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ABSTRACT The advent of Additive manufacturing (AM) of 3D printed objects is revolutionising the
manufacturing industry. Despite its promise, the extensive post-processing requirements of 3D objects
remains a significant barrier to AM’s wider adoption. Identifying defects in real-time from powder bed
images taken before and after the laser melting of the current layer presents a promising strategy to reduce
post-processing efforts. Traditional methods focusing on the top-layer images fall short in identifying
multi-layer defects such as keyhole porosity, balling, and lack of fusion, which are critical to the integrity
of 3D printed objects. Addressing this challenge, our study introduces an innovative multi-layer technique
for the detection of keyhole porosity using high-quality X-ray Computed Tomography (XCT) images,
leveraging the capabilities of the cutting-edge YOLO (You Only Look Once) object detection algorithm. Our
findings reveal that this approach achieves a remarkable mean average precision (mAP) score of 92.585%,
underscoring the efficacy of deep learning models in accurately identifying keyhole porosity across XCT
images. This research not only demonstrates the potential for improving the quality and reliability of AM
processes but also paves the way for reducing the dependency on labour-intensive post-processing steps.

INDEX TERMS Additive manufacturing, defect detection, deep learning, laser powder bed fusion, porosity,
XCT images, YOLOv5.

I. INTRODUCTION
Laser powder bed fusion (LPBF) has been acknowledged as
the most prominent and widely used additive manufacturing
technique. There are numerous benefits to constructing
3D objects in an additive manner instead of mainstream
destructive manufacturing. Despite the encouraging advan-
tages, the LPBF process is not free of defects [77]. Among
all the LPBF defects, porosity is the most harmful and
challenging to identify, and in most cases, it is impossible
to avoid [48], [49]. Many researchers have tried to identify
porosity defects from various types of data such as powder
bed images [58], [59], [60], [66], meltpool monitoring [63],
[64], [65] and acoustic emission data [61], [62]. Many studies
have used X-Ray Computed Tomography (XCT) data in their
experiments as a benchmark due to its high-quality images.
However, few studies have employed XCT as the primary
source for in-situ porosity identification. The powder bed
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images are the most promising data for porosity detection in
real-time during printing. Significant progress has been made
in identifying porosity from powder bed images. However,
porosity detection from the powder bed images is hindered
mainly due to the following main factors.

1) Poor image quality.
2) Multi-layer nature of some porosity types.
3) Certain kinds of porosity can be smaller than the

camera resolution.

The powder bed imaging systems in most 3D metal
printers are not equippedwith high-resolution cameras. High-
quality camera systems are the prerequisite for accurate
porosity identification from powder bed images. Some
studies have mounted extra off-axis high-resolution cameras,
showing that high-resolution images result in more accurate
porosity identification. Experiments have discovered that
some porosity types were hidden under the current layer.
This meant that the captured powder layer images could not
identify porosity defects in real-time, as the camera could
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only capture the current layer. Lack of Fusion (LoF) porosity
occurs between the previous melted and current layers [55].
Similarly, keyhole pores [56] are the result of entrapped gas
porosity in the melt pool and are not visible on the top of
the layer. High laser power and scan speed cause balling,
a phenomenon where various melt-pools are created, and
each competes to capture more of the surrounding powder
and thus grow in size [57]. This creates voids amongst
the melt pools and is visible on the top layer. However,
the next powder layer may or may not fill these gaps.
Among the porosity types, keyhole porosity is the smallest
in size and more difficult to detect. Keyhole pores are
round/spherical in shape and much smaller in size; typically
bigger than 50 µm [73], [74], [75], [76]. Most printers’
default camera resolution is bigger than the keyhole porosity.
For example, the SLM500HL printer has a Baumer TGX20
camera resolution of 200 µm, while the EOS M290 printer
has a default camera resolution of 100 µm. Hence, there
exists a pressing need to enhance the imaging quality of
the existing powder bed imaging systems or integrate in-
situ X-ray imaging. XCT [50] is the most recommended
and industrial standard post-build non-destructive technique
for pore morphology and distribution in 3D object quality
monitoring. XCT analysis results in high-quality and sharp
cross-sectional images of 3D specimens. XCT imaging
systems can offer remarkably high resolutions, reaching as
fine as 1-2µm, thereby addressing the current limitations and
providing a valuable solution.

