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ABSTRACT Path planning is a critical process in mobile robot navigation. Sampling-based path planning
algorithms represented by Rapidly Exploring Random Tree star (RRT*) have gained widespread adoption
due to their asymptotic optimality and proven efficiency. However, when applied to intricate environments,
characterized by narrow passages and cluttered obstacles, these algorithms encounter challenges in both
the initial solution generation and the convergence towards the optimal path, mainly caused by the
inefficient sampling strategy, thereby impeding its overall effectiveness. To address these limitations,
we introduced Agile-RRT* (A-RRT*), an advancement of RRT* algorithm. Our contributions are twofold:
firstly, we introduce an adaptive goal-biased sampling strategy, which employs an adaptive principle for
determining the step size on the basis of the goal-biased strategy. This avoids getting trapped in local minima
and enhances the efficiency of the initial solution generation. Secondly, we introduce a path optimization
approach using a secondary tree and subset-informed sampling, to accelerate the convergence toward the
optimal path. It optimizes the path by gradually shrinking the designed elliptical planning space around
local states, which effectively narrows down the search space. The experimental results demonstrated that the
proposed A-RRT* diminishes the initial solution search time by 71.00% and the sub-optimal solution search
time by 82.86% in comparison to RRT*. The A-RRT* exhibits superior performance over RRT*, Informed-
RRT*, P-RRT* and Quick-RRT* in terms of soundness and efficiency in narrow and intricate environments.
Thismethod could expedite efficientmotion planning for drones andmobile robots in complex environments.

INDEX TERMS Path planning, RRT*, goal-biased strategy, informed sampling, complex environment.

I. INTRODUCTION
Unmanned robots have gained substantial attention owing
to their high efficiency and robust maneuverability. Path
planning is one of the elementary technologies of unmanned
robots, whose goal is to search for a collision-free path within
a map given an initial state and a goal state. It has widespread
applications not only in robot navigation, but also in
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medical and graphical animation applications [1]. For robots
operating in narrow and intricate environments, planning
a collision-free path can greatly reduce unmanned robots’
energy consumption and hardware burden, but remains a
long-standing challenge [2], [3].
Path planning algorithms are generally divided into

three groups: artificial potential field (APF)-based, grid
search-based and sampling-based algorithms. Among these
algorithms, sampling-based algorithms are the most popular
due to their probabilistic completeness, meaning an algorithm
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will eventually find a feasible path unless no feasible path
exists. And they avoid the challenge of constructing a
discretized configuration space which indicates less memory
cost [4]. Many algorithms were developed including Expan-
sive Space Trees (EST) [5], Probabilistic Roadmap (PRM)
[6] and Rapidly-exploring Random Trees (RRT) [7], etc.
Among these, an advancement of the RRT algorithm, called
Rapidly-exploring Random Trees star (RRT*) [8], was most
adopted due to its asymptotic optimality and efficiency in
path planning in regular environments. But for navigation
in narrow and cluttered environments, the sampling-based
algorithms generally suffer from low efficiency, appear as
the slow initial solution generation and the slow convergence
towards the optimal path.

For initial solution generation, one of the key factors
affecting the performance is the random sampling strategy,
since many sampled states are eventually discarded with
random sampling. The goal-biased sampling strategy is
more effective than random sampling. There are relative
researches using goal-biased strategy in path planning such
as heuristically-guided RRT (hRRT) [9], Potential Function
Based-RRT* (P-RRT*) [10], Improved Potential Function
Based-RRT* (PF-RRT*) [11] and Bi-directional APF-RRT*
[12]. As a representative variant of the RRT* algorithm,
P-RRT* iteratively shifts the randomly sampled states with
an attractive potential field which improves the goal-reaching
probability and avoids collisions. Nevertheless, most algo-
rithms with goal-biased sampling strategy may easily get
trapped during path planning in narrow and cluttered
environments unless the fixed step size λ and iteration
numbers are selected carefully [1].
For the convergence toward the optimal path, different

path optimization approaches have been studied to improve
the performance. Representative algorithms including RRT*-
Smart [13], Triangular Geometerized-RRT* (TG-RRT*)
[14], Quick RRT* [4], F-RRT* [15] and sampling-SEE
RRT* [16]. To find cheaper paths, nodes are either generated
around the initial path or removed to adjust the connection
relationships between them. Methods like F-RRT* [15] use
dichotomy to create a new node, while others such as RRT*-
Smart [16], sampling-SEE RRT* [16] and TG-RRT* [14]
generate new nodes through heuristic sampling. Reducing
nodes primarily uses the triangle inequality, such as RRT*-
Smart [13] and Quick RRT* [4]. During path optimization,
the informed sampling strategy [17], [18], [19]has garnered
significant attention for generating new nodes around the
initial path. It samples directly within a hyperspheriod
area which greatly reduces the exploring spaces. However,
when the optimal solution has a high cost, the size of the
region’s area is affected and becomes larger, resulting in the
algorithm’s convergence speed being slow. Moreover, it fails
to plan a path when the hyperspheriod area is larger than the
configuration space [20].

