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ABSTRACT The current emergency vehicle priority control methods in road traffic net-works are difficult
to cope with the increasing traffic demand. Therefore, a traffic control method based on multi-vehicle
collaborative lane change strategy, fleet convergence and gap adjustment model is proposed and its effec-
tiveness is verified. These experiments confirmed that the speed of vehicle Cj+1 under strategy 1 showed
a positive correlation with time at 0-5s, reaching an extreme value of 16.85 m/s around 4s, and a negative
correlation after 5s. Under strategy 2, its speed showed a negative correlation with time at 0-4s, and a parallel
relation-ship after 4s. The multi-vehicle col-laborative lane changing strategy was validated. Except for fleet
C with a density of +0.0333m-1, the actual adjustment time of vehicle C1 was gradually increasing at all
other densities. The maximum time for B1 adjustment was 9.358s, and the maximum time for C1 adjustment
was 10.798s. The longitudinal relative dis-placement of C1 was larger than that of B1. In addition, compared
with Model T, the research method increased the average vehicle speed by 12.64% under four different flow
rates. Compared with Model Y, the average flow rate of the research method under the four experimental
flows was 1.45%. Overall, the research method is effective and feasible in the priority selection control
of road traffic net-works. It improves the operational efficiency of emergency vehicle sections and can be
effectively applied in actual traffic net-works.

INDEX TERMS Vehicle networking, emergency situations, multi-vehicle collaborative lane changing
strategy, IAWM, traffic volume.

I. INTRODUCTION
The number of abnormal deaths caused by emergencies is
increasing every year, which has brought huge losses to the
lives and property of people, and the situation of public
safety is very severe [1], [2], [3]. With the continuous deep-
ening of urbanization, population and resources continue to
be concentrated in urban areas. The growing aging popu-
lation has also led to a sharp increase in urban emergency
needs in emergency situations [4], [5]. Emergency Vehi-
cles (EVs) are important carriers for responding to urgent
needs. Reducing their actual response time has become a
major goal in developing emergency rescue systems [6], [7],
[8]. Only when emergency rescue personnel arrive at the
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scene in a timely manner can the success rate of rescue be
improved and the lives and property of people be maximally
re-stored. However, the sharp increase in car owner-ship has
led to increasing congestion in urban road net-works, which
reduces the ability of EVs to quickly reach emergency sites.
In addition, the accident rate of EVs is also showing a grow-
ing trend [9]. Therefore, an urgent issue that needs to be
addressed is to study the priority traffic control methods for
EVs in urban road net-works, improve their efficiency, reli-
ability, and safety, and reduce their adverse effects on daily
traffic [10], [11]. Some scholars have conducted research on
vehicle lane changing and proposed dynamic lane changing
models in the context of mixed traffic. When changing lanes,
considering both human driver behavior and fleet spacing
has certain limitations [12]. There are multiple options in
the current priority control methods for emergency vehicles.
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For example, by developing an intelligent alarm system for
ambulances, reminding the surrounding social vehicles to
give way. By designing an emergency vehicle detection sys-
tem, supported by sensing technology, a low-density road for
emergency vehicles was found to pass through. Alternatively,
in the context of connected vehicles, considering the effi-
ciency of real-time information exchange between vehicles,
a pre-clearing strategy for emergency lanes was designed.
In this case, the lane changing model in the priority selection
control of traditional road traffic net-works only considers its
own speed and the fleet gap of the target lane. It has not been
studied from the perspective of Multi-vehicle Col-laborative
Lane Changing (MVCLC), resulting in low lane changing
efficiency. And it lacks research on fleet automatic yielding,
which leads to low driving efficiency of EVs. Therefore,
the study utilizes the MVCLC strategy to construct a fleet
flow and gap adjustment model, and proposes the Internet of
Vehicles-Based Automatic Way Giving Method (IAWM) for
emergency situations. The research aims to improve the lane
changing efficiency of vehicles in emergency situations from
the perspective of multi-vehicle collaborative lane changing,
in order to improve the driving efficiency of emergency vehi-
cles and enrich the research content of vehicle networking
technology in this field.

In response to the shortcomings of current emergency vehi-
cle priority control methods, research is conducted from the
perspective of multi-vehicle cooperation for lane changing,
taking into account various factors such as road traffic density
and initial vehicle status. Multiple models such as fleet gap
adjustment are constructed. Mean-while, corresponding fleet
automatic yield control methods are proposed. Problems such
as the relative position relation-ship of vehicles in the fleet
and the minimum distance of the fleet during lane changing
are solved in this study. Overall, the research methodology
is more comprehensive and helps to improve lane changing
efficiency.

The total research is divided into four parts. The first
part is to summarize and discuss the current approaches
about emergency vehicle preference control in road traf-
fic net-works. The second part is to analyze the proposed
multi-vehicle cooperative lane-changing strategy, convoy
convergence and gap regulation model, and the final IAWM
method using Telematics. The third part is the validation of
the IAWMmethod and the fourth part summarizes the whole
article.

II. RELATED WORKS
When passing on road sections, EVs mainly rely on emer-
gency avoidance by vehicles ahead to ensure rapid passage.
Due to the lack of effective communication technology in
the past, research in this field is relatively scarce. With
the development of IoV, fast communication between vehi-
cles is achieved, which has aroused the research interest
of scholars [13], [14]. Liu Z et al. aimed to improve the
driving efficiency of EVs under high road traffic density,
and an automatic yielding system was designed by utilizing

vehicle to vehicle communication in IoV. This effectively
improved the operating efficiency of EVs and enhanced their
automatic avoidance performance while considering traffic
density [15]. CaoMet al. proposed an emergency IoV priority
selection control method using greedy mechanism and deep
rein-forcement learning to address the issue of rapid response
of EVs in emergency situations. This effectively reduced traf-
fic conflicts and negative impacts, and improved the driving
efficiency of EVs [16]. Hosseinzadeh et al. proposed a new
traffic control scheme for EV in traffic congestion by utilizing
centralized computing technology and IoV, which not only
improved the driving efficiency of EV but also helped to
quickly disperse vehicles in congested sections [17]. Alkhatib
A et al. proposed an intelligent urban road traffic control
management system for the intelligent EVs scheduling in
congested urban road net-works, taking into account urban
traffic flow. This effectively reduced the actual running time
of EVs [18].

