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ABSTRACT Identification of the type of gun used is essential in several fields, including forensics, the
military, and defense. In this research, one of the powerful deep learning architectures is applied to identify
several types of firearms based on their gunshot noises. For the purpose of extracting features from the
audio data, the suggested technique makes use of YAMNet, an effective deep learning-based classification
model. TheMel spectrograms created from the collected features are used formulti-class audio classification,
which makes it possible to identify different types of guns. 1174 audio samples from 12 distinct weapons
make up the study’s extensive dataset, which offers a varied and representative collection for training and
evaluation. We achieve a remarkable accuracy of 94.96% by employing the best hyperparameter changes
and optimization methods. The findings of this study make a substantial contribution to the domains of
forensics, military, and defense, where precise gun type identification is crucial. Applying deep learning and
mel spectrograms to analyze gunshot audio demonstrates itself to be a promising strategy, providing quick
and accurate categorization. This research emphasizes the effectiveness and relevance of using YAMNet,
an AI-driven model, as a superior answer to the issues of real-world weapon detection.

INDEX TERMS Gun type identification, YAMNet, transfer learning, multi-class audio classification.

I. INTRODUCTION
Guns have always been a source of concern because of
their potential for harm, especially when they come into the
hands of the wrong people. The demand for stronger security
measures have been further highlighted by the rise in terrorist
incidents. The ability to recognize certain firearm types
may considerably improve security and safety procedures
in both civilian and military applications. For crime scene
investigations and automatic recognition procedures, gun
model identification systems with high recognition rates are
needed.

The objective of this research work is to create a system for
automatically identifying and categorizing various gun types.
We use YAMNet, a pre-trained neural network well-known
for its efficiency in feature extraction from audio data, to do
this [1]. We can precisely extract discriminative features
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from gunshot audio by combining the strength of deep
learning with the extensive feature representations provided
by YAMNet.

YAMNet, a pre-trained neural network, uses the
MobileNetV1 architecture, which includes depthwise-
separable convolutions. YAMNet has been built to categorize
audio signals into one of 521 unique categories from the
AudioSet corpus, utilizing its capacity to analyze audio
waveforms [11]. From the audio signal, frames are extracted
and handled in batches bymodel.We useYAMNet, a state-of-
the-art transfer learning method is renowned for its efficiency
in feature extraction from audio data, to accomplish this goal.
We can precisely extract discriminative features from gunshot
sounds and enable effective classification of gun models by
utilizing the strength of deep learning and the rich feature
representations delivered by YAMNet. [2]
In this work, we make use of an 1174 audio sample

collection that has been meticulously selected and is linked
to one of 12 distinct gun types. We seek to achieve high
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accuracy in recognizing and categorizing gun types based on
their acoustic characteristics through rigorous training and
evaluation methods.

By putting this gun model identification system into place,
we intend to offer helpful resources for forensic analyses,
pressing security circumstances, and military operations. The
findings of this study can aid in developing security tactics,
enhancing personal safety, and improving decision-making in
reaction to occurrences involving firearms.

The contribution of this research is described as follows:

• The key contribution of this work is the use of YAMNet
as a feature extractor, employing its pre-trained talents to
extract rich and beneficial characteristics from gunshot
audio.

• Research and evaluate several types of Keras layers to
build our training model. In an effort to determine the
ideal architecture formaximizing the performance of our
gun model identification system, we examined a variety
of layer layouts.

• To improve the precision of our model, pay special
attention to hyperparameter optimization. By modifying
variables like learning rate, batch size, and regularization
techniques, we examined the best combination that
improves accuracy and performance on unseen data.

The paper is structured as follows: Section II provides the
relevant studies in gun model identification. Section III-A
discusses the dataset. Section III-C details the proposed
model, which includes the use of the YAMNet architecture.
Section III-D provides a detailed description of the model.
Section IV covers the findings and their consequences.
Finally, Section V discusses future research avenues and the
potential effects of our results.

By creating a strong gun model identification system,
we want to improve security measures and offer insightful
data for forensic analyses and military operations, thereby
enhancing people’s overall sense of safety.

II. RELATED WORKS
Numerous studies have been undertaken on the subject of
gun model classification and gunshot recognition. To get
accurate and trustworthy results, researchers have used a
variety of procedures and techniques. This section outlines
some noteworthy earlier efforts in this field.