In this paper, a robust sampling-based path planning algo-
rithm called Agile-RRT*(A-RRT*) is proposed. It tackles the
problem of existing variants of RRT* that suffer from slow

initial solution generation and slow convergence towards
the optimal path in intricate environments. This study
mainly makes two key contributions: Firstly, we proposed
an adaptive goal-biased sampling strategy for initial solution
generation. This strategy formulates an adaptive policy
for adjusting the step size of shifting randomly sampled
states, which prevents the path planner from getting trapped
while still benefiting from the advantages of the original
goal-biased sampling strategy. Secondly, we introduced a
path optimization approach using a secondary tree and
subset-informed sampling. This method optimizes the path
by gradually shrinking the designed elliptical planning space
around local states. Compared to informed sampling, this
approach further narrows down the sampling range, leading
to significant improvements in convergence rates and the
soundness.

The subsequent sections of this manuscript are out-
lined as follows. Section II introduces the definition of
the problem and several off-the-shelf algorithms including
RRT*, Informed-RRT*, P-RRT* and Quick-RRT*. Sec-
tion III presents the details of the proposed algorithm
A-RRT*. In Section IV, the experimental design process and
corresponding results are presented. Finally, Section Vmakes
a conclusion of this paper.

II. BACKGROUND
This section formulates the path planning problems, and
subsequently provides a formal exposition of RRT*, along
with the Informed Sampling Strategy used in Informed-RRT*
and the path optimization approach applied in Quick-RRT*.

A. PROBLEM DEFINITION
Let X = Rd define set of all states in the configuration space,
where d ∈ N , and d = 2 in this paper. Let Xobs ⊆ X represent
the set of states collision with obstacles, and Xfree = X\Xobs
denote set of the permissible states in the collision-free space.

A path planning problem is defined by a triplet
(X , xinit ,Xgoal). Xgoal , as defined by the planning problem,
is the goal region centered at the target state xgoal with a radius
of rgoal .

Xgoal = {x ∈ Xfree|∥x − xgoal∥ ≤ rgoal} (1)

A path is defined as a continuous function σ : [0, 1] 7→
Rd of bounded variation. If σ is a collision-free path, it has
σ (τ ) ∈ Xfree,∀τ ∈ [0, 1]. Moreover, σ is a feasible path if it
is collision-free, and satisfied σ (0) = xinit and σ (1) ∈ Xgoal .

Define
∑

as the set of all paths, and let
∑

fea denote the
subset of all the feasible paths. Let c(σ ) :

∑
fea 7→ R > 0

be the cost function, i.e. the total length in Euclidean space,
of a feasible path connecting the initial state xinit to the goal
region Xgoal .

Therefore, the optimal path planning problem can be
formulated as: Given a path planning problem (X , xinit ,Xgoal)
and a cost function c(σ ), find an optimal path σ ∗ ∈

∑
fea by

minimizing the cost function c(σ ), which could be expressed
as σ ∗ = argminσ {c(σ )}.
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Algorithm 1 RRT*
1: Input: xinit ,Xgoal,δ,rnear ,X ,n
2: Output: G = (V ,E)
3: V ← {xinit } , E ← ∅, G← (V ,E);
4: for i← 0ton do
5: xrand ← RandomSample(i);
6: xnearest ← Nearest(G = (V ,E), xrand );
7: xnew← Steer(xnearest , xrand , δ);
8: if CollisionFree(xnearest , xnew) then
9: Xnear ← Near(G = (V ,E), xnew, rnear );

10: V ← V ∪ {xnew}
11: xparent ← BestParent(Xnear , xnew, xnearest );
12: E ← E ∪

{
xparent , xnew

}
;

13: G← Rewire(G = (V ,E), xnew,Xnear );
14: end if
15: end for
16: return G = (V ,E);