In addition, Raja G et al. proposed a multi-agent deep rein-
forcement path optimization algorithm for emergency rescue
vehicles, utilizing 6G net-works and autonomous IoVs. This
algorithm effectively reduced travel time while improving
the efficiency of EV operation and provided assistance in
enhancing rescue efficiency [19]. Antonio andMaria-Dolores
proposed a traffic control method based on 5G communica-
tion and IoV to address the priority traffic control of EVs
in urban transportation net-works, effectively reducing the
travel and congestion time of EVs [20]. Jutury et al. proposed
an intelligent EV priority control method based on neural
fuzzy to effectively improve the driving efficiency of EVs due
to the exacer-bation of traffic congestion speed, which led to
lower actual operating efficiency [21]. Hajiloo et al. proposed
an integrated vehicle effective traffic control method based on
IoV for the comprehensive traffic control problem of vehicles
in emergency situations, thereby effectively improving the
rescue efficiency of EVs [22].

Based on the above research, the current EV priority traffic
control method in the road traffic net-work is difficult to
cope with the increasing traffic demand. However, traditional
lane changing models only consider their own speed and the
fleet gap of the target lane, without considering MVCLC.
Therefore, the IAWM proposed from the perspective of
MVCLC strategy is innovative. In theory, innovative research
has proposed MVCLC strategies, fleet convergence, and
gap adjustment models in the IoV environment, effectively
improving the EV priority traffic theory in IoV. In prac-
tice, the proposed method provides an important theoretical
basis for improving the driving efficiency of EVs in prac-
tice, and helps managers implement EV rescue scheduling.
Research on collaborative lane changing strategies and pri-
ority communication control methods for emergency vehicle
sections is beneficial to promoting the improvement of lane
changing efficiency to a certain extent. Studying the addition
of fleet automatic yield control methods can be helpful in
solving the problem of low driving efficiency of emergency
vehicles.
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FIGURE 1. Decision-making process.

III. THE PRIORITY SELECTION PROBLEM OF EMERGENCY
VEHICLE TRAFFIC NET-WORK BASED ON THE INTERNET
OF VEHICLES
Under the traditional management mode of emergency vehi-
cle traffic, social vehicles are unable to complete lane changes
in a short period of time and make way for EVs in a timely
manner. This seriously affects the efficiency of emergency
vehicle traffic. Therefore, this section mainly analyzes the
MVCLC strategy, fleet convergence and gap adjustment
model, and the proposed IAWM.

A. MULTI-VEHICLE COL-LABORATIVE LANE CHANGING
STRATEGY UTILIZING CONNECTED VEHICLES IN
EMERGENCY SITUATIONS
This study proposes an IAWM to address the issue of EV
priority traffic control methods being un-able to cope with
the growing traffic demand environment in the current road
traffic net-work. The current development of information
technology is driving the expansion of IoV, enabling real-time
communication between vehicles. Real-time communication
between different vehicles can timely inform the drivers of
other vehicles of the driving situation of EVs, and further
improve the maneuverability and safety of EVs. Firstly, the
decision-making process of emergency vehicle driving is
analyzed in the context of connected vehicles, as shown in
Figure 1.

In Figure 1, the driving path of EVs is determined based
on the operational status of the road net-work at the road net-
work level. The ac-celeration, de-celeration, lane changing,
and overtaking behaviors of EVs are determined within the
road section based on traffic density and the driving status of
surrounding vehicles. Under normal circumstances, EVs will
choose the inner lane when driving on real roads. However,
vehicles on the inner lane will turn to adjacent lanes after
receiving commands, and there are rarely cases of entering
the outer vehicle lane from adjacent lanes [23], [24], [25].
Therefore, the study aims to focus on the complexity of
the model and select a two-way two-lane high-way as the

FIGURE 2. Schematic diagram of simulated scenarios for intelligent
yielding of emergency vehicles in actual operation.

research object to analyze the entire process of vehicles auto-
matically giving way in emergency situations. This process
does not consider the impact of pedestrian crossing, signal
control and other factors on vehicle queues. Figure 2 shows
the specific simulation scenario.

From Figure 2, it is assumed that the fleet on lane 1 with
EV is the original fleet, i.e. fleet B, while the fleet on lane 2
without EV is the target fleet, i.e. fleet C. Therefore, based
on the driver’s habit of overtaking on the left during actual
traffic, lane 2 is defined as the lane of passage of EV. After
receiving the passage message from the relevant EV in fleet
B, all vehicles immediately find a suitable location in fleet C,
judge whether to add or subtract, and issue a transfer request
to the corresponding vehicles in fleet C. The vehicles of fleet
C adjust their speed and interval according to this requirement
tomeet the need for lane changing andmergingwithin fleet C.
After the interval adjustment is completed, a message is sent
to fleet C’s vehicles to enter. Figure 3 shows the specific
operation process.