Sengul Dogan used an H-tree pattern-based approach to
classify different gun models in one significant study. They
used the techniques for Support vector machines (SVM),
K-nearest neighbors (KNN), and Neighborhood component
analysis (NCA). They collected 2,130 audio samples from
28 distinct gun types for their dataset [4]. Another study
by Rahul Nijhawan and Sharik Ali Ansari used Vision
Transformers rather than conventional CNN models to
examine the detection of firearms from gunshots. They made
use of the 117 audio files that made up the UrbanSound
collection. Their method showed the possibility of alternative
deep learning architectures by achieving an accuracy of

93.87 percent [5]. In research by Junwoo Park and Youngwoo
Cho, distinct audio samples from warfare settings were used
to categorize gunshots in video games. They spoke about
the assault stance and ultimately discovered the direction
and dictate the gunfire. The BGG dataset, which had 2,195
samples, covered 37 distinct types of firearms. Their method
has a 93.6 percent accuracy rate [6]. For the automated
detection of gunshots, Ur Rahman, Sami, Khan, Adnan,
Abbas, and Sohail presented a hybrid approach. The classi-
fiers SVM, Tree, and KNN are used to distinguish between a
gunshot and a regular scream. Their method included several
strategies and had a 94.6 percent accuracy rate [7]. Based
on Gaussian mixture models, Djeddou and Touhami created
a feature selection technique for classifying weapons. With
230 bullets were fired from 14 firearms [8]. Additionally,
Bajzik investigated convolutional neural networks (CNNs)
for gun detection. They tested the system’s effectiveness
using loud gunshots [9].
Unlike these earlier studies, the focus of our research

is on the use of transfer learning with YAMNet, a highly
trained model that can handle noisy input. We use the mel
spectrogram to express significant features. This innovative
method seeks to improve the robustness and accuracy of sys-
tems used to classify gun models and identify gunshots. The
investigations listed above have had a considerable impact
on the categorization of gun models and the detection of
gunshots. Further study will look at the efficacy of YAMNet,
which is assisted by mel spectrogram representations, in the
context of identifying gun models from gunshot sounds. This
project aims to validate the performance and usability of these
methodologies, therefore contributing to improvements in the
area.

III. METHODOLOGY
A. DATASET DESCRIPTION
The dataset used in this study comes from two separate
sources: the Gunshot Audio dataset [25] and the Gunshot
Audio Forensics Dataset [26]. For training and assessment
purposes, these datasets offer a wide-range and compre-
hensive collection of gunshot audio samples. The Gunshot
Audio Dataset includes recordings of nine distinct gun types
and was gathered through an open-access site. The audio
recordings were gathered from films on YouTube that were
made available to the public; thus, they included a range of
gun noises. A total of 851 files, or numerous audio samples,
were used to represent each gun model.Every audio file in
the dataset was standardized to a duration of two seconds and
a sampling rate of 44100 Hz. In addition, meticulous quality
checks were carried out to make sure there were no unwanted
sounds or disconnected audio parts [10].

The Gunshot Audio Forensics Dataset is an extensively
assembled collection of distinct data files. These recordings,
which were made as part of the NIJ Grant 2016-DN-BX-0183
study, were made in a rural Arizona community during the
summer of 2017. Three distinct firearm types are represented
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TABLE 1. Comparison of previous models for gunshot detection.

FIGURE 1. Number of audios with respective gun.

by audio recordings in the dataset: the Glock 19 (111), Ruger
Blackhawk (102), and Ruger 10/22 (109). Twenty separate
recording locations were used to capture each handgun,
giving researchers a thorough insight into the acoustic traits
and variances unique to each gun model.The total number of
audio files used to train our model are 1174 (Figure 1).

With a total of twelve different gun types represented,
the combination of these two datasets results in a rich
and varied collection of gunshot audio samples. This large
dataset is a significant resource for training and assessing our

gun detection technology. With the use of transfer learning,
we use YAMNet audio classification models to improve the
precision and effectiveness of gun detection systems.

B. DATA PREPROCESSING
The WAV file format, which is a standard for audio data,
is utilized for the audio samples in this study report.
To ensure compatibility and ideal input for theYAMNet audio
classification model, numerous procedures are taken during
the preprocessing stage.
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FIGURE 2. Work flow a model.

First, a float-tensor representation of the WAV files is
created once they have been loaded. The audio data may
be processed and analyzed numerically as a result of this
conversion. Additionally, the audio samples are resampled
to a sampling rate of 16 kHz in order to achieve uniformity
and standardization. The audio signals are normalized and
uniformized using the resampling process. Additionally, the
mel spectrogram representation is used to extract significant
characteristics from the audio. The frequency-domain visual
representation of the audio signals is provided by the mel
spectrogram [13]. It is frequently employed in jobs involving
audio processing and captures the spectral properties of the
audio.