B. RRT*
RRT* is an optimal path planning algorithm. The algorithm’s
pseudocode is presented in Algorithm 1. The algorithm
explores to reach the goal region Xgoal from the initial
state xinit through a tree G = (V ,E), where V is the
set of nodes representing the states x ∈ Xfree in the
collision-free space, and E is the set of edges e ∈ Xfree ×
Xfree which represent the connectivity of two states in the
tree. The tree iteratively expands by generating new nodes
and edges through randomly sampling in the configuration
space. Rewiring is applied to each new node of the tree in
each iteration to minimize the cost of the nearby vertices.
A feasible path is generated once the goal region is reached.
The relevant functions employed in RRT* include:
RandomSample: uniformly sample a random state xrand in

the configuration space X ;
Nearest: given a random sampling state x ∈ Xfree and a

random tree G = (V ,E), traverse the tree for the state xnest
nearest to x;
Steer: given two states x1, x2 ∈ Xfree, create a new state

xnew by advancing a distance δ from state x1 toward x2;
CollisionFree: given two states x1, x2 ∈ X , verify whether

there exist obstacles between the two states;
Near: given a state x ∈ Xfree and a tree G = (V ,E),

traverse the tree and return a set of states within a circular
area centered at x with a radius of rnear ;
Cost: given a state x ∈ Xfree, traverse the tree and compute

the cost from xinit to x;
BestParent: given a set of states Xnear and two states xnest

and xnew, return a state xp that minimize the cost of xnew when
it transitions from {Xnear

⋃
xnest } to become its parent. The

pseudocode is shown in Algorithm 2;
Parent: given a state x ∈ Xfree, traverse the tree and find

the parent node of x;
Rewire: given a set of states Xnear , a tree G = (V ,E) and

a new state xnew, when xnew is added to the tree G = (V ,E),

this function searches for states in Xnear in the tree that could
be connected to this new state to create a path with lower cost.
The detailed explanation is expressed in Algorithm 3.

The RRT* has two main parameters, including a constant
step size δ in the Steer function, and a radius rnear in the Near
function.

Algorithm 2 BestParent
1: Input: Xnear , xnew, xnearest
2: Output: xparent
3: xparent ← xnearest ;
4: Cost(xnew)← Cost(xnearest )+ ||xnearest − xnew||2;
5: for xnear ∈ Xnear do
6: if CollisionFree(xnear , xnew) then
7: if Cost(xnear ) + ||xnear − xnew||2 < Cost(xnew) then
8: xparent ← xnear ;
9: Cost(xnew)← Cost(xnear ) + ||xnear − xnew||2;
10: end if
11: end if
12: end for
13: return xparent ;

Algorithm 3 Rewire
1: Input: G = (V ,E), xnew, Xnear
2: Output: G = (V ,E)
3: for all xnear ∈ Xnear do
4: if CollisionFree(xnear , xnew) then
5: if Cost(xnew) + ∥xnear − xnew∥2 < Cost(xnear ) then
6: E ← E\{xnear ,Parent(xnear )};
7: Parent(xnear )← xnew;
8: E ← E ∪ {xnear ,Parent(xnear )};
9: Cost(xnear )← Cost(xnew) + ∥xnear − xnew∥2;

10: end if
11: end if
12: end for
13: return G = (V ,E);

C. INFORMED-RRT*
Informed-RRT* is a classical extension of RRT*. Compared
to random sampling, it introduces an informed sampling
strategy (Algorithm 4) to reduce the sampling space which
can significantly improve the convergence speed. It behaves
in the same way as RRT* until an initial path is found.
Once the initial path is obtained, Informed-RRT* utilizes the
informed sampling strategy to sample a random state xrand
within a hyper-ellipsoid region, which centered at the initial
state xinit and the target state xgoal . The random state xrand
satisfies following conditions:

∥xrand − xinit∥2 + ∥xrand − xgoal∥2 ≤ dbest , xgoal ∈ Xgoal
(2)

in which dbest is initialized to the cost of the initial solution
and changes with the cost of the best solution.
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Algorithm 4 InformedSample
1: Input: xinit , xgoal, cmax , cmin,X
2: Output: xrand
3: xcentre← (xinit + xgoal)/2
4: C ← RotationToWorldFrame(xinit , xgoal)
5: r1← cmax/2

6: ri← (
√
c2max − c

2
min)/2

7: L ← diag {r1, . . . , ri}
8: xrand ← RandomSample(i)
9: xrand ← (CLxrand + xcentre) ∩ X
10: return xrand ;

In Algorithm 4, the function RotationToWorldFrame
returns a rotation matrix C , which transforms from the
hyperellipsoid-aligned frame to the world frame. diag repre-
sents a diagonal matrix and L denotes a transformationmatrix
from the hyperellipsoid-aligned frame to the world frame.
The detailed explanation of these symbols is referenced
in [17]

D. QUICK-RRT*
As another extension of RRT*, Quick-RRT* is efficient in
both searching initial solutions and converging to optimal
solutions. Based on the triangular inequality, its main
modification is to connect a further node for reducing
the cost of path. Different from other path optimization
algorithms, Quick-RRT* applies the triangular inequality
with a parameter d in BestParent, and Rewire these two
functions.