The shortcomings of the current methods for identifying
porosity can be overcome by devising a multi-layer analysis
of 3D objects via high-resolution images. The problem
of low-resolution images could be overcome by utilising
post-processing techniques such as XCT and Microscopy,
known for their excellent image resolution. Many studies
have used XCT to examine pores in the powder stock and
the final 3D objects [51], [52], [53], [54]. The XCT is
an ex-situ technique; therefore, it has yet to be used in
the real-time identification of porosity. However, realising
its potential and high-quality images, some studies [67],
[68] have proposed the integration of XCT in 3D printers.
Section II-A discusses the in-situ X-ray imaging systems
and the quality of the captured images. Melting the top
powder layer during printing modifies the material below
it because of the heat exchange with previous layers and
partial remelting of the last layer. Integrated XCT will assist
in analysing the defects and anomalies from a multi-layer
perspective.

Our previous studies [59], [66] focused on defect identi-
fication from powder bed images using XCT scanning and
XCT data as a benchmark. We proposed performing a quality
test of the built parts from the powder bed images using XCT,
labelling different types of defects on the layer-based images
and training machine learning (ML) models to automatically
identify these defects from images of the powder layer surface
taken before and after re-coating. In this paper, we expand
our investigation of porosity from seeded porosity on

low-quality powder bed images to natural, keyhole porosity
identification from XCT images. Identifying pores from the
XCT images benefits businesses and practitioners as it holds
much commercial value. Instead of simply classifying the
image, identifying the pore locations in the 3D metal objects
is more commercially and practically lucrative. In real-
time defect detection, merely classifying images as porosity
or non-porosity fails to provide insights into the specific
type or quantity of porosity present. The identification and
localisation of pores are crucial for accurately quantifying
porosity content. A higher number of porosity objects directly
corresponds to increased porosity. This paper focuses on
identifying and localising keyhole porosity, but the proposed
methodology can readily be extended to encompass other
porosity types, including LoF and balling.

This paper proposes an object detection approach to
porosity identification from a multi-layer perspective using
XCT images. We employ state-of-the-art object detection
algorithms to identify and locate pores on XCT images.
We printed 16 cubes on the SLM500HL printer and naturally
created pores in test cubes by varying printing parameters.
The XCT images of the selected cubes were carefully
labelled, and pores were identified and localised using You
Only Look Once (YOLO) and its different versions. The
proposed framework successfully identified pores with mean
average precision (mAP) of 92.585%. The rest of the paper
is organised into four sections. Section two explains in-situ
X-ray imaging systems and concludes by covering the recent
applications of object detection algorithms in LPBF defect
detection. Section three covers the experimental design and
methodology. The proposed object detection framework’s
results and their critical evaluation are presented in chapter
four. The conclusions and future work are summarised in the
final section five.

II. RELATED WORK
A. IN-SITU X-RAY IMAGING SYSTEMS
The in-situ sensing and measurement techniques in LPBF
record patterns and phenomena before, after, or during
printing. Most sensor values, especially the powder bed
imaging system, record changes at the top layer. However,
each newly printed layer alters the build volume due to the
heat exchange between the current and previous layers and
partial remelting of the previous layer. Some researchers have
devised ad-hoc printing settings to observe the effects and
defects spanning multiple layers. These include subsurface
melt pool dynamics and volumetric reconstruction using X-
ray imaging, acoustic emissions, and base-plate deformation.
One stream of research uses high-speed, high-energy X-ray
imaging systems to observe subsurface melt pool dynamics,
penetration depth and pore formation. References [67] and
[68] explored the feasibility of in-situ micro-tomography.

X-ray imaging primarily examines the melt-pool cross-
section in a plane perpendicular to the layer and pro-
vides valuable insights into the origin of various defects.
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FIGURE 1. The proposed scheme of in-situ X-ray imaging system by [67].

[67] proposed an in-situ, X-ray imaging apparatus, as shown
in Figure 1. A high-energy X-ray beam is passed through the
material, perpendicular to both the scan and build directions.
Laser scanning occurs along a narrow powder bed positioned
between two transparent walls typically composed of glassy
carbon sheets.