C. PROPOSED MODEL
The suggested model for classifying guns using a mix
of deep learning and audio processing methods is shown
in Figure 2. Beginning with a depiction of a gun with
ammo releasing sound waves, the illustration shows how
our technique unfolds sequentially. The sound waves are
transformed into a Mel spectrogram—an effective audio
feature representation—using TensorFlow’s audio decoding
capabilities. Following that, the YAMNet model is used as
a feature extractor to efficiently get high-level data from
the Mel spectrogram [13]. The Keras library is used to
create a succession of fully connected layers from the
YAMNet outputs. Finally, based on the observed features,
these layers determine the gun’s identity. The mechanics of

how this identification is accomplished will be addressed in
the subsequent paragraphs.

MobileNets use a simplified design with depthwise sepa-
rable convolutions to build lightweight deep neural networks,
which serve as the foundation for YAMNet’s efficient
audio categorization capabilities. This design includes two
global hyperparameters that efficiently balance the trade-off
between latency and accuracy, allowing model builders to
customize the model size based on a unique application
needs and limitations. MobileNets, as the model’s backbone,
allow it to analyze and identify audio inputs efficiently and
accurately [24].

Using YAMNet as a feature extractor and transfer learning
as a learning tool, we propose a novel technique for
categorizing weapons. We have between 72 and 112 audio
samples for each type of gun in our library. To offer resilience
and avoid overfitting during the training and validation
phases, we adopt k-fold cross-validation. Using k-fold cross-
validation, the dataset is divided into k equal-sized folds, with
the remaining k-1 folds are being used for training. Each fold
serves as the validation set once. This process is repeated k
times, and the average performance over all folds is calculated
to get the final accuracy [5], [14].

We use the Sparse Categorical Cross entropy loss function,
which works well for multi-class classification applications
like classifying guns, to train the model. When each sample
is a member of a single class, this loss function effectively
handles the situation. The difference between the genuine
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Algorithm 1 Gun Classification using YAMNet and
Neural Network

Audio Dataset Preprocessing:
Load audio samples with associated labels.
Convert samples to mono and resample to 16 kHz.
Apply regular expressions for noise reduction and

feature extraction.
YAMNet-based Feature Extraction:

Initialize YAMNet, leveraging pre-trained models.
Apply regular expressions for precise feature

extraction.
Dataset Segmentation and Model Training:

Segment dataset into training, validation, and test
subsets. for each training epoch do
each batch in training set

Utilize YAMNet for audio sample batch processing
and feature extraction.

Construction of Neural Network Model:
Construct neural network architecture using

tf.keras.Sequential:
Input Layer: Input shape defined by extracted

feature dimensions.
Hidden Layer: Dense layer with activation

functions.
Output Layer: Dense layer to classify into firearm

classes.
Model Compilation and Training:
Compile and train neural network model using

extracted embeddings.
Assess and validate model accuracy using validation

and test embeddings.

class label and the anticipated probability distribution is
measured. Sparse categorical cross entropy has the following
formula: [15]

L(Sparse Categorical Crossentropy) = −

N∑
i=1

(Ytv · log(Ypv))

(1)

where Ytv represents the actual likelihood that the sample
belongs to class i. Ypv represents the predicted likelihood that
the sample belongs to class i.

The Adamax optimization method, a variation of the
popular Adam optimizer, is employed in the model that we
suggest. Particularly, the infinite norm serves as the foun-
dation for Adamax, a first-order gradient-based optimization
technique. This approach of optimization was chosen because
of its exceptional capacity to dynamicallymodify the learning
rate depending on the underlying properties of the data.

The Adamax method makes use of both Adaptive Moment
Estimation (Adam) and the infinite norm principles, making

it suitable for learning time-variant processes, such as those
seen in voice data when noise conditions change over time.
Adamax can handle scenarios where gradients might differ
greatly and diverge in particular directions successfully by
integrating the infinity norm. Given that the fluctuations in
the data may be quite dynamic and diverse, it is a fascinating
alternative for challenging audio data processing jobs [16].

m = β1 × m+ (1 − β1) × gr (2)

Exponentially weighted infinity norm,

Wv = max(β2 ×Wv, |gr|) (3)

Weight update,

weight = weight − Lr ×
m

(Wv + ϵ)
(4)

where, gr is a gradient of he weight,β1 and β2 are decay rate
for first and second momentum, and Lr is a learning rate [16].
The first moment estimations, which serve as the moving
average of previous gradients, have an exponential decay rate
that is controlled by the β1 parameter, which has an initial
level of 0.9. It functions as a momentum term that enables
the optimizer to recall prior gradients and modify the update
direction as necessary. A more responsive optimizer can be
produced with a smaller value of β1, which causes a quicker
decline of the previous gradients. On the other hand, a higher
value of β1 makes the optimizer more steadfast in its course
and might result in smoother convergence.