From Figure 3, the process first determines whether EVs
have reached. If not, the process ends. If so, the specific num-
ber of vehicles inside the lane ahead is detected. Secondly, it is
determined whether the gap between fleet C met the merging
requirements of fleet B. If so, fleet B sends relevant merging
requests and merges them into fleet C. At this point, EV A
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FIGURE 3. Control process flowchart of intelligent yielding of emergency vehicles in
actual operation.

can pass through the section of the road and end the process.
If not, it is necessary to calculate the lane changing space
requirement of fleet B and the end time of lane changing
for vehicles 1 and 2. If the former is greater than the latter,
a queue lane changing strategy is executed. If not, an in-
dependent lane changing strategy is executed. Then, fleet
C dynamically adjusts the gap at the front of the vehicle
and re-judges whether the gap meets the merging of fleet B.
Finally, the process ends.

Normally, when there are vehicles present in two lanes,
the traffic flow on the road is already quite dense. Therefore,
it takes a long time to achieve the convergence of two teams of
vehicles. The study intends to use theminimum time to design
a flow control method that allows the two teams of vehicles to
quickly adjust their speed and position in the shortest possible
time. All vehicle dynamics are set to be equal. to simplify
practical modeling, and the longitudinal vehicle control is
emphasized without considering lateral vehicle control. The
actual position of vehicles in fleet B is projected onto fleet
C to create a virtual channel and merge the fleet. In this
process, effectively analyzing the distribution probability of
actual lane changing gaps for vehicles is the key to proposing
a multi-vehicle system lane changing strategy. According to
the basic principle of traffic flow, it is necessary to determine
whether the number of vehicles arriving at a certain moment
or the number of vehicles allocated at a certain distance
satisfies a Poisson distribution. Its basic expression and the
probability distribution of the distance between the front of
the vehicle are represented by equation (1) [26], [27], [28].X (κ) =

(ψτ)κ e−ψτ

κ!
E (p) = X (0) = e−ψ(p/ν) = e−κp

(1)

In equation (1), X (κ) represents the probability of κ vehicles
arriving with a counting time interval of τ . ψ represents
the actual achievement rate of the vehicle. E (p) represents
the probability of the distribution of head-way within a unit
length of p. ν represents the actual speed of the vehicle.
From equation (1), the vehicle time distance on a single-lane
at a given moment exhibits a negative exponential distri-
bution. Then, it is assumed that the positional relation-ship
between vehicles in the simulation scenario is a same direc-
tion inter-section in different lanes. Vehicles in lane 1 can
merge into lane 2 at any time, but their tails are exactly
parallel to the front of vehicles in lane 2. Therefore, in this
case, vehicles in lane 2 need to consider safety issues and
adjust the distance between their heads (this analysis process
does not consider vehicles behind). It is assumed that vehicles
Bj and Bj+1 in lane 1, Cj and Cj+1 in lane 2, the initial
position of the rear EV’s front end is X0, the initial positions
of the front end of Bj and Bj+1 are XC0 and X ′

C0, and the
initial positions of the front end of Cj and Cj+1 are XB0
and X ′

B0. When the counting time interval τ is within [0, τν],
the relevant distance relation-ship satisfied by vehicle Cj is
represented by equation (2).

JAB0 +

∫ τν

τ0

νB (τ ) dτ = JAC0 +

∫ τν

τ0

νC (τ ) dτ + JCB

νC (τν) = νB (τν)

JCB = hν + JQmin

(2)

In equation (2), JAB0 is the initial spatial distance between
vehicle Bj and EV A. τν represents the time point when all
vehicles meet the safety lane changing conditions. νB means
the actual driving speed of vehicle Bj. JAC0 refers to the
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initial spatial distance between vehicle Cj and EV A. νC is
the actual driving speed of vehicle Cj. JCB refers to the actual
spatial distance between vehicle Cj and Bj. hν represents
the actual vehicle length. JQmin means the minimum safe
distance between two vehicles. The relevant distance satisfied
by vehicle Cj+1 is represented by equation (3).

JAB0 +

∫ τν

τ0

νB (τ ) dτ = J ′

AC0 +

∫ τν

τ0

ν′
C (τ ) dτ + J ′

CB

ν′
C (τν) = νB (τν)

JAC +

∫ τν

τ0

νC (τ ) dτ +
(
hν + JQmin

)
≤ J ′

AC0 +

∫ τν

τ0

ν′
C (τ ) dτ

(3)

In equation (3), ν′
C refers to the actual driving speed of vehicle

Bj+1. J ′
CB means the actual spatial distance between vehicles

Bj and Cj+1. J ′

AC0 is the initial spatial distance between
vehicle Bj+1 and EV A. The relevant distance satisfied by
vehicle Bj+1 is represented by equation (4).

JAB0 +

∫ τν

τ0

νB (τ ) dτ = J ′

AB0 +

∫ τν

τ0

ν′
B (τ ) dτ − JBB

ν′
B (τν) = ν′

C (τν)

JAB0 +

∫ τν

τ0

νC (τ ) dτ +
(
hν + JQmin

)
≤ J ′

AB0 +

∫ τν

τ0

ν′
B (τ ) dτ

(4)

In equation (4), ν′
B represents the actual driving speed of vehi-

cle Bj+1. JBB represents the actual spatial distance between
vehicles Bj and Bj+1. When the counting time interval τ is
within (τν, τend ], vehicles Bj and Bj+1 will change to lane 2.
At this time, the relative distance between EV and vehicle Bj
is represented by equation (5). JAB0 +

∫ τend

τ0

νB (τ ) dτ =

∫ τend

τ0

νA (τ ) dτ − JAB

JAB = hν + JQmin

(5)

In equation (5), νA represents the actual driving speed of EV
A. JAB represents the spatial distance between vehicle Bj and
EV A. Supported by equations (2) to (5), for the MVCLC in
the simulation scenario, the in-dependent and queuing lane
changing processes in Figure 3 will appear, with strategies
implemented in both processes set to 1 and 2, respectively.
Therefore, in strategy 1, the spatial distance between vehicle
Cj, Cj+1, and Bj is first adjusted. Secondly, the vehicle Bj+1
adjusts its actual speed and spatial distance according to the
actual positions of Bj and Cj+1. Therefore, the relative safe
distances of vehicles Bj, Bj+1, and Cj+1 at this time are
represented by equation (6).{

J ′
BC = hν + JQmin

JBB = 2
(
hν + JQmin

) (6)

In strategy 2, the relative distance between vehicles Bj and
Bj+1 is first measured, and then vehicle Cj adjusts its actual
speed and spatial distance based on their positions. Therefore,
in strategy 2, the relative safe distance between vehicles Bj,
Bj+1, and Cj+1 is represented by equation (7).{

J ′
BC = 2

(
hν + JQmin

)
JBB = hν + JQmin

(7)

Through the design of two different strategies, MVCLC is
sufficient to respond to different emergency situations before
giving way to EVs.