III. AGILE-RRT*
Agile-RRT* algorithm (Algorithm 5) was developed to
solve the issue of time-consuming initial solutions and
slow convergence rates of sampling-based path planning
algorithms, which involves two improvements:

1) An adaptive goal-biased sampling strategy is used to
quickly initialize a solution and avoid getting trapped.

2) A subset informed sampling strategy with a secondary
tree is proposed to improve the convergence rate and success
rate.

A. ADAPTIVE GOAL-BIASED SAMPLING STRATEGY
The concept of goal-biased sampling strategy is to generate
a new node x ′rand advancing from xrand , generated by
RandomSample function, toward the goal region with a fixed
step size Fig. 1(a). Since the x ′rand could be trapped in local
minimawith a fixed step size, an adaptive regulation principle
was proposed for the step size τ in ( 3).

x ′rand = xrand + τ ·
xgoal − xrand
∥xgoal − xrand∥

(3)

τ = (1−
∥xgoal − xrand∥
∥xgoal − xinit∥

) · ∥xgoal − xrand∥ (4)

The adaptive goal-biased strategy is based on two princi-
ples: (1) Using a smaller step size during the initial expansion

FIGURE 1. The process of Steer with goal-biased sampling (a) and random
sampling (b). xr represents a random node generated by RandomSample
function. x ′

r represents the generated node advancing from xr towards
goal by goal-biased sampling. xnest is the nearest node to xr as found by
the Nearest function. xnew and x ′

new are the nodes created by the Steer
function. xinit denotes the initial state and xgoal denotes the target
state.The solid red line in (a) represents the fixed step size.

of the tree to increase the chances of escaping traps, and
(2) Employing a larger step size as the random nodes
approach the target state to expedite the search progress.
However, to avoid excessive collision checking, the step size
is dynamically adjusted based on the distance between the
random nodes and the target state, with a scaling coefficient
ensuring that the step size remains within a reasonable range.
Fig. 4 illustrates how the step size is adapted based on the
position of the random node relative to the initial and goal
states.

As demonstrated in Fig 2, the adaptive goal-biased
strategy effectively guides random states using variable
step sizes, promoting diverse tree expansion directions and
facilitating escape from traps, in contrast to traditional
goal-biased strategies that may lead to trapped edges being
discarded.

B. PATH OPTIMIZATION USING A SECONDARY TREE WITH
SUBSET-INFORMED SAMPLING
The dual-tree structure, which was reported effective in
reducing the computation cost [21], [22], was adopted
along with the subset-informed sampling strategy in this
study. After the generation of the first tree representing the
initial solution features the adaptive goal-biased strategy,
a secondary tree is initialized with an iterative process, which
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Algorithm 5 A-RRT*
1: Input: xinit , xgoal , δ, Xgoal ,rnear ,X ,n
2: Output: G2 = (V2,E2)
3: V1← {xinit }, E1← ∅, G1← (V1,E1);
4: V2← ∅, E2← ∅, G2← (V2,E2);

// To solve the initial solution
5: while i < n ∧ not FindInitialSolution do
6: xrand ← AdaptiveGoalBiasedSample(i);
7: xnearest ← Nearest(G1 = (V1,E1), xrand );
8: xnew← Steer(xnearest , xrand , δ);
9: if CollisionFree(xnearest , xnew) then

10: Xnear ← Near(G1 = (V1,E1), xnew);
11: V1← V1 ∪ {xnew};
12: xparent ← BestParent(Xnear , xnew, xnearest );
13: E1← E1 ∪

{
xparent , xnew

}
;

14: G1← Rewire(G1 = (V1,E1), xnew,Xnear );
15: end if
16: i++;
17: end while
18: G2← CreateNewTree(G1 = (V1,E1), xgoal);

// To optimize the solution
19: while i < n do
20: xrand ← SubInformedSample(G2 = (V2,E2),X );
21: xnearest ← Nearest(G2 = (V2,E2), xrand );
22: xnew← Steer(xnearest , xrand , δ);
23: if CollisionFree(xnearest , xnew) then
24: Xnear ← Near(G2 = (V2,E2), xnew, rnear );
25: V2← V2 ∪ {xnew};
26: xparent ← BestParent(Xnear , xnew, xnearest );
27: E2← E2 ∪

{
xparent , xnew

}
;

28: G2← Rewire(G2 = (V2,E2), xnew,Xnear );
29: end if
30: i++;
31: end while
32: return G2 = (V2,E2);

starts from the goal state of the initial solution, and reversely
checks for directly connected nodes with successive parents,
until no more directly connectable nodes are present. The
process of initializing the secondary tree is explained in
Algorithm 6, illustrated in Fig. 3.