Figure 1 demonstrates that in-situ, X-ray imaging for mea-
surements is presently confined to laboratory-scale setups
featuring custom LPBF prototype systems. In-situ, X-ray
imaging has helped unveil intricate dynamic changes within
the melt pool and has assisted in observing various multi-
layer defects. X-ray’s remarkably high spatial and temporal
resolution has assisted in observing and recording various
defects beneath the layer. The excellent spatial resolution
of 1 µm/pixel to 2 µm/pixel, coupled with a sampling rate
surpassing 100,000 frames per second, was achieved with the
in-situ X-ray imaging system [70], [71], [72].
Another approach proposed by [68] showcases the feasi-

bility of in-situ, X-ray micro-tomography for the volumetric
reconstruction of the part throughout the process. The top
panel of Figure 2 schematically illustrates the apparatus
presented in [68]’s work, and the bottom panel of Figure 2
exhibits the resulting 3D reconstruction of a wall obtained
from measurements at different consecutive layers. In [68]’s
study, 1500 projections were acquired during the in-situ
micro-tomography scan, requiring 45 seconds for comple-
tion. The measurements presented in this research exhibited
a spatial resolution of 3.64 µm/pixel and a field of view
measuring (8.8 × 6.2) mm.

B. OBJECT DETECTION IN LPBF APPLICATIONS
In the literature, both one-stage and two-stage-based object
detection algorithms have been used in LPBF defects detec-
tion and localisation. Reference [38] used faster R-CNN to
detect helium gas bubbles in Irradiated X-750. The proposed
framework was four times faster than manual analysis and
acquired an accuracy of 93%. Reference [44] proposed an
optimised and autonomous framework for characterising
pores, particles, and grain boundaries from a microstructure
image. The YOLOv5 algorithm was used for the localisation

FIGURE 2. The proposed scheme of in-situ, X-ray imaging system by [68].

of pores on the images. The framework benefited from
the high performance of YOLOv5 on a small dataset and
used 800, 100, and 100 images for training, validation, and
testing, respectively. Reference [39] employed YOLOv3,
YOLOv5, and faster R-CNN for droplet detection in vari-
ous microfluidic systems and experimentation. Experiments
showed that YOLOv5 outperformed YOLOv3 and faster
R-CNN in precise bounding box prediction. Faster R-CNN,
a two-staged detector, was much slower than YOLOv5,
occasionally over-fitting and missing the most prominent
objects. Due to its small, compact, decent frame rate on a
live high-speed camera and less hardware requirement of
YOLOv5 with small weights/version was selected for droplet
detection. Reference [40] has proposed a YOLO-based
framework that automatically analyses the Transmission
Electronic Microscope (TEM) data for defects detection
in FeCrAl alloys. The proposed solution replaced the old
time-consuming, laborious, and discriminatory practice of
manually analysing the TEM data to quantify the in-situ
defects. The YOLO-based solution achieved an F1 score
of 0.89. Reference [41] using faster R-CNN to identify
the location and geometry of different defects in irradiated
steel. Electronic Microscopy (EM) is widely used for
defects detection (pores, cavities, grain boundaries) and
materials’ morphological & structural properties. The EM
data analysis is time-consuming, error-prone, biased, tedious,
and impractical to scale. The proposed faster R-CNN solution
with an F1 score of 0.78 is reliable, fast, and scalable for EM
data analysis.

Apart from LPBF, object detection algorithms have been
used in various disciplines. Reference [35] has used YOLOv5
to detect safety helmets at a workplace with 94.7% mean
average precision (mAP). Reference [42] has also employed
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YOLOv5 to detect underwater targets in side-scan sonar
(SSS) images. The proposed solution achieved mAP of
85.6% and 87.8% macro F2-score. Reference [78] have
used YOLOv3 and various deep learning and NLP models
for automatic image captioning. Reference [43] proposed
YOLO-FIR For Infrared(IR) images to solve the low
resolution and big miss-classification problems in infrared
images. The proposed solution is based on YOLOv5 and has
89% fewer parameters, 93% reduced size, and 62% more
efficient detection time on the KAIST data set.

There are few studies focused on porosity identification
using YOLO. One stage and two staged object detection
algorithms were used to identify and localise various objects.
All these studies showed the efficacy of object detection
models. However, only a few researchers have investigated
porosity identification via object detection algorithms.