B. INTELLIGENT YIELD CONTROL METHOD FOR FLEET
USING VEHICLE NET-WORKING
On the basis of the MVCLC strategy, the study pro-
poses IAWM, which includes constructing a target fleet gap
dynamic adjustment model, an original fleet dynamic conver-
gence model, and calculating the minimum communication
distance [29]. The overall process of the IAWM method is
shown in Figure 4.
In Figure 4, first, an analysis of the lane changing space

requirements for Team B is conducted. In the analysis of lane
changing space requirements for fleet B under the dynamic
adjustment model of target fleet gap, it is assumed that there
is a cross relation-ship between the initial positions of these
two lane fleet. The initial position of EV A in lane 1 is
XA(τ0), the nearest vehicle in front of it is B1, and the spatial
distance between them is JAB1(τ0). The initial position of
the vehicle is XB1(τ0), while the initial position of vehicle
C1 in lane 2 is XC1(τ0). Therefore, according to the relevant
definition of traffic density, the actual center distance between
adjacent vehicles in the actual initial state is represented by
equation (8) [30], [31].

JB0 =
1
κB

JC0 =
1
κC

(8)

In equation (8), JB0 and JC0 represent the center distance
between adjacent vehicles in lanes 1 and 2, respectively. κB
and κC mean the densities of fleet B and C, respectively.
Under the relevant traffic requirements of the EV, the preced-
ing vehicles adjust their intervals and change lanes according
to the unit number sequence. After the lane change control
moment is activated, the first car Cn in fleet C will be limited
by the speed of the preceding vehicle and the road surface
and will move forward at speed νC . Other vehicles in fleet
C need to adjust their speed. When two adjacent vehicles in
fleet C can be used for vehicle merging, the existing gap is
PA0 = 1

/
κC −

(
Jν + JQmin

)
, ensuring that all vehicles in

fleet B can safely merge into fleet C. When the minimum
additional gap between adjacent vehicles in fleet C is PCj =(
Jν + JQmin

)
− PC0 = 2

(
Jν + JQmin

)
− 1

/
κC , the actual

minimum additional gap required for all vehicles in fleet B to
merge into fleet C is represented by equation (9).

PC1 (τBend ) = m
(
2

(
Jν + JQmin

)
−

(
1
/
κC

))
(9)
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FIGURE 4. The overall process of IAWM method.

In equation (9), PC1 (τCend ) is the additional gap between
vehicles C1 and Cm+1. m means the number of vehicles in
fleet C. Because the actual driving speed of vehicle Cm+1
is νC , vehicle C1 achieves PC1 (τCend ) through de-celeration,
represented by equation (10).

PC1 (τCend ) =

∫ τCend

τ0

(νC0 − νC1 (τ )) dτ

νC1 (τ ) = νC +

∫
zC1 (τ ) dτ

PC1 (τCend ) =

∫ ∫ τCend

0
−zC1 (τ ) dτ

(10)

In equation (10), τCend represents the time after the actual
speed adjustment of vehicle C1 has ended. νC1 (τ )means the
actual instantaneous speed of vehicle C1 at time τ . zC1 (τ ) is
the actual acceleration of vehicle C1. In the analysis of lane
changing strategy selection for the target fleet gap dynamic
adjustment model, the optimal col-laborative lane changing
strategy is designed based on the designed strategies 1 and
2 in Figure 5.
From Figure 5, the actual process of selecting the opti-

mal strategy for col-laborative lane changing among multiple
vehicles is first to divide the two fleets into m

/
2 units. When

j=1, the initial positions of vehicle Cj+1 and Bj+1 are
inputted. If the former is greater than the latter, strategy 1 is
implemented. If the former is equal to the latter, strategy 2 is
implemented. If the former is less than the latter, these two
strategies are combined and implemented according to the
actual situation. Secondly, the actual spatial adjustment strat-
egy for fleet C is determined and j is added by 1. If the updated
j ≤ m

/
2, the initial positions of vehicle Cj+1 and Bj+1

will be out-putted again and the process will be repeated.
If j > m

/
2, the next step will be taken. Finally, the process

ends. In the analysis of the actual gap dynamic adjustment

time in the fleet, the equation for the minimum additional gap
between adjacent vehicles in fleet C, the formula in the third
row of equation (10), and related equations are combined to
calculate the actual speed adjustment time of vehicle C1. This
equation is then combined with the formula in the second
row of equation (10) to calculate the time after the actual
speed adjustment of vehicle C1 is completed and the actual
ac-celeration of vehicle C1, represented by equation (11).


m

(
2

(
Jν + JQmin

)
−

(
1
/
κC

))
=

∫ ∫ τCend

0
−zC1 (τ ) dτ{

zC1 (τ ) d2τ = m
/
κC − 2m

(
hν + JQmin

)
zC1τCend = νmin − νC

(11)

The first row of equation (11) is used to calculate the actual
speed adjustment time of vehicle C1, while the second and
third rows are used to calculate τCend and zC1. In the construc-
tion of the original fleet dynamic convergence model, vehicle
B1 in lane 1 under the control end of fleet B happens to be
located between C1 and C2 in lane 2. At this point, for the
safe lane change of vehicle B1, the actual distance between
vehicles B1 and C1 should be equal to the distance B1 moves
relative to C1, represented by equation (12).

|XB1 (τBend )− XC1 (τBend )| = hν + JQmin (12)

In equation (12), τBend represents the actual end time of
vehicle B1 after adjusting its speed, which is also the end time
of the entire fleet B’s speed adjustment. After the actual speed
adjustment is completed, the relative distance of vehicle B1’s
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FIGURE 5. Process for selecting the optimal strategy for multi-vehicle col-laborative lane changing.

actual movement is represented by equation (13).