The secondary tree was then asymptotically optimized
by iteratively adding new sampled states and rewiring the
secondary tree (Fig. 4). The new sampled states here are
generated by subset informed sampling within a designed
hyper-ellipsoid region. Algorithm 7 explains how to generate
the new states.

The subset informed sampling function first finds a state
xnearest in the secondary tree, which is nearest to xrand ,
generated by RandomSample function. Then the parent state
of xnearest called xparent (Line 3), and the nearest child state of
xnearest called xchild (Line 4), are chosen to be the centers of
the designed hyper-ellipsoid region. The distance dmin from
xnearest to line generated by xparent and xchild is set to be the

FIGURE 2. One iteration in expanding a tree with adaptive goal-biased
strategy (a) and goal-biased strategy of P-RRT* (b). xinit denotes the
initial state and xgoal denotes the target state. The black dots and black
lines represent the nodes and edges in the tree from the previous
iteration. The red dots represent the same uniformly sampled nodes
generated by the RandomSample function. The blue dots and lines
represent newly created nodes and edges in the tree by Steer function.

minor axes of the ellipse (Line 6).

dmin =
√
(∥xparent − xchild∥2)2 − ds (5)

ds =
(xnearest − xparent ) · (xnearest − xchild )

∥xparent − xchild∥22
(6)

And the path length between xparent , xnearest and xchild is set
to be themajor axes of the ellipse (Line 7). Detailed numerical
equations of generating xrand in Line 8 can refer [17].

The primitive functions used in Agile-RRT* are explained
below:
FindInitialSolution: verify if the initial feasible path has

been identified or not;
AdaptiveGoalBiasedSample: uniformly sample a random

state xrand in the configuration space X and then return a
random state x ′rand based on xrand by applying the adaptive
goal-biased samlping strategy;
NearestChild: given a state x, traverse the tree and return

the nearest child of x.
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FIGURE 3. The initialization of the secondary tree by CreateNewTree
function from the initial solution. xinit denotes the initial state and xgoal
denotes the target state. The green dot represents the initial state, the
orange dot represents the goal state, and the blue dots represent the
preserved nodes for the secondary tree as no more directly connectable
nodes are present.

FIGURE 4. The procession of subset informed sampling procession. xinit
denotes the initial state and xgoal denotes the target state. The red dot xr
represents a random state sampled by subset informed sampling method.
The red dashed line represents the updated local path.

IV. SIMULATIONS
In this section, our proposed Agile-RRT* was compared
with four baseline algorithms including RRT*, Informed-
RRT*, P-RRT* and Quick-RRT* in terms of robustness
and efficiency. Four narrow and cluttered environments
were designed which consisted of a corridor environment,
a narrow environment, a cluttered environment and a maze
environment. These four environments are of the same size,
which is 250*250 pixels (Fig. 5).

Due to the inherent randomness of these algorithms, each
algorithm was repeated for 50 times for each simulation

Algorithm 6 CreateNewTree
1: Input: G1 = (V1,E1),xgoal
2: Output: G2 = (V2,E2)
3: V2←

{
xgoal

}
, E2← ∅, G2← (V2,E2);

4: xpick ← xgoal ;
5: xtemp← xgoal ;
6: xdesc← xgoal ;
7: while xtemp ̸= xinit do
8: if CollisionFree(xpick , xtemp) then
9: xtemp← Parent(xtemp);
10: xdesc← xtemp;
11: else
12: V2← V2 ∪ {xdesc};
13: E2← E2 ∪

{
xdesc, xpick

}
;

14: G2← G2 ∪ {(V2,E2)};
15: xpick ← xdesc;
16: end if
17: end while
18: return G2 = (V2,E2);

Algorithm 7 SubInformedSample
1: Input: G2 = (V2,E2),X
2: Output: xrand
3: xrand ← RandomSample(i)
4: xnearest ← Nearest(G2 = (V2,E2), xrand );
5: xparent ← Parent(xnearest );
6: xchild ← NearestChild(xnearest );
7: ds = ( (xchild−xparent )·(xnearest−xchild )

∥xparent ,xchild )∥2)
)2;

8: cmin←
√
∥xparent , xnearest )∥22 − ds;

9: cmax ← ∥xchild , xnearest )∥2 + ∥xparent , xnearest )∥2;
10: xrand ← InformedSample(xparent , xchild , cmax , cmin,X );
11: return xrand ;

FIGURE 5. The performance of A-RRT* changes with rnear when δ was
fixed at 5.

environment to ensure statistical significance. The average
value of each metric was calculated. As an exception, if the
algorithm failed to converge to a sub-optimal solution within
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FIGURE 6. The performance of A-RRT* changes with δ when rnear was
fixed at 20.