III. MATERIAL AND METHODS
A. INSTRUMENT SETUP
The test specimen consisted of 16 cubes. The XCT data and
the sensor files were captured and used for the experiments.
The 16 printed cubes are shown in Figure 3. Previously,
we experimented with powder bed images captured from
3D metal cylinders with seeded porosity manufactured with
Aluminium(A20X) metal powder on an SLM SLM500HL
metal printer. The current experiment consisted of 16 cubes
printed on the same printer with the same Aluminium(A20X)
metal powder. However, XCT images are used instead
of powder bed images to investigate the smaller keyhole
porosity detection due to their higher-quality. The printing
setup consisted of a layer thickness = 30 µm, scan
speed = 1500mm/s and laser spot size = 80 - 115 µm.

FIGURE 3. The 16 cubes of 1cm printed in SLM.

B. DESIGN OF THE EXPERIMENT
Laser power, laser spot size, scanning velocity, hatch
distance, and layer thickness are the most critical processing
parameters. The integrity and quality of 3D specimens rely on

FIGURE 4. Laser Power vs Scan Speed effect on the printing process [1].

the correct values for these parameters. Figure 4 shows how
the laser power and scan speed influence the outcome. A low
laser power and high scan speed cause LoF. The laser power
does not fully melt the powder layer, leaving the unfused
metal powder between the current and the previously melted
layer. However, high laser power and low scan speed transfer
too much energy and entrap the gas in the melt pool, causing
keyhole porosity. On the other hand, a high value of laser
power and scan speed transfers an excessive amount of energy
to the current metal powder layer. The high surface tension
gradient creates small beads of the melt pool that solidify
quickly, resulting in balling. Hatch spacing is the distance
between two printing vectors. Low laser power and high scan
speed are suitable for small hatch distances. Whereas a large
hatch distance works best with high laser power and less scan
speed. The goal is to find time-efficient, optimal values for
the printing parameters [1].
In our previous work, the experiments aimed to distinguish

images with porosity from non-porosity images, irrespective
of the type of porosity. Instead of focusing on porosity,
identifying the exact porosity type is a highly practical and
realistic requirement. Doing so will assist the printer operator
in adjusting the appropriate printing parameters to limit
or avoid anomalies during printing. For example, LoF can
occur when the laser power is inadequate to fully melt the
powder layer. Real-time detection and notification of LoF
occurrences during printing would enable printer operators
to adjust the laser power to prevent LoF porosity promptly.
Therefore, having precise knowledge of the specific type
of porosity is highly advantageous for taking corrective
measures and effectivelymitigating the occurrence and extent
of porosity. The experiments in this study were designed to
identify the exact porosity type. The printing parameters were
chosen appropriately to create LoF and keyhole porosity.
Sixteen cubes of 10mm were designed to study the effect
of various parameter settings on natural porosity creation.
Each cube was printed with different values of hatch spacing
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TABLE 1. Printing parameter settings for cubes and their densities.

and laser power. The energy density was also measured. The
percentage of porosity in each cube was measured using
Archimedes’ density measurement.

Different values of two important processing parameters,
hatch spacing and laser power, were used to observe their
effect on porosity creation. The complete parameter settings
for sixteen cubes, along with their energy densities and
density percentage, are shown in Table 1. The hatch spacing
values of 0.1, 0.13, 0.16, and 0.19 were combined with 400,
350, 300, and 250 laser power values. A 3Dmetal object with
100% density means the object has no porosity. Whereas less
dense objects have porous interiors.

For the porosity calculation, we employed Archimedes’
density measurement principle. The weight of the 3D objects
was measured in the air and by submerging them in a liquid.
The porous objects are less dense. So, measuring the density
of the objects provides the degree of porosity in them.

