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ABSTRACT Traditional transfer diagnosis models for internal combustion engines show a decrease in
generalization ability due to the multisource features aliasing in vibration signals and the effect of variable
operating conditions. To address this problem, this paper proposes a transfer diagnosis model based on the
deep subdomain adaptive network framework. To address feature aliasing, based on minimizing amplitude
moment and reconstruction loss, a new adaptive decomposition layer is designed and embedded into the
framework to decompose complex signals into single-impact components in time domain. To alleviate the
effect of operating conditions, a new constraint for minimizing signal feature variance loss is designed and
introduced into the framework’s loss function. This constraint calculates the variance of the sample features
of the same fault label under variable operating conditions, aiming to excavate invariant features of operating
conditions and complete feature mapping of domain adaptation. Validation with experimental data yields an
accuracy of 94.81%.

INDEX TERMS Artificial neural networks, deep learning, diesel engines, fault detection, feature extraction,
internal combustion engines, signal processing algorithms, time-domain analysis, transfer learning, vibra-
tions.

I. INTRODUCTION
Reciprocating internal combustion engines are the key power
source in fields such as marine vessels, vehicles, and elec-
tricity generation, characterized by their compact structure,
numerous components, and high failure rates. During nor-
mal operation, internal combustion engines’ shell vibration
signals exhibit characteristics of multi-source impact sig-
nal coupling. For instance, impacts from the opening and
closing of the intake and exhaust valves in each operating
cycle, combustion impacts within the cylinder, and impacts
from piston reversal. The opening and closing impacts of the
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valves, combustion impacts within the cylinder, and piston
reversal impacts directly affect the cylinder head shell. The
piston reversal impact is also transmitted to the cylinder head
shell through certain signal paths. Therefore, monitoring the
vibration signals of the cylinder head shell of the internal
combustion engine can obtain quasi-periodic multi-impact
coupling signals in the time domain, thus reflecting the work-
ing status of different components. There are many studies
extracting fault characteristics from the vibration signals of
the cylinder head shell of internal combustion engines and
constructing diagnostic models [1], [2].

Mechanical faults, such as wear on connecting rod bear-
ings and valves, produce additional impact signals. These
signals overlap with the normal impact signals mentioned
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above in the time and frequency domains, posing challenges
for fault feature extraction. Meanwhile, variations in engine
speed and load conditions are common. Under variable oper-
ating conditions, changes occur in the dynamic behavior of
engine moving parts, resulting in corresponding changes in
the time–frequency features of vibration signals [3], [4]. The
features of vibration signals from the engine casing gener-
ally exhibit nonlinear distributions during variable operating
conditions. Therefore, the feature aliasing and the effects of
variable operating conditions are two problems in internal
combustion engine fault diagnosis.

To address the problem of feature aliasing, signal modal
decomposition methods (i.e., empirical mode decomposition,
variationalmode decomposition, andwavelet decomposition)
are commonly conducted to obtain multiscale single-modal
components containing mechanical operational state infor-
mation [5], [6]. Then the components are applied to extract
dynamics and thermodynamic features for diagnosis [7].
For example, Bi et al. [8] used variational mode decom-
position and expectation maximization method to analyze
multi-channel vibration signals and extract knowledge fea-
tures for internal combustion engine state recognition. Fur-
ther, deep learning techniques, including convolutional neural
networks [9], [10], [11], graph attention networks [12] and
autoencoders [13] are employed to explore the deep features
of internal combustion engine vibration signals. For instance,
Liang et al. [10] and Xie et al. [11] constructed internal
combustion engine vibration signal feature extraction models
based on autoencoders and graph attention networks, respec-
tively, using vibration signals directly as input. However,
internal combustion engine faults often manifest as abnormal
impacts in time domain signals, with a particularly severe
feature aliasing problem [15]. The abovementioned research
on feature extraction of internal combustion engines did not
consider feature aliasing problem and directly used deep
networks for feature extraction, resulting in insufficient corre-
lation between feature extraction results and faults, decreased
generalization, and limited application.