5 minutes, it was classified as a ‘‘Failed path planning
trail’’ and was excluded from the statistical analysis. The
experiments were conducted on a workstation with an Intel
Core i7-10700F CPU and 16G RAM.

A. EVALUATION METRICS AND PARAMETERS SELECTION
To improve the navigation performance of a mobile robot
following a path from the initial solution, the cost of the
initial solution is a crucial factor [4]. Besides, the proposed
algorithm utilized a secondary tree based on the initial
solution. Thus, a rapidly solution initialization and a smaller
initial cost enables to accelerate the optimization process.
Therefore, three key metrics were employed to assess the
performance of these algorithms: cinit denotes the cost of
the initial solution; tinit is the time taken to generate an
initial solution; and t1.05 indicates the time required to find
a sub-optimal solution of cost 1.05*copt , in which copt is the
cost of the theoretical optimal solution.

There are two parameters have an impact on the perfor-
mance of our proposed A-RRT* and the baseline algorithms,
which are the neighbor search radius rnear using in the Near
function, and the step size δ used in Steer function. Fig. 6
and Fig. 7 present the performance of A-RRT* with different
parameter settings.

Fig. 6 illustrates how the key measures are influenced by
changing the value of rnear with a fixed step size δ = 5.While
rnear = 10 achieved the fastest initial solution initialization
speed, the initial solution cost was the highest. Increasing
rnear = 20 increased the initial solution time by 0.2 seconds
compared to rnear = 10, but significantly decreased the initial
solution cost by 30. Furthermore, rnear = 20 had the fastest
initial solution cost reduction rate. Therefore, this paper chose
rnear = 20.

Fig. 7 demonstrates the impact of varying the step size δ

on the performance of A-RRT*, with a fixed neighbor search
radius of 20. The figure indicated that δ = 3 resulting in
the lowest initial path cost, but it took the longest time to
obtain an initial solution. By choosing δ = 4, the initial

solution time reduced by 1.4 seconds compared to δ = 3.
Although δ = 5 increased the initial solution cost by 7 pixels
compared to δ = 4, it reduced the initial solution time by half
compared to δ = 3. Increasing parameters with δ > 5 didn’t
significantly improve the speed of path initialization, and
the initial solution cost continued to increase. Therefore,
δ = 5 was selected as the optimal step size in this study.

To ensure fairness in comparison, rnear was set to 20, and
δ was set to 5 for all tested algorithms in the experiments. For
the specific parameters for the baseline methods, this paper
set λ = 0.1, d∗obs = 0.1, k = 300 for P-RRT*, and d = 2 for
Quick-RRT* based on our preliminary experiments.

B. EXPERIMENTAL RESULTS
1) CORRIDOR ENVIRONMENT
Fig. 8 illustrates the generated paths and explored space in
corridor simulation environment for each algorithm. It is
evident that both A-RRT* and P-RRT* narrowed down the
searching space in generating the initial solution comparing
to other baseline methods. Additionally, A-RRT* had a
narrower searching space during path optimization.
Table 1 provides statistical information that further

supports these observations. It is observed that A-RRT*
generated an initial solution and converged to the sub-optimal
solution in the shortest time. Although Q-RRT* generated an
initial path with least cost, it consumed more than 10 times
of time compared to A-RRT*. This suggests that A-RRT*
offers a balance between solution quality and computational
efficiency.
The data presented in Table 1 also indicates that while

P-RRT* discovered an initial solution with a short time,
it failed to converge to a sub-optimal solution in this narrow
environment for most of the tests. In contrast, A-RRT*
demonstrated 41% reduction in time consumption to search
an initial solution and 55% reduction in time consumption
to search a sub-optimal solution compared to P-RRT*, with
no failures. These results highlight the superior performance
of A-RRT* in terms of speed and convergence compared
to P-RRT*.
Because of the initial solution of Informed-RRT* is

highly depended on RRT*, both Informed-RRT* and RRT*
exhibited no significant convergence in narrow environment.
Q-RRT*, informed-RRT* and RRT* are all inefficient in
finding the initial solution due to the random space searching.
In contrast, A-RRT* has the best success rate of the
sub-optimal planning and has the best overall performance
in searching initial solutions and converging to sub-optimal
solutions in this scenario.