C. DATA CAPTURE
Energy density is the amount of heat/energy transferred per
unit area. The melt-pool shape, size, and width are dependent
on the energy density. Energy density is calculated as

E =
P

v× h× t
. (1)

where E is the energy density, P is laser power in watts (W ),
v is the scan speed in millimetres per second (mm/s), h is
hatch spacing in (mm), and t is the layer thickness in (mm).
Energy density directly influences the final density of the 3D
object. It can be observed in Figure 5. The Figure confirmed
that the experiments were designed with varying values of
printing parameters. The density of the 3D objects increased
with the increased energy density. However, increasing the

FIGURE 5. Effect of energy density on the density of the 3D object.

energy density beyond the optimal threshold results in porous
or less dense objects. The effect of the laser power and
hatch spacing printing parameters on the object’s density is
shown in Figure 6 and Figure 7, respectively. The density
of 3D specimens depends on various factors. Therefore,
observing the effect of a single printing parameter on the
object’s density could be misleading. In our experiments,
the density of the cubes increased with the increase in laser
power. However, it could be observed that different cubes
have different densities at the same laser power. This is
because of the same reason that the density of objects depends
on various printing parameters. Increasing the hatch spacing
decreased the density of the cubes. A bigger/wider hatch
spacing between printing tracks would require more energy
and a bigger laser spot size to melt the metal powder fully.
However, like most experiments, laser spot size was fixed in
our experiments, which is why increasing the hatch spacing
results in less dense cubes.
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FIGURE 6. Effect of laser power on the density of 3D object.

FIGURE 7. Effect of hatch spacing on the density of 3D object.

The energy density of the sixteen cubes is shown in Table 1.
The maximum energy density value was 88.89, with laser
power = 400 and hatch spacing = 0.1. The minimum energy
density of 29.24 was computed for the low laser power 250
and a wide hatch spacing of 0.19. Out of the sixteen cubes,
four cubes were shortlisted based on the energy density
values.

Cube 1, 7, 9, and 16 were shortlisted for XCT scanning as
scanning all sixteen cubes is expensive and time-consuming.
The sample cubes numbered 1, 7, 9, and 16 had percentage
densities of 99.94, 99.23, 100, and 96.48, respectively.
A sample XCT image from each of the four selected cubes
is shown in Figure 8. The energy densities of cubes 1 and
9 are 88.89 and 66.67, respectively. Both cubes have high
density and show minimal porosity. Cube 16 has the lowest
energy density and hence the least density and more porosity.
Cube 16 showed a high rate of porosity. Cubes 1, 9, and
16 could be considered extreme scenarios with extremely
low and high values. However, cube 7 is closer to a realistic
case. Cube 7 has an energy density of 48.61 and achieved an
excellent density percentage. The printing parameter values
for cube 7 lie close to the operating window. We selected
cube 7 for the porosity identification and localisation.

D. DATA LABELLING
Preparing the object recognition data set is challenging and
time-consuming. A bounding box needs to be drawn around
each pore on the XCT image. Various software tools and

FIGURE 8. A sample XCT image of each selected cube.

Python libraries are used to prepare the image data set
for object recognition algorithms. An open-source, custom-
built Python library called ‘‘labelimg’’ [2] was used to draw
the bounding boxes around the pores. The bounding box
information, such as X and Y coordinates, labels, and types,
is stored in a separate XML file. This way of labelling is
more professional and compatible with the Python platform
than other software tools. The XCT scan of a single cube
resulted in 1800 images. The number of pores per image
ranges from 50 to 300, and it takes roughly 5 to 20 minutes
to draw the bounding boxes and assign labels. Labelling all
the images would take a considerable amount of time and
effort. Therefore, it is prudent to label a sufficient amount of
data and test the viability of the experimental approach rather
than investing substantial time and effort only to discover
fundamental flaws in the chosen direction later. Due to this
task’s substantial time and labour requirements, we had to
limit our experiments to focusing solely on keyhole porosity
detection. The data set consisted of 74 images. The images
were taken from different cross-sectional areas of cube 7. Of
74 images, 52 were used for training and 15 for validation.
Seven images were kept separate and were never exposed
to the model during the training phase. Once the model is
trained or fine-tuned, the model is then tested on the reserved
7 test images. A typical train test splitting mechanism of
a data set is shown in Figure 9. The data set comprised
31,123 porosity objects. The number of images is small in the
data set, but the number of objects to identify is sufficiently
large. Drawing a precise bounding box around porosity
can be time-consuming due to its typically small size.
Moreover, only keyhole porosity was formed on the captured
images.
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FIGURE 9. Typical splitting of data sets.

TABLE 2. Models summary.