To alleviate the effect of variable operating conditions,
the transfer learning (TL) method has been proposed to fur-
ther improve the generalization of diagnostic models [16].
TL aims to adjust existing model parameters to construct
models that adapt to the diagnostic needs of new engine units.
However, the nonlinear variation of signal features under
different operating conditions of internal combustion engines
makes it challenging to extract domain-invariant features for
operating conditions, decreasing the generalization ability
of fault transfer diagnostic models between units. Currently,
limited research exists on transfer diagnostic models between
different internal combustion engine units under variable
operating conditions. But in other mechanical domains, such
as bearings, gears, and turbines, domain adaptation (DA)
methods have been proposed to reduce the feature distribution
difference between the source and target domains [17], [18],
[19], [20], [21]. DA reduces feature distribution discrepancy

by introducing a distance function into the model’s objec-
tive function to drive multidomain feature alignment [22].
Additionally, incorporating a loss constraint related to label
prediction results, combined with the aforementioned feature
distribution distance function, DA can reduce the feature
distribution difference between the source and target domains
while enhancing the diversity of distribution results among
multiple classes of source domain features, thereby improv-
ing model generalization [23]. Lu et al. [24] used a model
withmaximummean discrepancy (MMD) tominimize differ-
ences between various machine data instances and achieved
an accurate transfer diagnosis of typical gearbox-bearing
faults. Shen et al. [25] proposed a deep subdomain adap-
tation network (DSAN) to extract features of multiscale
vibration signals using local maximum mean discrepancy
(LMMD) loss to reduce the distance between source and
target domains and achieve transfer diagnosis of wind tur-
bine system faults. Li et al. [26] introduced an adversarial
DA method based on conditional adversarial DA (CDAN),
which enforces better intraclass compactness and interclass
separability of label-related prediction results to improve
model generalization, enabling transfer diagnosis of typical
bearing faults under variable conditions. The above studies
have shown that constructing feature distribution constraint
functions effectively obtains domain-invariant features under
variable operating conditions.

In summary, when constructing internal combustion
engine fault transfer diagnostic models, challenges arise such
as feature aliasing of vibration multisource impact signals,
difficulty in feature extraction, and nonlinear distributions
in multidomain feature distribution under variable operat-
ing conditions. These challenges lead to difficulty extracting
domain-invariant features for operating conditions and a
decrease in the generalization ability of fault transfer diag-
nostic models between engine units.

In this study, first, to address the difficulty in feature
extraction caused by feature aliasing, a new decomposition
layer of multi-impact vibration signals in internal combustion
engines is proposed. This layer is based on the periodic
multi-impact interval distribution and rapid decay character-
istics of impacts in vibration signals. This proposed layer
has a signal moment minimization decomposition objective,
enabling the decomposition of multisource impact vibration
signals into single-impact modalities. Second, to address the
problem of signal feature shift under variable operating con-
ditions, which makes it challenging to mine domain-invariant
features, a new feature variance loss (FVL) constraint is
established. By introducing source domain labels to group
source domain samples and calculating the variance of each
feature under all operating conditions, this constraint drives
the minimization of the variance of feature distribution for
different operating condition subsignals with the same fault
label, reducing the sensitivity of sample features to operat-
ing conditions. Furthermore, the decomposition layer of the
impact vibration signals and the FVL constraint are inte-
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FIGURE 1. Framework of the proposed method is based on signal decomposition, feature extraction, domain adaptation, and diagnostic modules.

grated into the signal processing and DA modules of the
DSAN framework, respectively. This integration leads to the
construction of a DSAN framework for internal combustion
engine transfer diagnosis, enabling fault transfer diagnosis
between internal combustion engine units.

Our contributions are as follows:
1. Proposed a new decomposition layer based on signal

amplitude moment and reconstruction loss minimization of
internal combustion engine vibration signals, and the signal
moment minimization decomposition objective. This layer
is embedded in DSANs and decomposes multiple impact
signals into single-impact modes. It also adopts a unified opti-
mization algorithm, parameter update strategy, and learning
rate adjustment method with other modules in the model to
improve the model efficiency.

2. Proposed a new FVL constraint to mine invariant fea-
tures in the operating condition domain. This constraint
introduces source domain labels to group source domain
samples and calculates the variance of each feature under all
operating conditions, driving theminimization of the variance
of feature distribution for different operating condition sub-
signals with the same fault label to reduce the sensitivity of
sample features to operating conditions.

3. Constructed a new internal combustion engine transfer
diagnostic model based on a DSAN framework. This frame-
work incorporates the proposed multi-impact vibration signal
decomposition layer and FVL constraint and establishes an
algorithm for multiobjective optimization of the model.

4. Based on experiments conducted on two internal com-
bustion engine test benches, simulating three typical faults
under different operating conditions, the performance of the
proposed model is validated.

The remaining content of this study is as follows:
Chapter 2 presents the proposed decomposition layer, the
FVL, and the constructed transfer diagnostic model. Chap-

ter 3 describes the experiments and the data set. Chapter
4 presents the comparative validation results of the proposed
method, and Chapter 5 provides the conclusions of our study.