2) NARROW ENVIRONMENT
Fig. 9 displays the sub-optimal paths and explored space in
the narrow environment for each algorithm. It is evident that
A-RRT* took the least space in both generating the initial
solution and path optimization.
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FIGURE 7. The simulation environments for testing the algorithms. The green dots represent the initial states and the magenta dots
are the goal states. The green line is the theoretical shortest path, and the copt is the corresponding cost.

FIGURE 8. Performance of five algorithms in the corridor environment. The orange thin lines and points represent the tree
constructed for the initial solution, while the blue think lines and points represent the edges and nodes used for solution
convergence. The blue thick line represents the suboptimal path.

TABLE 1. Algorithm performance in corridor environment.

The statistical results of the narrow environment are
displayed in Table 2. It is observed that A-RRT* spent
the shortest time for searching for initial solutions and
sub-optimal solutions. Although Q-RRT* found the initial
solution with the least cost, it spent almost twice the time,
mainly spent on sampling to move through the narrow

passages during initializing the solution (Fig. 9(b)) in narrow
environments.

P-RRT* is efficient in finding the initial solution, but
inefficient in optimizing the path and subject to failures, as it
almost explored the entire space (Fig. 9(c)). Informed-RRT*
and RRT* are both inefficient in finding the initial solution
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FIGURE 9. Performance of five algorithms in the narrow environment. The orange thin lines and points
represent the tree constructed for the initial solution, while the blue think lines and points represent the
edges and nodes used for solution convergence. The blue thick line represents the suboptimal path.

TABLE 2. Algorithm performance in narrow environment.

and path optimization, as they got trapped during searching
for initial solutions, and almost explored the entire space
during converging (Fig. 9(d-e)).

A-RRT* reduced 5% of the time for solving the initial
solution compared to P-RRT*, and reduced 50% of the
time for generating the sub-optimal solution with higher
success rate compared to Q-RRT*. Therefore, A-RRT* has
the best overall performance and robustness in searching
initial solutions and converging to sub-optimal solutions in
this scenario.

3) CLUTTERED ENVIRONMENT
Fig. 10 displays the paths generated and exploration results
for five algorithms in a cluttered environment. It indicates that
A-RRT* (Fig. 10(a)) had a narrower search space during both
solution initialization and optimization compared to other
baseline algorithms.

The statistical analysis results are presented in Table 3.
The table highlights that A-RRT* generated an initial
solution with the lowest cost and converged to a sub-optimal
solution in the shortest time among the algorithms.
A-RRT* outperformed Q-RRT* with an 8% reduction in
terms of initial solution cost. It also reduced the time taken
to initialize a solution by 41%, along with an impressive
reduction of 70% time taken to converge to a sub-optimal
solution.

Table 3 also indicates that P-RRT* took the least time for
generating an initial solution and narrowed the search space.
However, it is inefficient in path optimization as it explored
almost the entire map (Fig. 10(c)). In comparison, A-RRT*
reduced time consumption in optimizing the solution by 69%
and decreased the cost to initialize a solution by 4% compared
to A-RRT*.

Both RRT* and Informed RRT* are inefficient in path
optimization, as they searched the entire map. A-RRT*
achieved 85% and 72% time reduction in searching for
optimal paths compared to RRT* and Informed-RRT*,
respectively. Hence, A-RRT* has a superior performance in
generating an initial solution and converging to a sub-optimal
solution in this map.

4) MAZE ENVIRONMENT
Fig. 11 displays the generated paths and explored space in
the maze environment for five algorithms. It indicates that
A-RRT* significantly reduced the exploration space during
solution initialization and path optimization compared to the
other baseline methods.

The statistical result presented in Table 4 supports
this observation. It manifests that A-RRT* is capable of
generating initial solutions and converging to sub-optimal
solutions in the shortest time. While Q-RRT* found initial
solutions with the least costs, it required 49% more time to
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FIGURE 10. Performance of five algorithms in the cluttered environment. The orange thin lines and points
represent the tree constructed for the initial solution, while the blue think lines and points represent the edges
and nodes used for solution convergence. The blue thick line represents the suboptimal path.

TABLE 3. Algorithm performance in cluttered environment.

generate an initial solution and 40% more time to converge
to a sub-optimal solution, as it searched randomly and
extensively explored the entire map (Fig. 11(b)).