We extend the robust YAMNet feature extractor and
expand its capabilities in our proposed model for classifying
guns by adding Keras Dense layers for further processing.
The feature vector is sent through a Dense layer with
512 nodes that has been activated using the Rectified Linear
Unit (ReLU) activation function after pertinent features have
been extracted from the Mel spectrogram using YAMNet.
By introducing non-linearity and resolving the vanishing
gradient issue, the ReLU activation improves our model’s
ability to learn complicated patterns and representations [17].

f (valueupdated) = max(0, valueinitial) (5)

L2 regularisation is featured as a strong approach to
improve the neural network’s generalisation performance.
In order to prevent overfitting, L2 regularizationl is some-
times referred to as weight decay, penalizes the magnitudes of
the model’s weights. L2 regularisation promotes the model to
choose smaller, more evenly distributed weights by deterring
bigweight values and introducing a regularization component
to the loss function. This regularization method helps reduce
the danger of overfitting and improve generalization to new
data. It is particularly useful when themodel is complicated or
when the training data is few. λ is a regularization parameter
and L(W) is a loss function of W . The following is the L2
formula [21], [22]:

L(W ) = Loss(Vtrue − Vpred) + λ × ∥w∥
2 (6)
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We add a Dropout layer after the initial Dense layer to
combat overfitting and enhance generalisation. The Dropout
layer lowers interdependent learning among neurons and
increases model resilience by randomly setting a portion of
the input units to 0 during training [21].

Following the Dropout layer, we deploy another Dense
layer with the number of nodes matching the entire number
of classes in our gun classification issue. We use softmax
activation function on the output layer to obtain the desired
categorization. The softmax function converts the real-valued
output vector into a probability distribution in which the total
of the probabilities across all classes equals 1. This makes it
possible for us to interpret the output as class probabilities,
making it possible to understand the model’s predictions
in a way that is simpler and more logical. The following
mathematical equation may be used to represent the softmax
function, where Au is the input vector and e is the exponential
function [22]:

σ (Au)i =
eAui∑L
k=1 e

Auk
(7)

The softmax function turns each element in the input vector
Au represented by Aui into a value between 0 and 1 in this
formula. A correct probability distribution is provided by the
normalization element in the denominator, which guarantees
that the output values add to 1.

The model is trained across a large number of epochs,
allowing it to learn from the training data repeatedly. The
addition of thick layers after YAMNet’s feature extraction
enhances the model’s ability to distinguish intricate patterns
in the data and generate accurate predictions for gun classi-
fication. Our proposed model integrates ReLU, Dropout, and
softmax functions, as well as the adaptability of Keras Dense
layers, feature extraction capabilities of YAMNet, and feature
extraction capabilities of YAMNet to achieve state-of-the-art
accuracy in gun classification while fostering model stability
and generalization.

D. MODEL DESCRIPTION
We load the WAV files and convert them to float tensors
before resampling the audio to a single channel at a sampling
rate of 16 kHz (Mel spectrogram) to preprocess the audio
data. Then, using the Mel spectrograms, we extract features
using YAMNet to create a 1024-dimensional embedding.
The total number of parameters used to train YAMNet is
3.7 million [23].

We use mel spectrograms, a well-liked preprocessing
approach for acoustic deep learning systems, to get the
audio data ready for YAMNet. The audio signal’s short-
time Fourier transform (STFT), which transforms the signal
from the time domain to the frequency domain, is computed
first before creating the log spectrogram. Following that, the
STFT’s magnitude is determined, and the logarithm of the
magnitude is computed to produce the log spectrogram. This
modification improves the representation of characteristics
for audio analysis tasks and aids in compressing the

TABLE 2. YAMNet architecture.

spectrogram’s dynamic range [3], [27].

Freqmel-S = 2595 · log(1 +
Freq
700Hz

) (8)

The relationship between frequency and mel-spectrogram
frequency is seen in the following above equation.
Where,Freqmel−S isMel frequency,Freq is a linear frequency.