II. PROPOSED METHOD
This study constructed a DSAN framework for the internal
combustion engine transfer diagnosis model with embed-
ded vibration signal impact decomposition, and Figure 1
shows the model’s overall structure. This structure included
a preprocessing module for the signal decomposition layer,
a feature extraction module, a DA module with the proposed
embedded FVL, and a fault diagnosis module.

A. DECOMPOSITION LAYER OF MULTI-IMPACT
VIBRATION SIGNALS
The decomposition layer aims to separate the impulse
waveforms within the vibration signal, forming multiple sub-
signals containing only individual impulse waveforms. Its
decomposition objective can be summarized as minimiz-
ing the information loss in reconstructing the source signal,
with the subsignals conforming to the morphology of single
impulse waveforms [1]. Additionally, for ease of calculation,
the signal amplitude and time range need to be transformed
to [0,1], and after decomposition, inverse transformation can
restore the original feature range.

The design of the decomposition window and the calcula-
tion process of window parameters are as follows.

To construct the decomposition window W , we defined
the center position coefficient (wc) and half-width coefficient
(wl). Window W comprises variants of Sigmoid and ReLU
functions.Multiplying the signal S byW intercepts the signal,
as shown in Eqs. (1)–(2).

Fg (wc,wl; x)
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=
1

1 + exp (wc − wl − x)
(1)

W (wc,wl; x)

= ReLU
(
Fg (wc,wl; x)− Fg (wc,−wl; x)− ε

)
, (2)

where Fg is the sigmoid activation function of the variant.
ReLU is the standard activation function. The x represents
the time point of the sequence. ε represents a minimum value,
usually taken as 10−4.

The formula for calculating (wc) and (wl) are shown in Eqs.
(3)-(4).

wc = sigmoid
(
w′
wcS

)
(3)

wl = sigmoid
(
w′
wlS
)
, (4)

where wc and wl are generated by deep learning weights w′
wc

and w′
wl , respectively.

The calculation process of subsignals is shown in Eq. (5)

sk (x) = Wk
(
wck ,wlk ; x

)
S (x) , (5)

where sk (x) represents the separately decomposed subsig-
nals. k represents the index of the decomposed subsignals,
and S (x) represents the source signal.

The decomposition objectives are as follows.
Considering that the decomposition target needs to mini-

mize the information loss of the reconstructed source signal,
the decomposition and reconstruction loss δ is proposed
as an indicator to evaluate the decomposition performance.
As shown in in Eq. (6).

δ =
1
K

(
K∑
k=1

sk (x)− S (x)

)2

, (6)

where K represents the number of decompositions
Considering the morphological characteristics of a sin-

gle impact waveform, the decomposition layer introduces
the concepts of impact amplitude moment and impact time
domain center.

The p-th amplitude moment of signal s (x) for a certain
moment (xk ) is shown in Eq. (7).

Mt (x|xk , s (x) , p) =

∫
+∞

0
(x − xk)p s (x) dx, (7)

where the Mt represents the amplitude moment. When (xk )
is the time center of gravity of the signal s (x), the amplitude
moment reaches its minimum value at point (xk ). In this study,
under the condition of p = 1, (xk ) represents the time domain
center of the signal s in the time domain.

The smaller the reconstruction loss, the less informa-
tion lost during decomposition. The smaller the amplitude
moment M , the closer xk is to the true time domain center
of the impulse waveform. The decomposition target is shown
in Eq. (8).

min
{sk },(tk }

LD = δ + β

K∑
k=1

Mt (x | xk , sk (x), p = 1)22 (8)

FIGURE 2. Schematic diagram of decomposition layer for multi-impact
vibration signals.

where LD represents the decomposition target, and the β
represents the adjustment coefficient.

The optimization calculation process for the decomposi-
tion number K is as follows. This study sets the decompo-
sition number K to start from two and iteratively calculates
upward. When the decomposition target LD is the smallest,
the value of K is the optimum.
The proposed signal decomposition layer is shown in

Figure 2.
Embed the above signal decomposition layer into the

DSAN framework. Compared to conventional decomposi-
tion methods that are independent of diagnostic networks
for signal decomposition, the signal decomposition layer in
this study utilizes the common Adam optimization algorithm
in deep learning. This maintains the same parameter update
strategy and learning rate adjustment method as other mod-
ules in the framework, thereby improving the efficiency of
the transfer diagnosis model.