E. YOLOV5
You Only Look Once (YOLO) [3], R-CNN [4] and Single
Shot Detector (SSD) [5] are the most established and
widespread object recognition family of algorithms. The
choice of object recognition model is mostly based on the
model’s accuracy and detection speed. YOLO algorithms
are surprisingly fast, and their latest versions are accurate
and precise. YOLOv5 is the latest version of the YOLO
family of models, and it is known for its reduced memory
requirements and exportability. YOLOv5 is proposed by
Ultralytics [69]. There is no formal peer-review paper on
YOLOv5; it is only shared on GitHub. The only improvement
of YOLOv5 over its previous version is including the anchor
box selection process in the model. YOLOv5 does not need a
pre-trained model; instead, it can learn the most appropriate
anchor boxes from the data set during training. YOLOv5
is much lighter and faster than its predecessors and is
used in various applications [33], [34], [35], [36]. We used
YOLOv5 to identify keyhole pores. The pre-trained YOLOv5
has four different sub-versions based on the models’ size.
We experimented with small, medium, and large versions
of YOLOv5. The number of layers and parameters in each
model is shown in Table 2. Most deep learning models are
based on neural network architectures comprising various
stacked layers. Each type of layer (convolutional, pooling,
dense etc.) has different parameters (number of neurons,
filters, kernels etc.) that define the model’s complexity and
learning capabilities.

YOLOv5 small has only 7 million parameters. Whereas
the medium and large versions have 20.8 and 46.11 million
parameters, respectively. Themodels and their parameters are
visualised for a better comparison in Figure 10.

F. EVALUATION METRICS
Evaluation metrics for object detection algorithms differ
slightly from image classification tasks. The commonly used

FIGURE 10. Total parameters in YOLOv5 models.

metrics are precision, recall, and mean average precision
(mAP) at different Intersection over Union (IoU) values.
For object detection tasks, precision and recall metrics are
calculated in a similar way to those for image classification.
However, the definition of true negative differs slightly from
most object detection algorithms; as we do not have a false
negative. Precision is the number of true positives among all
the detection’s made by the model. In comparison, recall is
the ratio of true positives and all ground-truth values.

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

Understanding IoU is essential for the mAP metric. IoU,
in object detection tasks, is the amount of overlap between
ground truth and the model’s prediction. It is calculated as,

IoU =
area of overlap
area of union

(4)

IoU ranges in values from 0 to 1. IoU = 1 if the ground
truth and prediction overlap entirely, and IoU = 0 if there
is no overlap between the ground truth and the predicted
bounding boxes. An acceptable overlapping threshold value
is often set for ground truth and prediction boxes. For
instance, an IoU at a threshold of 50%, an object detection
will be considered true positive if the IoU > 50%. For
general purposes, a threshold is usually represented by α.
A usual output of an object detection model is the bounding
box, class label, and confidence score. Like a threshold for
IoU, the threshold value also affects the confidence score.
Large threshold values for a confidence score would result
in more false negatives (missing more objects and having
high precision and low recall). At the same time, a small
threshold value would result in more false positives (FPs),
resulting in low precision and high recall of the model. The
precision-recall curve is nothing but a precision vs recall plot
at different confidence scores.

The average precision (AP) at α is the area under the
precision-recall curve at IoU threshold = α. It is given by,

AP@α =

∫ 1

0
P(r) dr . (5)
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Average precision @ α is the AP at α IoU threshold. So,
AP@0.5 means the average precision at IoU = 50%. Mean
average precision (mAP) is all classes’ average AP values.
The average precision is calculated for each class in the data
sets. The number of APs equals the number of classes in the
data set. The mean average precision is the average of all the
APs and is a better overall metric for model evaluation. It is
given by,

mAP@α =
1
n

n∑
i=1

APi (6)

Here n is the number of classes in the data set.

IV. RESULTS AND DISCUSSION
The experiments were carried out on Google Colab, short
for collaboration, an online platform. Google provides free
12GB INVIDIA Tesla GPU and support for various ML
programming libraries [45]. YOLOv5 is implemented in the
PyTorch [46] Python programming library. PyTorch is one
of the most popular ML libraries, and it is compatible with
CUDA NVIDIA GPU operations to accelerate the training
operation of deep ML models [47].