Then, utilizing transfer learning and YAMNet audio clas-
sification, our research attempts to enhance gun detection.
Based on the AudioSet-YouTube corpus, the pre-trained deep
neural network YAMNet predicts 521 audio event types.
The architecture used by the model, known as MobileNetV1
(depthwise-separable convolution), was trained using more
than 632 audio events taken from YouTube videos. [12] A
1D convolution layer with a kernel size of 3 × 3 is the first
layer in the YAMNet design, which is followed by multiple
layers with increasing filter sizes up to 1024. To avoid
overfitting, a global average pooling (AP) layer is included.
Fully connected (FC) layers, measuring 1024 and 64 pixels,
and a softmax layer to anticipate the kind of audio event round
out the model [3], [15].

Each input channel (feature map) is convolved inde-
pendently with its own set of filters during a depth-wise
convolution.

By adding more layers to the architecture, we further
create our model. Our unique model has a dense layer with
512 units, an input layer with 1024 dimensions, and a ReLU
activation function to increase non-linearity and solve the
vanishing gradient problem. In order to create the final
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forecast, which represents the various sorts of guns, we use a
second thick layer with 9 units. We use the Adam optimizer
and sparse categorical cross-entropy loss to train our model.
To avoid overfitting, early halting with patience of 3 is used.

In this study, we provide a model that achieves precise
and effective classification and shows the effectiveness of
employing YAMNet for gun type recognition. Rich auditory
characteristics may be obtained by using mel spectrograms
as input pre-processing, which makes our method a viable
choice for applications requiring the identification of guns
despite a shortage of data.

IV. RESULT
In this study, we used YAMNet, a potent audio classification
model, to improve gun detection. 1174 audio samples of
12 different types of guns were used in our research, and they
were gathered from a variety of internet sources (Kaggle [25]
and Cadre Forensics [26]). Each audio’s mel-spectrogram
served as the input for theYAMNetmodel’s feature extraction
process.

To improve the model’s performance, several trials with
different epochs and learning rates have to be done. To avoid
overfitting and restoring the ideal weights, we implemented
an early-stopping callback. After properly shuffling the
dataset to guarantee a randomized distribution, the training,
validation, and test datasets were divided into the following
proportions: 80:10:10. The tests were carried out on a system
with 8 GB of RAM and an Intel i5 quad-core CPU from the
10th generation clocked at 1.00 GHz.

On our gun classification model, we inspected the perfor-
mance of several optimizers and examined their associated
accuracies. The optimizers Adam, RMSprop, Adagrad, SGD,
Adamax, Adadelta, and FTRL were among those put to the
test. After comprehensive testing, we found that RMSprop,
with an accuracy of 93.42%, was closely behind Adamax,
which had the greatest accuracy of 94.60%. Adam had a
respectable performance, obtaining an accuracy of 93.14%.
Adagrad, SGD, Adadelta, and FTRL, on the other hand, had
significantly lower accuracies (Table 3).
These results show that our gun classification model

performs best with Adamax optimizers, whereas Adadelta
and FTRL works less well.

In addition to the previously shown findings, we also
examined the effectiveness of our gun classification model
using several loss functions, including Sparse Categorical
Crossentropy, Kullback-Leibler, and Squared-Hinge. Table 4
lists the acquired accuracy, F1 scores, and precision scores
for each loss function:

As seen in the table, the Kullback-Leibler and Squared-
Hinge loss functions had much lower accuracy ratings than
the SparseCategoricalCrossentropy loss function, which had
a maximum accuracy of 93.14%.

In comparison toKullback-Leibler and Squared-Hinge loss
functions, the SparseCategoricalCrossentropy loss function,
which is the most efficient, assures greater accuracy, F1
score, and precision. This implies that the best outcomes for

TABLE 3. Optimizer relutls.

TABLE 4. Comparison of different loss functions.

FIGURE 3. Visual representation of different loss functions.

TABLE 5. Epochs table.

audio-based classification tasks, such as gun classification,
rely greatly on the choice of an appropriate loss function.

In the epochs section, we investigated the effects of
changing the number of epochs on the effectiveness of our
model for classifying guns. Intriguing conclusions came from
our study. With 50 epochs as a starting point, we found an
accuracy of 82.06%. The accuracy rose to 86.14% as the
epoch count approached 100. Surprisingly, it took 400 epochs
to get the best accuracy of 94.33%. But when the epochs
were multiplied by 500, the accuracy fell to 93.96%. These
findings suggest that while accuracy initially increases with
more epochs, there is an ideal limit beyond which additional
improvements are minimal.