B. FEATURE VARIANCE LOSS
In the current study, computing feature variance has been
utilized inmodel regularization loss to drive themodel to gen-
erate feature distributions closer to both the existing training
set and unobserved real-world data, thereby enhancing model
generalization [27]. The proposed FVL in this paper further
incorporates information on operating conditions and fault
labels for sample grouping, aiming to reduce the sensitivity of
the model’s feature extraction results to operating conditions.
It should be pointed out that FVL loss is applied to the DA
module and works together with the distance function of the
DA module itself.

The rationale for introducing labels is as follows. Although
minimizing the variance of feature dimensions calculated
from samples under different operating conditions can
decrease the feature variation caused by operating condi-
tions, the prerequisite for minimizing the variance of feature
dimensions is sampled with the same fault label, given that
the samples required during model training are randomly
selected. Otherwise, the reduction in feature variance for
samples with different fault labels will result in similar feature
values, making fault diagnosis difficult for the model.
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FIGURE 3. Schematic diagram of using FVL to reduce the impact of
variable operating conditions in the DA process.

Therefore, FVL groups the source domain samples by
introducing label information. Furthermore, based on the
pre-grouped samples and the fault label information from the
source domain, FVL calculates the variance of each feature
under all operating conditions, driving the minimization of
the variance of feature distribution for different operating
condition sub-signals with the same fault label, (i.e., mini-
mizing the sensitivity of features to operating conditions).

Consider a batch of samples with n samples containing T
classes of faults. The number of samples for each class of fault
is nt , and each sample hasM deep learning features, as shown
in Eq. (9).

F =
{
fi,j
}
,F ∈ R

(∑T
t=1 nt

)
∗m
, (9)

where F represents the total feature matrix for a batch of
samples, the fi,j represents the j-th feature of the i-th sample,
n is the total number of samples in a batch, and nt represents
the number of samples for the t-th class of fault.

For features belonging to the same fault class, the goal is
to minimize feature variance, which drives the model to learn
noise features as zero features. Therefore, the variance-based
penalty constraint is as shown in Eq. (10).

LFVL = min
WE

1
MT

M∑
m=1

T∑
t=1

var
(
fnt−1∼nt ,m

)
, (10)

where var represents variance calculation, T and M repre-
sent the number of fault and feature categories, respectively,
fnt−1∼nt ,m is the m-th feature of samples from nt−1 ∼ nt , and
WE represents the weights generated in the feature process.

After feature extraction, further evaluation of each feature
dimension in the feature map is required. If any feature
value in a dimension is zero, that feature dimension will be
removed.

The process of DA with FVL is shown in Figure 3.

C. MODEL FRAMEWORK FOR TRANSFER LEARNING
This study adopts a DSAN framework to achieve transfer
fault diagnosis, embedding the proposed signal decomposi-
tion layer and FVL constraint. The feature extraction module
of the framework consists of the classical VGG structure [28],
while the DA module employs LMMD as the distance loss
function. For the diagnostic module, a classical softmax clas-
sifier is applied.

LMMD aims to drive the alignment of sample features in
each subdomain. Usually, the source domain data are divided
into subdomains based on class labels, whereas the target
domain data is divided into subdomains using the probabil-
ity distribution predicted by the network. The definition of
LMMD is shown in Eqs. (11)-(12).

wci =
yic∑

(xj,yj)∈D yic
(11)

LLMMD =
1
T

∑T

c=1

×

∥∥∥∥∑xsi ∈D
S
wsci φ

(
xsi
)
−

∑
xtj ∈D

T
wtcj φ

(
x tj
)∥∥∥∥2

H
,

(12)

where, DS and DT represent the feature matrix of the source
and target domain, respectively, T is the number of classifica-
tions, and φ represents a kernel function, such as a Gaussian
kernel.

The softmax classifier is a classical classifier used for mul-
ticlass classification, with focal loss (LFL) as the diagnostic
target for unbalanced data. LFL is shown in Eq. (13).

LFL
(
pt,i
)

= −αi
(
1 − pt,i

)γ log (pt,i) , (13)

where pt,i is the cross-entropy loss between the pre-
dicted probability of class i and the true label. Factor
α is a used to adjust the weight of each category. Fac-
tor γ is a used to adjust the weight relationship between
samples.

The objective function comprises three learning tasks,
which can be divided into the preprocessing part T1, the FVL
part T2, and the diagnostic part T3, as shown in Eqs. (14)-(16).

T1 = LD (14)

T2 = LFVL (15)

T3 = λLLMMD+LFL , (16)

where λ is the balancing coefficient.
For these three learning tasks, a multiobjective stepwise

training method was designed. First, the source and target
domain data were trained using a multi-impact vibration
signal decomposition layer to achieve signal decomposition
based on the minimization objective T1. After training, the
decomposed source domain signals were further grouped
and trained, primarily driving the model parameters to
acquire domain-invariant features for operating conditions
by minimizing the T2. Subsequently, DA and diagnosis
were performed on both the source and target domain data,
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FIGURE 4. Specific framework of the proposed method based on signal decomposition layer, feature extraction, domain adaptation, and diagnostic
modules.