PB1(τBend ) = PCj + K0 −
(
hν + JQmin

)
= (2m− 1)

(
hν + JQmin

)
+ K0 −

m
κC

PB1 (τBend ) =

∫ ∫ τBend

0
−zB1 (τ ) dτ

(2m− 1)
(
hν + JQmin

)
+ K0 −

m
κC

=∫ ∫ τBend

0
−zB1 (τ ) dτ

νB1 (τ ) = νB +

∫
zB1 (τ ) dτ

(13)

In equation (13), K0 represents the relevant center distance
between B1 and C1. The actual relative distance of vehicle
B1’s movement can be calculated using the first or second
row of equation (13), and combining them can obtain the
third row of equation (13). The actual speed of vehicle B1
can be calculated using the fourth row of equation (13).
If νB1 (τend ) > 0, the actual relative position of vehicle B1
in its fleet is back-ward. If it is less than 0, it is forward.
Based on this, its actual speed may increase or decrease.
When using the second line of equation (13), the actual speed
of vehicle B1 must be greater than νmin and lower than the
speed limit value, other-wise the actual ac-celeration needs
to be adjusted. Therefore, when νB1 (τend ) ≥ νmax, τBend is
calculated using the equations in the third and fourth rows of
equation (13). When τBend ≤ νmin, zB1 is calculated using
the equations in the third and fourth rows of equation (13).
The total time required for adjusting the actual dynamic
trajectories of fleets B and C is represented by equation (14).

τend = max {τBend , τCend }

= max


m−κ((2m−1)(hν+JQmin)−K0)

κ(νmin−νB)

m−2mκ(hν+JQmin)
κ(νmin−νC )

,

 (14)

In equation (14), τend represents the total time spent on adjust-
ing the actual dynamic trajectories of fleets B and C. In the
analysis of minimum communication distance calculation,
after the dynamic orbit adjustment of fleet B and C, all fleet
B merges into fleet C. In this situation, the EV happens to
reach the rear of the convoy and meets the minimum safe
distance hν + JQmin from car B1. Therefore, in emergency

situations, EVs within lane 1 can pass quickly without caus-
ing any impact on traffic, greatly improving traffic safety and
efficiency. Therefore, the minimum communication distance
between EVs and the rear vehicle B1 of the preceding fleet
should be greater than P0 to not affect the rapid passage of
EVs. P0 represents the distance between vehicle B1 and EVs
in the initial state, represented by equation (15).

P0 =
(
hν + JQmin

)
+

∫ τend

τ0

(νA − νB1 (τ )) dτ

P0 =
(
hν + JQmin

)
+

∫ τBend

τ0

(νA − νB1 (τ )) dτ

P0 =
(
hν + JQmin

)
+

∫ τBend

τ0

(νA − νB1 (τ )) dτ+

(νA − νB1 (τBend )) (τCend − τBend )

(15)

In equation (15), when τBend is greater than τCend , the first line
of equation can be converted to the second line of equation.
When τBend is less than τCend , the first equation can be con-
verted to the third equation. The pseudo code for selecting the
optimal strategy formulti-vehicle collaborative lane changing
is as follows:
for Fleet B and C

Divide fleet B and C into m/2 units;
Vehicle number j

j=1
Enter the initial positions of vehicle Cj+1 and Bj+1
for

j̸=1
if the initial position of vehicle Cj+1 is greater than that of
vehicle Bj+1

Implementation Strategy 1
if the initial position of vehicle Cj+1 is equal to the initial
position of vehicle Bj+1

Implementation Strategy 2
if the initial position of vehicle Cj+1 is smaller than the initial
position of vehicle Bj+1

Combining Implementation Strategy 1 and Strategy 2
Fleet C

Determine the spatial adjustment plan for fleet C
Vehicle number j

j=j+1
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end for
j>n/2
while not stop

for j≤n/2
Re-input the initial positions of vehicle Cj+1 and vehicle

Bj+1

IV. PERFORMANCE ANALYSIS AND EXPERIMENTAL
VERIFICATION OF IAWM METHOD
Simulation analysis was conducted to verify the effective-
ness of IAWM. Therefore, this section mainly elaborates on
the optimization of col-laborative lane changing strategies,
model simulation verification, and overall simulation analysis
and simulation comparison of IAWM.

