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ABSTRACT In medical image analysis, segmenting pancreatic CT images presents a significant challenge
due to the complex anatomy of the pancreas and the generally low contrast of these images. Accurate
pancreas segmentation is crucial in clinical scenarios, particularly for the diagnosis and treatment of
pancreatic cancer. The U-Net architecture and its variations have achieved significant progress in deep
learning-based image segmentation, especially in the context of pancreatic CT image segmentation.
However, there is a noticeable gap in the comprehensive evaluation of their performance, limitations, and
potential improvements specifically in this area. This systematic review aims to address this gap in the
literature, focusing particularly on U-Net and its variants in pancreatic CT image segmentation. Adhering
to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this
review includes relevant studies published since 2019 in the field of pancreatic segmentation. The findings
illuminate the current limitations of these methods and establish a theoretical foundation for future research
directions.

INDEX TERMS Pancreas segmentation, U-Net, CT imaging, systematic review, deep learning.

I. INTRODUCTION
Over the last decade, deep learning has propelled ground-
breaking developments across various domains such as
computer vision and natural language processing [1] and
uncovered extensive potential in the area of medical image
analysis [2]. Nevertheless, deep learning faces substantial
obstacles when dealing with the diversity and intricacy
of medical data, especially organs like the pancreas,
which exhibit complex anatomy and typically low image
contrast [3].

The pancreas is indispensable for endocrine and exocrine
functions. Alarmingly, the incidence of pancreatic cancer
is escalating, ranking it among the most lethal cancers
worldwide [4]. This serious situation highlights the necessity
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of accurate pancreatic segmentation in medical diagnostics
and treatment, which is vital for the advancement of
personalized medicine and tracking treatment efficacy [5].
In the realm of biomedical image analysis, U-Net, a neu-

ral network engineered explicitly for image segmentation
tasks [6], has proven to be highly effective and adaptable
for segmenting pancreatic Computed Tomography (CT)
images [7]. Although numerous investigations have explored
a variety of approaches for pancreatic CT segmentation [8],
[9], [10], there is a considerable disparity in the focus
of these studies. For instance, Bowen et al. not only
focus on pancreatic segmentation but also emphasize the
importance of introducing human interaction to intervene
and optimize segmentation outcomes, especially when initial
automated segmentation is unsatisfactory [7]. Conversely,
Kumar et al. [9] and Poce et al. [11] have conducted exhaus-
tive discussions of diverse segmentation techniques, while
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Xiao et al. have exclusively investigated the applications of
transformers in pancreatic segmentation [10].

Despite the wide range of topics addressed, there is
an absence of a comprehensive evaluation of U-Net and
its derivatives in the particular context of pancreatic CT
image segmentation in the existing literature. This systematic
review is intended to fill this gap, providing a complete
assessment of the capabilities and limitations of U-Net
and its variants in the application of pancreatic CT image
segmentation, as well as potential avenues for improvement.
This review delineates the boundaries of current technologies
with clarity, thus laying a solid theoretical foundation for
future work. Additionally, future research directions suited to
this specific application scenario are proposed. By adhering
to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines, the review includes
pivotal studies published since 2019 [12].

The subsequent structure of this paper is as follows:
Section II details the research methodology foundational to
the analysis; Section III introduces U-Net and its variants,
preparing the ground for discussions on their enhancements;
Section IV provides a review and analysis of segmentation
methods with an emphasis on component-level changes in
U-Net, such as the introduction of attention mechanisms
and the optimization of skip connections; Section V dis-
cusses network-level adjustments, including strategies for
multi-input configurations and progressive U-Net models;
Section VI concentrates on evaluation methodologies, pop-
ular datasets like the NIH pancreas dataset, and current
trends. The paper concludes with a comprehensive discussion
in Section VII, exploring future research directions and
challenges, followed by a final conclusion in Section VIII.

II. SEARCH METHODOLOGY
This review aims to summarise and identify relevant research
articles from the past five years that employ computer
vision techniques for segmenting pancreatic CT images.
Adhering to the PRISMA framework, specific inclusion
and exclusion criteria were applied, and papers and journal
articles published on eight databases were screened: ACM
Digital Library, IEEEXplore, Springer Link,Web of Science,
MDPI, Scopus, PubMed, and Science Direct. The time frame
for the published research was limited to 2019-2023.