Algorithm 1 Proposed Transfer Learning Model
Input: source data SS , source label Ys, target data St , task T1
and its threshold ψ1, limit of epochs Lep1, task T3 and its
thresholdψ3, limit of epochs Lep2
Output: Predict the results of target data ŷt
1 Epoch=0
2 While T1 > ψ1 or Epoch < Lep1do
3 Based on Ss, St ,train decomposition layer with

task T1 = LD
4 Epoch = Epoch+1
5 end while
6 Obtain the subsignals set Ss, St of SS , ST
7 Based on Ssand ys, group Ss as G(Ss)
8 Epoch=0
9 While T3 > ψ3 or Epoch < Lep2do
10 Based on the transfer learning model (Model),

calculate FS of G(Ss) with minimize
task T2 = LFVL

11 Based on Model, source label Ys, calculate
FS ,FT , Ŷ T of Ss, St , with minimizeLLMMD

12 Based onFS and source label Ys, conduct
classification diagnosis with minimizeLFL

13 Task T3 = λLLMMD + LFL
14 Epoch = Epoch+1
15 end while
16 Based on the trained modelandtarget data St ,predict

the results of target data ŷt

(i.e., adjusting the model parameters by minimizing objec-
tive T3). The model then alternately underwent training to
minimize objectives T2 and T3 until objective T3 met the
requirements.

Furthermore, the training approach for themodel is defined
by Algorithm 1 below, and the specific model structure is
illustrated in Figure 4.

TABLE 1. Sample collection results for the two internal combustion
engines.

III. DATA AND MODEL
A. DATA
To validate the transfer diagnostic effectiveness of the
proposed method, experiments were conducted involving
combustion engine misfires, abnormal valve clearance, and
piston collision faults. Themisfire fault was achieved byman-
ually cutting off combustion injection into the cylinder, the
abnormal valve clearance was introduced bymanually adjust-
ing the exhaust valve clearance to increase it by +0.3 mm,
and the piston collision fault was created by adding soft
copper sheets to the piston head. The source domain data
were obtained from a 12-cylinder V-type direct-injection
combustion engine, referred to as Group A, whereas the
target domain data were obtained from a 6-cylinder Inline-
type direct-injection combustion engine, referred to as Group
B. The fault experiments on Groups A and B are shown in
Figure 5. The sample collection results are shown in Table 1.

In Figure 5, the green symbol represents the vibration
acceleration sensor installed on the cylinder head to obtain
vibration signals. The number and location of sensors may
vary depending on the unit structure and installation location

62784 VOLUME 12, 2024



H. Li et al.: Transfer Diagnosis Model of Internal Combustion Engine

FIGURE 5. Structure of internal combustion engines (unit A and unit B), layout of engine measuring points and installation locations of engine
sensors.

FIGURE 6. Schematic diagram of vibration signals for normal, misfire, valve, and collision
faults in Unit A and Unit B.

conditions. Unit A has installed 12 sensors of this type par-
allel to the direction of the piston application on the cylinder
head; Unit B installed 6 sensors of this type on the cylinder
head perpendicular to the direction of the piston operation.
The orange symbol represents the key phase sensor, installed
on the flywheel to intercept the vibration signal of one work-
ing cycle; the Purple symbol represents the instantaneous
speed sensor, used to obtain the operating condition label.
The key phase sensor (parallel to the flywheel axis) and

instantaneous speed sensor (perpendicular to the flywheel
axis) of both units are installed on the flywheel fluted-disc
structure. The key phase sensor is used to capture vibration
signals of a complete working cycle, while the instantaneous
speed sensor is used to obtain operating condition labels. The
faulty cylinders of Units A (faulty cylinder A3) and B (faulty
cylinder 2#) are used to collect vibration signal samples.
These samples are applied as the training and validation
dataset for the proposed method.
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To better collect high-frequency vibration information
caused by mechanical faults, the sampling frequency was
set to 25.6 kHz during our experiment (the sensor manual
recommends the highest sampling rate). The sample signals
are shown in Figure 6.
As shown in Table 1 and Figure 6, the experiments for

Group A were distributed between 1000–1500 rpm and 0–
400 Nm, while Group B covered the range of 1000–1800 rpm
and 0–600 Nm, complying with variable-condition criteria.
Observing the vibration signal samples from both groups, the
signals from Group A are clearer, with distinct impacts from
valve seating and ignition. However, the signals from Group
B exhibited numerous unidentified impacts. Our sensor has
a sampling frequency of 25.6 kHz and collected data from
1000–1800 rpm. Given that a complete working cycle of an
internal combustion engine requires the main shaft to rotate
twice, the number of sampling sequence points for a sample
is 1700–3072. To minimize information loss, a sampling
number of 3072 is taken as the interpolation length of the
overall signal.