A. MODEL EVALUATION AND TRAINING TIME
The three versions of YOLOv5 were trained on the same
data set to identify and locate porosity from XCT images.
The models were evaluated using precision, recall and mAP
at two different IoU thresholds. The performance of the
models is shown in Table 3. The precision of small, medium
and large versions of YOLOv5 is shown in Figure 11. The
precision is the ratio of true positives and all the detections
made by the model. YOLOv5 medium achieved the highest
precision score of 88.0%. The medium version of YOLOv5
made fewer detections (bounding boxes) and thus had the
highest precision but lowest recall among small and large
versions of YOLOv5. Whereas small and large versions had
precision scores of 87.5% and 87.2%, respectively. It was
observed that the small and large version model’s precision
increased gradually with each training iteration, as depicted
in Figure 11. Whereas the medium version had a sharp
increase in precision at the initial epochs. There is a minimal
difference in the precision value of all the models, and all
acquired an acceptable precision in identifying pores on the
XCT images.

In terms of recall, the large version achieved the best score
of 89.4%. Themedium and small versions acquired a recall of
87.8% and 88.3%, respectively. A comparison of recall values
amongst the three models is presented in Figure 12. A similar
trend was observed in recall as that of precision. Small and
large version models had comparatively slow learning than
the medium version. However, the large version acquired the
best recall score; probably due to having more parameters.
A slight decreasing trend in recall values was revealed
compared to the number of parameters in the models. The
current experiments established that recall scores increased

FIGURE 11. Comparison of precision of small, medium, and large
versions of YOLOv5.

FIGURE 12. Comparison of recall of small, medium, and large versions of
YOLOv5.

FIGURE 13. Comparison of mAP at IoU = 0.5 for small, medium, and large
versions of YOLOv5.

with the increase in model complexity, number of layers and
parameters.

The models were also compared and evaluated in terms of
mean average precision at IoU = 50%. A predicted bounding
box was considered a true positive if the area of IoU was
50% or more between the ground truth and the prediction.
YOLOv5 small achieved the highest value of 92.5% of
mAP@0.5. At the same time, medium and large versions also
acquired excellent mAPs of 91.1% and 92.1%, respectively.
Figure 13 shows the mean average precision of all models.
YOLOv5 small attained a remarkable average precision of
92.5% in locating the pores from the XCT images.
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TABLE 3. Model evaluation comparison.

TABLE 4. Model’s training time, size, and the number of epochs.

It was observed that the smaller version of YOLOv5
required more training epochs. The training epochs, total
training time, and the final model size of all the models
are shown in Table 4. All the models were initially set to
train for 1000 epochs coupled with early stopping with the
patience of 100 epochs. The early stopping with the patience
of 100 epochs meant that the model’s training would be
halted if there were no improvements in the model’s training
for 100 consecutive training epochs. The small version
trained for 362 epochs and took 35.1 minutes. The final
model size was 14.5 megabytes (MB). The medium model
took 30.12 minutes with 309 epochs for its training. The
large model’s training was completed in 34.02 minutes after
347 training epochs. The experiments revealed that bigger
models (medium and large) with more training parameters
would train faster than a smaller version of YOLOv5. The
smaller models, probably due to having a less complex
architecture and fewer layers and parameters, require more
training and time.

B. MODEL TESTING AND CRITICAL EVALUATION
The models were tested on a test data set. The models were
never exposed to the test images during their training. The test
data set consisted of 7 images containing 951 pore objects.
The test images were passed through the models with an
IoU threshold of 45% and a confidence threshold of 10%.
The low confidence score was due to the small difference
between pores and the surrounding melted metal powder. The
total number of objects predicted by each model is shown in
Table 5. Seven test images and the total number of ground
truths are listed in the table. The predictions made by each
model are shown against each test image.

TABLE 5. Correctly predicted objects per test image.

FIGURE 14. Test image 2 where YOLOv5 medium model predicted
78 objects/bounding boxes.

FIGURE 15. Test image 6 where the YOLOv5 medium model predicted
239 object/bounding boxes.