For literature retrieval, the following keywords were
utilized: (pancreas OR ‘‘pancreatic cancer’’ OR ‘‘pancreatic
tumour’’) AND (‘‘automated segmentation’’ OR ‘‘automatic
segmentation’’ OR ‘‘segmentation’’ OR ‘‘semi-automatic
segmentation’’ OR ‘‘semi-automated segmentation’’). Lit-
erature collection and management were facilitated using
EndNote 20 to ensure data integrity and accuracy.

The initial search yielded a total of 1641 studies. After
the removal of duplicates, 620 studies were retained. Titles,
abstracts, and methods were extracted as the foundational
data for preliminary screening, which eliminated 448 studies
not based on CT modalities, leaving 172 studies for full-
text review. Studies were excluded if they met the following

conditions: non-English articles, repeated articles, articles
without full text available, or articles published before
2019. Inclusion criteria were studies employing CT imaging,
using U-Net-like networks for segmentation, and focusing
on pancreatic segmentation. The full-text review indicated
that 44 studies met the inclusion and exclusion criteria.
Of these, four focused on pancreatic cancer segmentation,
one on pancreatic duct segmentation, and one on Pancreatic
ductal adenocarcinoma (PDAC) segmentation. A forward
and backward citation search methodology proposed by
Webster and Watson [13] was also employed to guarantee
a more comprehensive literature assessment, thus enhancing
the review’s comprehensiveness and accuracy. This search
method added one more study. Following all screenings and
searches, 39 studies were ultimately selected for inclusion
in this review. These works’ network models, datasets,
and performance metrics were extracted for comparison.
The detailed filtering and search strategy is illustrated
in Figure 1.
It should be noted that focus is placed on using U-Net and

U-Net-like architectures for pancreatic segmentation without
covering other network architectures or delving into the
segmentation of pancreatic cancer or pancreatic ducts.

III. U-NET AND ITS VARIANTS
The U-Net model, introduced by Ronneberger et al. in 2015,
is a model with a symmetric encoder-decoder network
structure [6]. Its distinctive ‘‘U-shaped’’ architecture consists
of an encoder, a decoder, and skip connections between them,
illustrated in Figure 2. The encoder, also known as the ‘‘con-
tracting path,’’ employs convolution and pooling operations
to effectively extract both low-level and high-level features
from the input image, substantiating its critical role inmedical
image segmentation [2], [14]. Concurrently, the down-
sampling process lowers the computational complexity for
subsequent layers but may sacrifice some spatial information
[15], [16]. The decoder, or ‘‘expansive path,’’ reconstructs the
image details and dimensions through upsampling [17]. The
skip connections merge low-level and high-level features to
further enhance segmentation accuracy [6], [18]. While these
designs elevate the model’s performance, they also increase
its computational complexity, especially when dealing with
large or high-resolution images.

It’s worth noting that there are variants of U-Net tailored
for different application scenarios and requirements. For
example, V-Net and 3D U-Net are designed for three-
dimensional images [16], [17].Unet++ introduces nested
and dense skip-over connections to bolster feature learning
and utilizes a deeper U-shaped structure to broaden the
receptive field, aiming to augment segmentation precision
[14]. In contrast, nnU-Net combines a pre-trained encoder to
boost generalization capabilities and employs a configurable
architecture to adapt to diverse data types, striving to improve
performance generalization across multiple medical imaging
tasks [19].

VOLUME 12, 2024 78727



C. Zhang et al.: State-of-the-Art and Challenges in Pancreatic CT Segmentation

FIGURE 1. PRISMA-guided search and selection strategy [12].

The choice between 2D and 3D U-Net hinges on applica-
tion requirements and computational resources. For instance,
3D U-Net captures more complex volumetric relationships at
a higher computational cost, while 2DU-Net is more efficient
but has limitations in utilizing anatomical context. This study
aims to investigate how various network architectures and
mechanisms can enhance the performance of pancreatic CT
image segmentation. In this context, dimensionality (2D or
3D) is not the main distinguishing factor. Rather, the focus
is on effectively incorporating attention mechanisms or other
structural enhancements to achieve superior segmentation
precision and robustness. The study considers U-Net and its
variants as a collective, presenting a comprehensive overview
of the latest advancements and challenges in pancreatic CT
segmentation.