B. MODEL
The model constructed here includes four modules or meth-
ods: the signal decomposition layer for signal preprocessing,
the modified VGG module for feature extraction and diag-
nosis, the LMMD method for DA, and the FVL method for
feature selection.

The parameters of the modified VGG module are shown
in Table 2. The model structure and parameters refer to the
commonly used VGG structure [28]. It should be noted that
for calculation convenience, the length of the input signal
in this article was uniformly interpolated to 3072, and the
training method used was train-on-batch, which randomly
extracts a batch of samples from the dataset for one-step
training. Therefore, the K value depends on the maximum
number of decompositions of the input signal in a dataset
after being decomposed by the signal decomposition layer,
and the remaining signals are zeroed to satisfy the same shape
of a batch input signal (3072, K).For calculation convenience,
the length of the input signal in this article was uniformly
interpolated to 3,072, and the training method used was train-
on-batch, which randomly extracts a batch of samples from
the dataset for one-step training. Therefore, the K value
depends on the maximum number of decompositions of the
input signal in a dataset after being decomposed by the signal
decomposition layer, and the remaining signals are zeroed to
satisfy the same shape of a batch input signal (3072, K).

It should be pointed out that the parameter settings in
Table 3 are based on the following criteria.
Referring to the [1], the parameter ‘‘p’’ was set to ‘‘1’’ in

the signal decomposition layer, which has been validated by
actual vibration signal cases of internal combustion engines.
Referring to the [29], γ was set to ‘‘2’’ to focus the model
more on difficult-to-classify samples. Since the dataset con-
tains four states: normal, misfire, valve fault, and collision,

TABLE 2. Structure of VGG in the transfer diagnosis model.

TABLE 3. Each module and its parameter values in the transfer diagnosis
model.

the parameter ‘‘T’’ was set to ‘‘4’’. The balancing coefficient
λ was set to balance the numerical magnitudes of various
loss terms in the total loss function of the model. Under
the conditions of the dataset used in this study, setting the
parameter ‘‘λ ’’ to ‘‘0.1’’ can ensure that the specific values of
LLMMD andLFL differ within one order of magnitude during
the training process.

In addition, the settings for the number of signal decom-
position and transfer training epochs thresholds Lep1,Lep2,
and the model signal decomposition and transfer task loss
thresholds ψ1, ψ3, were determined based on multiple train-
ing iterations of the model. These settings were based on the
convergence range of the model’s final loss (loss fluctuating
around a certain value) and the number of training steps
required to reach this convergence threshold, selecting a set
of parameter values suitable for the dataset used in this study.

IV. RESULTS
A. EFFECT OF THE DECOMPOSITION LAYER OF
MULTI-IMPACT VIBRATION SIGNALS
This study measured the decomposition effectiveness using
the decomposition metrics. The reconstruction energy loss
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FIGURE 7. Decomposition results of a cylinder valve fault sample of the
source unit.

FIGURE 8. Decomposition results of a cylinder collision fault sample of
the target unit.

TABLE 4. Average decomposition metrics (EL and ol) of unit A and unit b.

(EL) and orthogonal loss (OL) coefficient between the
decomposed subsignals were provided as a metric for assess-
ing the decomposition method, as shown in Eqs. (17)–(18).

EL =

∣∣∣RMS
(∑K

i=1 si (t)
)

−RMS (S (t))
∣∣∣

RMS (S (t))
∗ 100% (17)

cosi,j =

∣∣〈si(t), sj(t)〉∣∣
∥si(t)∥2

∥∥sj(t)∥∥2 , si(t), sj(t) ∈ {sk (t)} ,

OL =
1

K (K − 1)

 K∑
i=1

K∑
j=1

cosi,j −K

 , (18)

where EL represents the reconstruction energy loss between
the decomposed and original signals, RMS represents the
root-mean-square value, and OL reflects the orthogonal loss
between each subsignal. The smaller OL represents better
orthogonality.