According to the information presented in Table 4, P-RRT*
algorithm demonstrates a better performance in terms of the
cost of initial solutions. However, this algorithm is inefficient
in converging to sub-optimal solutions and tends to be trapped
in this scenario (Fig. 11(c)), as it is moves directly towards the
goal region with a fixed step. Moreover, it took twice as much
time as A-RRT* to find an initial solution and converge to a
sub-optimal solution.

Due to random sampling nature of Informed-RRT*
(Fig. 11(d)) and RRT* (Fig. 11(e)), the generated nodes
and edges were distributed throughout the entire space.
Additionally, compared to A-RRT*, these algorithms took
nearly three times longer to initialize a solution and optimize
the path. Although A-RRT* consumed more cost in initial
solutions, it escaped from traps and demonstrated almost a
50% reduction in solution initialization and path optimization
compared to the other baseline algorithms. Therefore,
A-RRT* exhibits superior performance in quickly generating
an initial solution and achieving a high-speed convergence
rate in this environment.

C. DISCUSSIONS
Simulations and statistics conducted across four different
intricated environments have demonstrated the superior
performance of A-RRT* over other algorithms in solving
time-consuming initial solutions and converging towards sub-
optimal solutions.

A-RRT* was found to be highly efficient in sampling
during the solution initialization process, especially effective
in guiding random states out of trapped. As shown in
Fig. 8(a), Fig. 9(a), Fig. 10(a) and Fig. 11(a), A-RRT*
samples less states and generate less edges in this narrow
and intricate environment. This is due to the algorithm’s
adaptive goal-biased strategy. For instance, in the corridor
environment, the algorithm employed a smaller step size to
guide the sampling point towards the target area when it is in
close proximity to the starting point. It enabled the algorithm
to expand the tree in multiple directions and explore the
interior of the corridor with ease. As the sampling point
progressed further into the corridor, the A-RRT* algorithm
guided states with a moderate step size towards the target
area, but kept a longer distance with obstacles compared to
P-RRT*. When the sampling point was located very close to
the target, theA-RRT* algorithm directed it towards the target
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FIGURE 11. Performance of five algorithms in the maze environment. The orange thin lines and points
represent the tree constructed for the initial solution, while the blue think lines and points represent the
edges and nodes used for solution convergence. The blue thick line represents the suboptimal path.

TABLE 4. Algorithm performance in maze environment.

area by taking larger steps, thus resulting in the tree growing
almost directly towards the target state, which enabled
A-RRT* to find the target more quickly.

Fig. 8(a), Fig. 9(a), Fig. 10(a) and Fig. 11(a) also showed
that A-RRT* generates fewer states in a narrower space
while optimizing the sub-optimal solutions, revealing its high
efficiency in path optimization. This is because the algorithm
utilizes subset-informed sampling based on the secondary
tree, which reduces the sampling range for converging. In the
narrow environment, for example, new states were generated
within an elliptical region surrounding the secondary tree
based on an initial solution. This restricted the sampling range
during convergence, which not only decreased the number
of states but also speeded up the convergence towards the
optimal solution.

V. CONCLUSION
In this paper, we present a novel sampling-based path
planning algorithm, A-RRT*, which incorporates an adaptive
goal-biased sampling strategy for initial solution generation
and a path optimization approach utilizing a secondary tree
and subset-informed sampling. Experimental results across
various simulation environments demonstrate the effective-
ness of A-RRT*. During the initial solution generation phase,
A-RRT* efficiently samples the search space, narrowing

down the search area and preventing trapping in local
minima, particularly in corridor and maze environments.
Subsequently, during the path optimization phase, the algo-
rithm applies a secondary tree and subset-informed sampling
approach. This approach narrows the sampling region to
an elliptical area around local states in established paths
and gradually shrinks it during optimization, significantly
enhancing the efficiency of convergence to the optimal
path. These findings indicate that the proposed adaptive
goal-biased sampling strategy improves the efficiency and
reliability of sampling-based path planning in intricate
environments. Additionally, the utilization of a secondary
tree and subset-informed sampling in path optimization
enhances the efficiency of convergence to the optimal path.
The proposed method has the potential to significantly
enhance efficient motion planning for a range of navigation
applications in complex environments, including autonomous
driving, robotic rescue operations, home service robots, and
game design, etc.

Although A-RRT* can quickly search an initial solu-
tion and converge to a sub-optimal solution, this study
only considered the two-dimensional environment. Fur-
ther investigation is needed before applying the proposed
algorithm in high-dimensional environment. In addition,
in our future research, curve-smoothing and robot kinematic
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constraints will be considered for practical application in
robotics.
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