IV. MODIFICATIONS TO U-NET COMPONENTS
In the continuous quest to enhance the U-Net architecture
for more nuanced and robust medical image processing,
a substantial body of research has concentrated on modifi-
cations at the component level [20], [21]. These adjustments

range from data augmentation strategies that enrich the
input data spectrum, attention mechanisms that guide the
model focus, and alterations in convolutional layers for
more refined feature extraction to adaptations in pooling
layers, skip connections, and comprehensive integrations of
various modifications. Each component-level change targets
a specific aspect of the U-Net’s functionality, aiming to boost
the model’s performance metrics and adaptability to diverse
imaging challenges. Figure 3 delineates these component-
level subdivisions, offering insights into the multifaceted
approaches researchers have employed to optimise the
individual elements of the U-Net architecture.

A. INTEGRATION OF ATTENTION MECHANISMS
The importance of attention mechanisms in image segmen-
tation has become increasingly apparent. Mnih et al. first
introduced this concept, using Recurrent Neural Networks
(RNNs) to simulate the focusing aspect of visual atten-
tion, thus enhancing performance in tasks such as image
classification and object detection [22]. Further studies,
includingWoo et al.’s Convolutional Block AttentionModule
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FIGURE 2. Basic U-net architecture.

(CBAM) and Wang et al.’s Non-local Neural Networks, have
delved deeper into spatial attention mechanisms, enabling
neural networks to grasp long-range dependencies and
intricate spatial structures within images, proving particularly
beneficial in various image segmentation tasks [23], [24].
Similarly, channel attention mechanisms, exemplified by

Squeeze-and-Excitation Networks (SENet) and Efficient
Channel Attention Networks (ECA-Net), adjust the weights
across different channels, refining feature representations
and, consequently, bolstering performance across numerous
visual tasks [25], [26]. Remarkably, feed-forward attention
networks like the Residual Attention Network and Dual
Attention Network provide end-to-end solutions capable
of processing granular and high-level visual information,
offering extensive support for diverse visual tasks [27], [28].

Dosovitskiy et al. have showcased the productive applica-
tion of self-attention mechanisms in visual tasks, specifically
emphasising pancreatic segmentation [29]. A groundbreak-
ing development in the literature is the Attention Gate model
(AG), introduced in [30]. This innovative method, incorpo-
rated into the conventional U-Net architecture, significantly
amplifies the model’s proficiency in identifying nuanced
tissue characteristics, particularly in low-contrast pancreas
tissue images with varied morphology. Despite its tendency

to generate false positives with small or morphologically
diverse tissues, this method markedly enhances segmentation
accuracy by zeroing in on pertinent features. Furthermore,
this study is a pivotal guide for future endeavours aimed
at refining attention gate models’ training protocols, inves-
tigating higher-resolution inputs, and bettering connection
strategies.

Subsequent literature introduces more advancements. For
instance, Li et al. outline a Multi-scale Attention Dense
Residual U-Net (MAD-UNet), which bolsters the model’s
capacity for pinpointing pancreatic nuances by amalga-
mating dense residual blocks and multi-scale convolution
kernels [31]. This approach augments contextual information
via the attention mechanism, thus sharpening the precision
of segmentation boundaries. Yan and Zhang present a 2.5D
U-Net architecture that merges 2D and 3D convolution
layers, moderating computational demands while preserving
substantial spatial data [32]. Incorporating spatial and
channel attention mechanisms further uplifts the calibre of
feature representation. Wang et al. feature a network known
as V-mesh, which heightens sensitivity to minute details
and fosters spatial feature transformation and fusion by
instilling an attention-oriented control mechanism within
V-Net’s skip connections [33]. Chen and Wan suggest a
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FIGURE 3. An overview of U-Net component level modification.

pioneering network that fuses Transformer and 3D U-Net,
dubbed CTUNet, achieving harmonisation and instructional
oversight of global features by implementing a Transformer
within the skip connections [34]. Lastly, Li et al. explore
the feasibility of amalgamating several attention mechanisms
within a U-Net framework, specifically targeting lightweight
3D voxels [35]. This method underscores the criticality
of both global and local features by embedding multiple
attention blocks within the skip connections and employing a
global context feature (GCF).

Despite the significant performance improvements
achieved by integrating attention mechanisms into U-Net
networks, issues such as reliance on extensive data and lack of
methodological universality remain in the context of complex
medical image analysis tasks. Future research should focus
on developing algorithms that can effectively process
limited data and on optimizing network structures to reduce
computational resource dependence. Such harmonisationwill
aid in extending the application of attention mechanism
technologies in medical image analysis.