Taking a valve fault sample of the source unit and a cylinder
collision fault sample of the target unit as examples, the
decomposition results are shown in Figures 7 and 8, and the
indicators are shown in Table 4.
Table 4 shows that the proposed method achieves an aver-

age reconstruction EL of 1.54% and an OL of 0.023 on Unit
A and an average reconstruction EL of 2.72% and an OL of
0.028 on Unit B.

TABLE 5. Effect of FVL on zero features ratio and feature variance.

B. EFFECT OF THE FVL
The proposed FVL drives the minimization of the same
feature variances under the same fault conditions reflected
in the fault-related feature maps. Specifically, it reduces the
number of valid features and increases the number of zero
features. Zero features can be compressed (squeezed) and
omitted in the DA, which helps reduce the dimensionality of
DA calculations.

The comparative process is as follows: Using the VGG
model, the LFVL loss was introduced in the feature layers.
Diagnostic classification and visualization of feature maps
were performed using the decomposed signal set from Group
A. The proportion of zero features to the total number of
features was then calculated to verify the increase in zero
features and the decrease in valid features introduced by
LFVL. Figure 9 depicts the visualized results after taking the
absolute value of the feature maps in one training process.

Based on the decomposed signal set from Group A,
Figure 9 and Table 5 reveal that introducing FVL increased
the proportion of zero features from 62.50% to 84.38% and
decreased average feature variance from 0.026 to 0.011 under
the same fault-operating condition.

C. ABLATION EXPERIMENTS USING THE PROPOSED
METHOD
The previous section verified FVL role in feature selec-
tion and in limiting the number of features. We conducted
ablation experiments to further validate the effectiveness of
the remaining parts of the constructed diagnostic model.
As shown in Figure 4, after all sample signals are decomposed
using the signal decomposition layer, the structure of each
part of the proposed model can be simplified, as shown in
Figure 10.
TheVGGmodel was used as the feature extractionmodule,

with LLMMD employed as the target loss function and FVL
introduced to enhance DA. Softmax was used as the classifier
and label predictor.

According to Table 6, retaining only VGG for training
and transfer diagnosis resulted in a diagnostic accuracy of
only 24.98% and an F1 score of only 24.19% for the target
internal combustion unit, indicating poor diagnostic perfor-
mance. However, retaining the signal decomposition layer +

VGG for training and transfer diagnosis resulted in diagnostic
accuracy of only 48.95% and an F1 score of only 32.41%
for the target internal combustion unit, indicating poor diag-
nostic performance. After introducing only LMMD in VGG,
the diagnostic results of the target domain significantly
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FIGURE 9. Introduction of FVL increased the proportion of zero features and decreased average feature
variance under same fault-operating condition label in the signal feature map.

FIGURE 10. Structure of the proposed method using the decomposition
layer for signal decomposition, VGG as the feature extraction module, FVL
for feature optimization, and LMMD for domain adaptation.

TABLE 6. Ablation experiments results of proposed transfer diagnosis
model.

improved, achieving an accuracy of 93.44% and an F1 score
of 93.17%. Furthermore, after introducing LMMD, VGG
further introduced FVL to optimize the features of the input
MMD, achieving an accuracy of 94.81% and an F1 score of
94.42%, improving the diagnostic results.

D. COMPARISON WITH OTHER METHODS
To validate the effectiveness of the proposed model in
both diagnosis and DA—to achieve effective transfer fault

FIGURE 11. Comparison of the accuracy obtained from VGG, DAN, DANN,
CDAN, DAN+FVL, and the proposed method.

FIGURE 12. Comparison of the F1 scores obtained from VGG, DAN, DANN,
CDAN, DAN+FVL, and the proposed method.

diagnosis for combustion engines under varying operating
conditions—we selected the samples from Table 1, with 80%
used for training and 20% used for testing in both source and
target domains. Furthermore, the following typical methods
were employed for comparison:

1) VGG: VGG is a classic convolutional deep learn-
ing model. This study used the VGG11 model, which was
retrained using the source domain training dataset and trans-
ferred to the target domain training dataset using a freeze-tune
approach.

2) DAN: For comparison, this study used the VGG11
model as the feature extraction module, andMMDwas added
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FIGURE 13. Confusion matrix diagram of the diagnostic results for normal(T1), misfire(T2), valve-fault(T3), and collision(T4) faults in
the target domain internal combustion engine:(a) Confusion matrix of VGG, (b) Confusion matrix of DAN, (c) Confusion matrix of DANN,
(d) Confusion matrix of CDAN, (e) Confusion matrix of DAN+FVL, (f) Confusion matrix of proposed method.