Out of a total of 951 ground-truth, small, medium, and
large models predicted 753, 854, and 792, respectively. It is
worth noting that the models’ total predictions consisted of
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both true positives and false positives. The YOLOv5 medium
model made the most predictions of 854. Figure 15 shows
the predictions made by the medium model. The model
successfully identified most pores on the image with an
excellent confidence score. The model missed a few pores,
but the predictions were accurate and precise overall. Test
image 6 (in Table 5) had pores of various sizes. Experiments
revealed that the model quickly identified bigger pores and
had higher confidence scores than small ones. There must
be some false positive predictions, but it is difficult to
observe in test image 6 due to the high number of pores.
Figure 14 showed test image 2 (in Table 5) along with
the predictions made by the YOLOv5 medium model. The
model predicted the presence of pores in bounding boxes
circled with green circles, but there were no pores. The
bounding boxes with green circles around them are false
positives.

The pores vary in size in the data set. XCT images are
of high resolution and better quality. The XCT analysis
even captured small pores that, in practice, could easily
be ignored. The models performed well and achieved
remarkable precision, recall and mean average precision
values. All models made some mistakes too. They failed
to identify and locate some pores and, at the same time,
produced some false positive predictions. The number of
false positives and false negatives is significantly smaller
than the models’ true positive predictions. Although the
mediummodel predicted the most pores and bounding boxes,
counting the exact number of TP, TN, and FP is challenging.
Therefore, mean average precision at IoU@0.5 was chosen
as the decisive evaluation metric. The YOLOv5 small model
achieved the highest mAP and is the best choice for the
problem.

Some of the wrong predictions by the YOLO models were
mainly due to the tiny size of pores. Moreover, the labelling
could be improved significantly. The bounding boxes should
be drawn as close to the object as possible. The current labels
lack this trait. Moreover, somemicroscopic and hardly visible
pores should not be considered pores. These improvements
in the labelling step would significantly improve the model’s
performance.

V. CONCLUSION
Detecting porosity in LPBF presents a critical and formidable
challenge. In our previous papers, we identified porosity
from powder bed images. After extensive hyper-parameter
tuning, the proposed deep CNN was constructed from
scratch and optimised. The model successfully classified
powder porosity images from normal images. Powder bed
images are low quality and lack clear definition due
to poor lighting and a low-resolution camera inside the
build chamber. The current experiments were designed
to overcome these shortcomings and identify & localise
porosity from superior-quality XCT images using a multi-
layer approach. Sixteen cubes were printed on an SML500HL
printer, and porosity defects were created naturally by varying

the printing parameters. We employed three versions of
the state-of-the-art YOLOv5 object detection algorithm to
detect porosity from XCT images. The experiments revealed
that the YOLOv5 small model is most suited for porosity
detection from XCT images. The models were evaluated on
precision, recall, and mAP values, and our model achieved
a mAP@0.5 of 92.585%. The experiments established the
foundation of deep ML applications in real-time monitoring
and controlling of the LPBF process. The proposedYOLOv5-
based real-time object detection solution will help AM
practitioners to utilise the enormous XCT data concisely and
efficiently.

Despite the excellent and promising results, the current
methodology has the following limitations.

1) The proposed methodology, in terms of a multi-layer
approach, is currently presented as a proof of concept.
It should be noted that the XCT images were acquired
after the printing process. However, considering the
integration of in-situ X-ray imaging, the proposed
methodology shows promising potential for practical
in-situ implementation.

2) A limitation of the current work is that it focuses solely
on identifying keyhole porosity. This choice was driven
by the challenges associated with time-consuming
and laborious data labelling. However, future studies
will encompass a broader range of labelled data to
encompass various types of porosities.

3) Another consideration is the need to expand the scope
of labelled data to include a more comprehensive
range of porosity types. This expansion will enhance
the generalizability and robustness of the proposed
methodology when applied to real-world scenarios.

It is important to address these limitations and continue
exploring further avenues for improvement to enhance the
methodology’s applicability and effectiveness. The future
experiments will comprehensively compare state-of-the-
art, two-stage and one-stage models. Moreover, given the
high-quality cameras, the same solution will be used to
identify porosity and relevant defects in real-time from high-
quality powder bed images. We are devising semi-automated
labelling approaches utilizing fundamental image processing
techniques such as histogram analysis, image binarization,
connected component analysis, and edge detection. We have
made notable progress in this regard and anticipate employing
more labelled data through our semi-automated labelling
approach in future works. These efforts will encompass
various defects, including keyhole porosity, lack of fusion,
and balling. Future experiments will also employ vari-
ous sophisticated deep-learning techniques to improve the
model’s performance further.
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