A. ANALYSIS OF PRIORITY SELECTION FOR
COL-LABORATIVE LANE CHANGING STRATEGIES
The first step was to optimize the multi-vehicle system lane
changing strategy it utilized before verifying the effectiveness
of IAWM. This process used a matrix laboratory to design the
simulation program and used simulation to obtain the actual
col-laborative lane changing time, speed, and ac-celeration
parameters in the fleet unit. The optimal lane changing strat-
egy for different initial relative positions was determined
based on the actual simulation results. In the simulation
process, JAB0 was set to 50m, and JAC0 was 49m. νB0, ν′

B0,
νC0, and ν′

C0 were 50 km/h. νA0 was 60 km/h, JQmin was
10m, and hν was 5m. The ac-celeration values were between
-2 m/s2 and 2 m/s2, and νmax was 60 km/h. The initial relative
distance between vehicle Bi and vehicle Bj+1 in front was
15m and 20m. Vehicle Cj+1 had 7 initial relative positions,
namely parallel to vehicle Bj+1, 1m in front or behind vehicle
Bj+1, 3m in front or behind vehicle Bj+1, and 5m in front or
behind vehicle Bj+1. The study only conducted experiments
on the set vehicle behavior, assuming that the initial speed of
the vehicle is divided into two situations: 50km/h and 60km/h.
In the actual driving process of the vehicle, the operating
speed of the vehicle is within the range of 30km/h to 60km/h,
and it can be seen that the parameters set in the study are
reasonable and can be applied to practical scenarios. Under
this parameter and constraint setting, the actual lane changing
efficiency of vehicles Cj+1 and Bj+1 at 10 initial positions
under two lane changing strategies was represented by 1-10.
This process used the actual completed city of changing lanes
as the evaluation indicator and represented the parameters
JAC , JAB, JAB, J ′

AB, τν , and τend as A∼F. Table 1 shows
the comparison results of lane changing efficiency at initial
positions 1-4.

From Table 1, the difference in initial positions 1, 2, 3,
and 4 was only due to the spatial distance between vehicle Cj
and EV. The values of these two strategies at initial position
1 were equal, and the final lane change completion time was
13.31s. The final lane change completion time of strategy
1 under initial positions 2, 3, and 4 was lower than strategy 2,
which was 13.31s. Figure 6 shows the comparison results of
lane changing efficiency at initial positions 5-10.

TABLE 1. Comparison results of lane changing efficiency at initial
positions 1-4.

In Figure 6, there is a premise that Bj+1 is 20m ahead of
Bj and Cj+1 lags behind of Bj+1 20m at initial positions
5-7. There is a premise that Bj+1 is 5m ahead of Bj at the
initial positions of 8-10. From Figure 6 (a), the final lane
change completion time of strategy 2 at initial position 5 was
13.13s lower than strategy 1, and these two strategies have
the same time at initial position 6. From Figure 6 (b), the
time for strategy 1 at initial position 7 was 13.13s lower than
strategy 2, and the time for these two strategies at initial
position 8 was equal. From Figure 6 (c), the time for strategy
1 at initial position 9 was 12.41s lower than strategy 2,
and the final lane change completion time for strategy 2 at
initial position 10 was 12.23s lower than strategy 1. Based on
Tables 1 and 4, the position of vehicle Cj+1 relative to Bj+1
under the strategy did not affect the values of parameters
E and F. In strategy 2, when the initial position of vehicle
Bj+1 was fixed, the larger the actual initial distance between
vehicles Cj+1 and Bj+1, the smaller the parameter E and the
larger the parameter F. When vehicles Cj+1 and Bj+1 were
driving in parallel, the values of parameters E and F were
equal under both strategies. When the actual initial distance
between vehicles Bj and Bj+1 decreased, the parameter E
increased and the parameter F decreased.

Research began to analyze their actual operating charac-
teristics after exploring the impact of initial relative distance
on the actual lane changing process of vehicles under two
strategies. Assuming that the actual spatial distance between
Bj+1 and EV was 70m, three initial relative distances were
set: Cj+1 was 5m ahead of Bj+1, Cj+1 was parallel to
Bj+1, and Cj+1 was 10m behind Bj+1, represented by G∼I.
Figure 7 shows the ac-celeration variation characteristics of
vehicles under different initial relative distances.

From Figure 7 (a), under strategy 1, the ac-celeration
variation of vehicle Cj+1 ranged from -2 to 2 m/s2, and all
reached their extreme values at 6s. From Figure 7 (b), the
amplitude of change significantly decreased under strategy 2.
The ac-celeration variation of vehicle Bj+1 under strategy 2
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FIGURE 6. Comparison results of lane changing efficiency at initial positions 5-10.

FIGURE 7. Result of ac-celeration variation characteristics of vehicles
under different initial relative distances.

was between -2 m/s2 and 2 m/s2, and it also reached its
extreme value at 6s, but the amplitude of variation under strat-
egy 1 was significantly reduced. Overall, under strategy 2,
the relative distance of initialization between vehicles Cj+1
and Bj+1 had a more significant impact on ac-celeration, and
the actual adjustment methods of ac-celeration among these
four vehicles were also different. Figure 8 shows the speed
variation characteristics of vehicles under different initial
relative distances.

From Figure 8 (a), the speed of vehicle Cj+1 under
strategy 1 showed a positive correlation with time at 0-5s,

FIGURE 8. Result of speed variation characteristics of vehicles under
different initial relative distances.

reaching an extreme value of 16.85 m/s around 4s, and a neg-
ative correlation after 5s. From Figure 8 (b), under strategy 2,
its speed showed a negative correlation with time at 0-4s, and
a parallel relation-ship after 4s. Based on Figures 8 and 6,
when the initial relative positions of Cj+1 and Bj+1 were in
a parallel state, the change process in strategies 1 and 2 was
similar, that is, the speed and ac-celeration of car Bj and Cj
both changed, and the adjustment order of Cj+1 and Bj+1
was different in different schemes. Therefore, the optimal
strategy of MVCLC is the same as that in Figure 7, which
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FIGURE 9. The relation-ship between the density of fleet C and the relative
position of fleet B1.

has been effectively validated, indicating that the strategy is
effective and scientific.