FIGURE 14. TSNE visualization results of source and target domain data features in the feature space: (a) Visualization results of VGG, (b) Visualization
results of DAN, (c) Visualization results of DANN, (d) Visualization results of CDAN, (e) Visualization results of DAN+FVL, (f) Visualization results of
proposed method.

to the VGG11model feature layers for DA, thereby construct-
ing the DAN model.

3) DANN: This model includes a feature extractor that
maps data to a specific feature space, a label predictor that
classifies data from the source domain, and a domain dis-
criminator that classifies data in the feature space. This study

used the VGG11 model as the feature extraction module and
a gradient reversal layer to build the domain discriminator.

4) CDAN: CDAN employs two novel conditional adjust-
ment strategies—multilinear and entropy—to enhance DA.
For comparison, this study used the VGG11 model as the
feature extraction module for CDAN.
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TABLE 7. Results of the various methods used in the present study.

5) DAN + FVL: This study used the VGG11 model as the
feature extraction module. FVL was introduced to enhance
the DA process with the MMD function. Softmax was used
as the classifier and label predictor.

6) Proposed method: This study used the VGG11 model
as the feature extraction module. FVL was introduced to
enhance the DA process with the LMMD function. Softmax
was used as the classifier and label predictor.

Considering the data sample imbalance between the
source (Unit A) and target (Unit B) domains, accuracy
and F1-score (Macroaverage) were selected as the eval-
uation metrics to further demonstrate the performance of
the aforementioned methods. The evaluation was conducted
over 10 iterations to comprehensively assess the diagnostic
performance of these methods, as shown in Table 7 and
Figures 11 and 12.

Table 7 and Figures 11 and 12 show that all diagnostic
models constructed by these methods could recognize the
source domain A-group test data and the training time for
all methods is acceptable. However, the effectiveness of the
VGG, DAN, DANN, CDAN, and DAN + FVL methods
for the target domain B-group dropped significantly (below
80%), with only the proposed method maintaining an accu-
racy of 94.81% and an F1-score of 94.42%.

To further analyze the reasons for this phenomenon,
we extracted the results from a single training run for each
method and displayed their structural differences. Specific
diagnostic results based on confusion matrices, and fea-
ture visualization based on t-distributed stochastic neighbor
embedding (t-SNE) are presented in Figure 13 and Figure 14.
From the confusion matrix perspective, the sharp drop in

fault recognition performance can be attributed to the diffi-
culty in clearly distinguishing between normal and misfire
samples in the target domain group. This phenomenon is
exhibited to varying degrees in VGG, DAN, DANN, CDAN,
DAN + FVL, and the proposed method. The VGG and
DANN methods further undermine the overall fault recogni-
tion performance due to their inability to identify knocking.
Consequently, the proposed method exhibits the strongest
recognition performance.

From a feature visualization clustering perspective, both
VGG and DANN show a lack of overlap between the source
domain and target domain data in the feature space. The
proposed method has a better overlap compared to any other

method in this paper. In summary, the above findings validate
the effectiveness of the proposed method in transfer diagno-
sis.

V. CONCLUSION
This study proposes a new model for transfer diagnosis of
internal combustion engines based on a DSAN framework,
achieving transfer diagnosis between different internal com-
bustion engine units under variable operating conditions.

First, a new multi-impact vibration signal decomposi-
tion layer is designed to minimize the signal moment to
decomposemultiple impact signals into single-impactmodes,
thereby alleviating the problem of feature aliasing in internal
combustion engine vibration signals and extracting signal
features rich in equipment operating state information. Sec-
ond, the FVL constraint is proposed to calculate the feature
variance under all operating conditions. This drives the min-
imization of the feature variance distribution of different
operating condition subsignal features with the same fault
label, reducing the sensitivity of sample features to oper-
ating conditions and exploring domain-invariant features.
Third, the proposed vibration signal decomposition layer
and domain FVL constraint are embedded based on the
DSAN framework to construct the transfer diagnosis model.
Finally, four fault experiments were conducted on the V12
high-power internal combustion engine test bench, and the
same experiments were replicated on another V6 high-power
internal combustion engine test bench, serving as the tar-
get domain for transfer. The experiments validated that the
proposed model achieved an accuracy of 94.81% and an F1
score of 94.42% in the target domain under variable operating
conditions, confirming the transfer diagnostic performance of
the proposed method.

However, our proposed method has limitations. For exam-
ple, it can only identify fault types existing in the source
domain, which must cover those found in the target data to
achieve better transfer results in the target domain. To address
this issue, current research is exploring methods such as
assigningmultiple sublabel dictionaries to samples capable of
expressing their features to describe unknown faults or using
adversarial learningmethods to identify such faults. These are
directions for future research.
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