We reviewed the effects of various cross-fold values on
the precision of our gun classification model as part of
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FIGURE 4. Accuracy of different folds.

FIGURE 5. Model’s confusion matrix for gun categorising.

the cross-fold validation process. We performed several
trials with settings of 10, 5, 3, and 1. We discovered
that, interestingly, 5 folds had the best accuracy (93.76%),
closely followed by 3 folds (93.69%). The accuracy was
marginally lower in both 10 and 1-fold settings, at 93.42%
and 93.60%, respectively. These findings indicate that a
reasonable number of folds, such as 5, could assist with
model performance by providing a rigorous yet manageable
validation procedure, as shown in Figure 4.

TABLE 6. Hybrid models with metrics.

After YAMNet feature extraction, our study moved into
the training stage, using a deep learning methodology using
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TABLE 7. Comparison of different methods and proposed model.

Keras layers. Notably, the results were remarkably better
than those of conventional SVM and KNN algorithms (with
k = 1, 3, and 5). The accuracy improvements attained using
the Keras layers demonstrated the effectiveness of utilizing
deep learning techniques. This striking difference in accuracy
emphasizes our model’s better predictive power, highlighting
its capability to identify complex patterns and produce exact
classifications, and reaffirms the superiority of our method to
categorizing guns. The accuracy is shown in Table 6.

An informative assessment of the model’s classification
performance may be found in the final confusion matrix.
The values in the matrix show the level of accuracy of each
class of firearms tested at. It is striking that classes like
Glock 9, and Ruger 10/22 have high accuracies of 0.86,
and 0.85 respectively, demonstrating the model’s competence
in accurately recognizing these weapons. Classes like M4,
M16, and MP5, on the other hand, have lower accuracy
levels, indicating possible areas for development. Overall, the
confusion matrix is an essential tool for evaluating how well
the model categorizes firearms. Figure 5 shows confusion
matrix.

In conclusion, our suggested model for YAMNet-based
gun classification has shown excellent results when combined
with the optimized hyperparameters. We trained the model
for 400 epochs using the Adamax optimizer, with a learning
rate of 0.001, L2 regularization of 0.001, and a dropout rate
of 0.2. Sparse Categorical Crossentropy was the preferred
loss function. Through careful experimentation,Wewere able
to get a fine accuracy of 94.96%,F1 score of 94.40%and
a Precision of 94.13% These results demonstrate how well
our algorithm performs in reliably recognizing gun models
from acoustic data. The overall performance of the model
was much enhanced by the hyperparameter fine-tuning. Our
results show that YAMNet and the selected hyperparameters
are appropriate for a robust and accurate gun classification,
which contributes significantly to the field of audio-based
classification systems.

V. CONCLUSION
Our study thoroughly assesses gun model recognition using
YAMNet via transfer learning and selective hyperparameter
changes. By carefully training the proposed model with a
wide range of parameter values, we show that using YAMNet
with fine-tuned hyperparameters outperforms existing deep
learning and hybrid techniques in this area. An important

component of our research is the investigation and integration
of extra Keras layers to improve the model’s training
efficacy. Despite the dataset’s restrictions, ourmodel achieves
impressive accuracy over a wide range of gun types,
demonstrating the validity of our technique. While accepting
the dataset limitations, our findings are encouraging, pointing
to future research paths such as dataset enlargement for
increased model accuracy and the development of novel
strategies to handle environmental variables.

In conclusion, this work demonstrates the potential of
YAMNet-based transfer learning in weaponmodel identifica-
tion, which has significant benefits for forensic and military
applications. Our findings, particularly the rigorous tuning
and testing of each parameter presented in the results section,
demonstrate our method’s ability to set a new standard in the
area.

VI. FUTURE SCOPE
In terms of future potential, our study opens the door to
more sophisticated investigation by including generative
adversarial networks (GANs) into our model. By adding
GANs, we may improve the realism of the synthesised data
and perhaps get over the constraints imposed by our current
dataset. This approach could make it possible to get beyond
obstacles like a lack of training data and raise the model’s
accuracy for various types of guns. Another fascinating
direction is to modify the model to account for differences
brought on by shifting environmental factors. We anticipate
a promising trajectory towards an even more accurate gun
model identification by utilizing cutting-edge methodologies
and embracing a larger dataset, hence enhancing the useful-
ness of our methodology in forensic and military situations.
The potential of our strategy might be further increased by
investigating transfer learning with other previously trained
models or by experimenting with ensemble methodologies.
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