B. MODEL SOLVING AND ANALYSIS
On the basis of verifying the strategy, the study continued
to simulate and analyze the constructed model to clarify the
actual operating characteristics and variation patterns of vehi-
cles during the process of the fleet only giving way. During
this process, the initial speeds of fleets B and C were set to
be 13.89 m/s, while the initial speed of EV A was 16.67 m/s.
During the EV priority traffic control period, the maximum
andminimum driving speeds of vehicles in fleet A and Bwere
16.67 m/s and 6.944 m/s, respectively. The actual vehicle
length and the minimum safe distance between vehicles were
5m and 10m, respectively. The maximum ac-celerations of
vehicles B1 and C1 were both ± 2 m/s2. Based on this,
in the analysis of the fleet gap adjustment model, when the
actual number of vehicles in fleet B is 1-5, Figure 9 shows
the relative position of the density of fleet C and fleet B1.

From Figure 9 (a), when the number of fleet B was 1-2,
the density of fleet C was directly proportional to the relative
position of vehicle B1. From Figure 9 (b), when the number
of fleet B was 3-5, the relation-ship between these two was
also in contrast, but the growth rate was greater compared
to (a). Overall, when the actual density of fleet C was about
0.033m-1, the relative dis-placement value of vehicle B1 was
-10m, indicating that the distance between vehicles in fleet C
could meet the conditions for vehicles in fleet B to directly
merge. Therefore, the relative dis-placement of vehicle B1
as a whole depended on the initial longitudinal distance
between B1 and C1. Mean-while, the number of vehicles had
a significant impact on the relative position of vehicle B1.
Under other traffic density conditions except for 0.033m-1,
the relative dis-placement of B1 increased with the increase
of the number of vehicles. Especially at a density of 0.067m-
1, the number of vehicles in fleet B increased from 1 to 5.
The longitudinal dis-placement of B1 increased from 5m
to 65m, and the distance changed significantly. Therefore,
based on the results of equation (9) and Figure 9, the initial
ac-celeration value of B1 was set, and equation (13) was used
to set the actual ac-celeration value of B1 in Table 2.

From Table 2, the initial ac-celeration value of vehicle B1
under the density change of fleet C was always −2, 0, or 2.
As the density of fleet C increased, the ac-celeration of vehi-
cle B1 changed from positive to negative. When there were
more than 3 vehicles in fleet B, the ac-celeration of B1 was
positive only when the density of fleet C was +0.0333m-1.
At other traffic densities, the ac-celeration of B1 was nega-
tive. These results confirmed that after the control moment
was activated, B1 slowed down before the speed trajectory
adjustment was completed, with an ac-celeration of 0, and
the car maintained a constant speed until EV exceeded.
Especially when the traffic density of fleet C was relatively
high, as the traffic density increased, the de-celeration of B1
also decreased due to the limitation of the minimum speed.
Figure 10 shows the time for vehicle B1 to complete speed
trajectory adjustment.

From Figure 10 (a), when the number of fleet B was 1,
the time consumption of fleet C showed a trend of first
decreasing and then increasing under the density change, with
the lowest occurring at 0.04s. When it was 2, the lowest value
appeared at 0.05. From Figure 10 (b), when the number of
fleet B was 3-5, the time consumption of fleet C showed a
continuous increasing trend under the density change. Over-
all, the maximum adjustment time for B1 reached 9.358s.
When the number of vehicles ≤ 2 and the traffic density of
fleet C was low, the adjustment time fluctuation of B1 was
affected by its initial position, which was different from the
fluctuation of the adjustment time. In the analysis of the fleet
convergence model, after MVCLC control was activated, the
actual ac-celeration of C1 was calculated using equation (11)
in Table 3.
From Table 3, the speed was limited when there were

many vehicles and the actual density of fleet C was high.
Therefore, as the density of traffic and the number of
fleet C increased, the de-celeration of C1 decreased. Its
trend of change was basically consistent with B1. How-
ever, when the number of vehicles and traffic density were
equal, the decrease in C1 compared to B1 was smaller.
Similarly, the actual adjustment time of vehicle C1, the
total dynamic trajectory adjustment time of these two fleets,
and the minimum communication distance between EV and
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TABLE 2. The initial ac-celeration value of B1 and the actual ac-celeration value setting result.

FIGURE 10. Time result of vehicle B1 completing speed trajectory
adjustment.

TABLE 3. Actual ac-celeration result of C1.

B1 were calculated using equations (11), (14), and (15) in
Figure 11.
From Figure 11 (a), except for the density of fleet C which

was +0.0333m-1, the actual adjustment time of vehicle C1
at all other densities was gradually increasing. That is, the
number of fleet B was proportional to the change in traffic
density of fleet C. Compared with Figures 9 and 10, C1 com-
pleted the speed trajectory adjustment more slowly than B1.
The maximum adjustment time for B1 was 9.358s, and the
maximum adjustment time for C1 was 10.798s. The reason is
that when the speed tracks of both parties are adjusted, C1 is
arranged after B1, so the longitudinal relative dis-placement
of vehicle C1 is greater than B1, and C1 needs more time
to complete the speed trajectory adjustment. From Figure 11
(b), the total time for adjusting the dynamic trajectory of
both fleets continuously increased with the density of fleet C,

whichwas influenced by the density of fleet C and the number
of fleet B. From Figure 11 (c), as the number of vehicles
in fleet B and the density of vehicles in fleet C increased,
the minimum communication distance also increased. When
the density of fleet C was 0.0667m-1, the number of vehi-
cles in fleet B increased from 1 to 5, and the minimum
communication distance increased from 31.26s to 119.992s.
That is to say, for every additional vehicle in the fleet, the
minimum communication distance needs to be increased
by 20s.

C. IAWM SIMULATION ANALYSIS AND COMPARISON
The study began to simulate and verify the effectiveness of the
proposed IAWM control method based on the optimal control
strategy and model simulation analysis. Before the experi-
ment, the vehicle type and parameters were set in Table 4.
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TABLE 4. Vehicle types and parameters for simulation experiments.

