance among
them. The confusion matrix is normalized, representing the
proportion of predictions for each class. The model perfectly
classifies instances of the N and Q categories, with a normal-
ized value of 1.00. The S category exhibits good classification
performance, with a correct classification proportion of 0.83,
but also indicates some misclassifications, with 12% of S
instances being incorrectly classified as N and 4% as Q.
The V category has a correct classification proportion of
0.97, with only 2% of instances being misclassified as N.
The F category also demonstrates very high classification
performance, with a correct classification proportion of 0.99.
Overall, the classification model’s performance is quite good,
with the highest misclassification rate occurring in the S
category. However, even for this category, the majority of
instances are correctly classified.

Due to the small number of instances in the F and Q
categories in the European ST-T Database, to address the
data imbalance issue and reduce the disparities it may cause,
we conducted a three-class classification on the electrocar-
diogram signal data using Grunet to evaluate the model’s
performance. We plotted the three-class confusion matrix for
the European ST-T Database, as shown in Figure 8, where
we categorized the signals into three classes: N, S, and V.
The correct classification proportions for the N and V classes
were both 1, while the S class achieved a correct classification
proportion of 0.99. This represents a significant improvement
compared to the MIT-BIH database, possibly due to the
reduced number of classes, which decreased confusion dur-
ing classification. This also provides new insights for future
related research, highlighting the importance of addressing
data imbalance issues and defining key classification objec-
tives in classification tasks.

V. CONCLUSION

In this study, we designed an encoder-decoder structure
that can extract and fuse multi-scale features at different
levels. This structure has significant advantages in process-
ing ECG signals because ECG signals contain features of
various frequencies and scales, which are crucial for accu-
rately classifying electrocardiograms. In this way, our model
can comprehensively understand and capture the complex
features in ECG signals, thereby improving classification
accuracy.

The Grunet network we proposed is end-to-end trainable.
This means the model can directly learn and extract useful
features from raw ECG signals without the need for tedious
manual feature extraction processes. This feature greatly
simplifies the model’s learning process and improves its effi-
ciency and accuracy.

Furthermore, we utilized GRU to handle time series data.
GRU units are particularly suitable for processing data with
long-term dependencies, which is crucial for understanding
and classifying ECG signals. Through GRU units, the model
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can better understand and capture the temporal relationships
between different parts of the ECG signal, further enhancing
classification accuracy.

The classification of ECG signals holds immeasurable
value in the diagnosis and monitoring of heart diseases.
With the continuous advancement of medical technology, the
application of deep learning in the medical field is becoming
increasingly widespread. In our future work, we will continue
to explore the application of deep learning in ECG signal
analysis, strengthen feature extraction, and further improve
the accuracy of classifying the S category.
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