FIGURE 11. Vehicle C1 adjustment time, total dynamic trajectory
adjustment time of two fleets, and minimum communication distance
between emergency vehicles and B1 results.

In Table 4, 1-15 represent the length, width, mini-
mum spacing, maximum speed, ac-celeration, de-celeration,
maximum de-celeration, following and lane changing model,
driver’s minimum reaction time, minimum lateral gap and
maximum lateral speed, speed factor, speed factor devia-
tion, and lateral arrangement of the vehicle, respectively.
From Table 4, the EV ac-celeration and de-celeration were
2.4 m/s2 and 3.4 m/s2, respectively, which were lower than
the 3.0 m/s2 and 4.4 m/s2 of social vehicles. Both types
of vehicles chose the Intelligent Driver Model (IDM) for
their following model and the Set Lane Change Mode 2015
(SL2015) for lane changing model. Figure 12 shows the
spatio-temporal distribution of EVs under IAWM control and
the comparison of average driving speeds between EVs and
social vehicles.

In Figure 12, pcu represents Passenger Car Unit (PCU),
E is EV, and O is social vehicle. From Figure 12 (a), the
operating trajectories of EVswere similar under four different
traffic volumes, and the total travel time increased with the
increase of traffic volume. Its EV driving time at 2000 pcu/h,
2500 pcu/h, and 3000 pcu/h increased by 1.69%, 5.52%, and
8.72% compared to the actual driving time at 1400 pcu/h.

TABLE 5. Comparison of results from different methods.

From Figure 12 (b), when the actual communication distance
exceeded 45m at 1400 pcu/h, the driving speed of the EV
was still relatively stable, but the driving speed of social vehi-
cles was significantly reduced. The communication distance
exceeding 75s at 3000 pcu/h was also the same, which was
consistent with the calculation result of the three-line formula
in equation (15), proving the high accuracy of IAWM. The
study introduced the traditional yield Model (T) and lane
selection Model (Y), and compared the driving speeds of EV
and social vehicles under the control of these three models to
further verify the superiority of IAWM [32], [33]. Figure 13
shows the results.

From Figure 13, IAWM significantly improved the driv-
ing speed of EVs in various traffic streams. Compared
with Model T, it increased by 6.34% at 1400 pcu/hour. At
2500 pcu/hour, its driving speed increased by 6.05%, and the
average speed increased by 12.64% under four different flow
conditions. Compared with Model Y, the IAWM controlled
EV at 1400 pcu/h reduced driving speed by 1.85%. When the
traffic volume increased, the speed of both control methods
decreased in emergency situations. At a vehicle flow rate
of 3000 pcu/hour, the vehicle operating speed controlled
by IAWM was 7.34% faster than that controlled by BLM.
In addition, compared with Model Y, the average flow rate
of IAWM decreased by 1.45% under four experimental flow
rates. At 1400 pcu/h, its speed increased by 1.27%. After the
traffic flow increased to 2500 pcu/h, its speed decreased by
2.90%. Overall, IAWM focuses more on using IoV technol-
ogy support to achieve col-laborative lane changing between
social vehicles and EVs, with the fleet as the research object.
It enables the fleet of social vehicles to merge into adjacent
lanes in a shorter period of time, thereby achieving rapid
movement of EVs. The research method was applied to prac-
tical scenarios, the traffic volume was set to 2000pcu/h, and
the average driving speed and lane change completion time
of EVs were analyzed under different methods, as shown in
Table 5.
From Table 5, the research method had a faster average

driving speed and faster lane completion time compared to the
other two methods. Among them, the average driving speed
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FIGURE 12. The spatiotemporal distribution of emergency vehicles under IAWM control
and the comparison of average driving speeds between emergency vehicles and social
vehicles.

FIGURE 13. Comparison of the driving speeds of emergency vehicles and
social vehicles under the control of three models.

of the IAWM method was 24.16m/s, which was 3.81m/s
higher than Model T and 1.93m/s higher than Model Y.
As a result, the research method had good performance and
effectively solved the problem of EVs changing lanes quickly.

V. CONCLUSION
The current EV priority traffic control method in the road
traffic net-work is difficult to cope with the increasing traffic
demand environment. In this regard, the study proposed an
IAWM control model for road traffic net-works in emergency
situations and verified its effectiveness. These experiments
confirmed that under strategy 2, when the initial position of
vehicle Bj+1 was fixed, the larger the actual initial distance
between vehicles Cj+1 and Bj+1, the smaller the param-
eter E and the larger the parameter F. Under strategy 2,
its speed showed a negative correlation with time between
0 and 4s, and a parallel relation-ship after 4s. In addition,
when the actual density of fleet C was about 0.033m-1,
the relative dis-placement value of vehicle B1 was -10m,
indicating that the distance between vehicles in fleet C met
the conditions for vehicles in fleet B to directly merge.

The maximum time for B1 regulation was 9.358s, and the
maximum time for C1 regulation was 10.798s. Mean-while,
the driving time of EVs at 2000 pcu/h, 2500 pcu/h, and
3000 pcu/h increased by 1.69%, 5.52%, and 8.72% com-
pared to 1400 pcu/h. Compared with Model T, it increased
by 6.34% at 1400 pcu/hour. Compared with Model Y, the
IAWM controlled EV at 1400 pcu/h reduced driving speed
by 1.85%. Overall, the IAWM proposed based on the Duce
col-laborative lane changing strategy and these two models
constructed using IoV is feasible and effective. However,
in the analysis of the priority selection problem for EV
road sections, only a scenario of one-way two lanes is
constructed. Subsequent analysis of bilateral lane changing
under multi-lane conditions is needed to improve the appli-
cability of IAWM.
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