B. DATA AUGMENTATION
In the domain of complex medical image segmentation,
particularly for pancreatic segmentation, the integration of

innovative data augmentation strategies is essential to opti-
mize the performance of the U-Net architecture. Nishio et al.
marked a significant advancement by integrating data aug-
mentation with the segmentation framework, attaining a Dice
coefficient of 0.789 [36]. This study introduced two novel
data augmentation techniques, mixup and Random Image
Cropping and Patching (RICAP), targeting the prevalent
overfitting issues in deep learning models. Furthermore,
the study validated the benefits of mixup and RICAP in
generating novel training samples alongside traditional data
augmentation optimizing rotation, translation, and scaling.
The combination of mixup and RICAP led to a 5%
improvement in performance over the conventional U-Net
architecture.

In contrast, Zheng et al. propose a ‘‘shadowed sets’’
mechanism to create uncertainty regions, which were iter-
atively fine-tuned using a weight parameter [37]. Utilising
U-Net as the primary segmentation architecture to optimize,
this study applied the ‘‘shadowed sets’’ mechanism to
progressively refine uncertainty weights during training,
resulting in improved segmentation accuracy. Significantly,
this study expanded the dataset nearly tenfold by extensive
data augmentation, encompassing rotation, translation, and
scaling.
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From another perspective, Deng et al. highlight the
critical role of data augmentation in overcoming the inherent
limitations of medical imaging datasets, particularly in cases
like acute pancreatitis with large slice intervals and scarce
slices per patient [38]. By employing data augmentation,
this study effectively expanded the training data, thereby
enhancing performance in pancreatic segmentation tasks
using the U-Net architecture.

These studies illustrate the transformative impact of
innovative data augmentation and model refinement strate-
gies, charting new avenues for elevating U-Net’s efficacy
in complex medical image segmentation tasks. However,
a notable gap remains, as most current data augmentation
techniques primarily cater to natural images, often neglecting
the specific needs of medical imaging. This is particularly
true for CT imaging, where data augmentation techniques
remain underexplored, revealing a critical area for future
research. Specialized data augmentation methods, tailored
for the distinct characteristics of CT imaging, promise
significant advancements in feature extraction efficiency and
segmentation accuracy.

C. CONVOLUTION BLOCK MODIFICATIONS
Recent advancements in research indicate that researchers
have made multiple attempts to further optimise the perfor-
mance of U-Net, particularly in the design and optimisation
of convolutional layers. For instance, Multi-scale Attention
and Dense Residual Block (MAD-UNet) incorporated dense
connections and specially designed attention modules within
its convolutional layers [31]. This integrated design enhances
the model’s sensitivity towards the target area, particularly
the edges. The advantage is that it effectively reduces
segmentation errors caused by class imbalance; however,
the downside is that it may increase the computational
complexity of the model. This method has successfully
elevated the Dice coefficient to 0.861 [31] in pancreatic CT
image segmentation.

Adversarial loss combined with multi-level pyramid pool-
ing modules [39] optimises the multi-scale representation of
features and strengthens themodel’s discriminative ability for
different structures and textures. The merit lies in its excellent
performance in handling class imbalance and irregular target
segmentation, which may lead to model overfitting [39].
Deformable convolution dramatically improves the

model’s adaptability to irregular and non-rigid structures
by adding adaptive offsets to each sampling position of
the 2D convolutional kernel [40], [41]. In complex and
highly irregular applications like pancreatic segmentation,
this method elevated the Dice coefficient to 0.8725 [40],
although it requires additional training time.

Lim et al. [42] and Giddwani et al. [43] have recently
replaced the traditional convolutional layers with resid-
ual dense blocks, optimising the transfer of information
during the down-sampling phase and further enhancing
segmentation accuracy. The advantage here is the increased

information transfer efficiency, but the drawback is the
increased parameter count in the model [42].

Additionally, studies have been aimed at enhancing model
capabilities by introducing innovative modifications within
the convolutional blocks. For instance, view adaptive 3D
U-Net (VA-3DUNet) employs residual blocks instead of
standard convolutional layers to augment the model’s under-
standing of the three-dimensional context [44]. The V-mesh
network enhances the model’s feature extraction capacity by
replacing traditional convolutional layers with deformable
residual convolutional layers and incorporating attention
mechanisms [33].Meanwhile, the residual transformer U-Net
(RTUNet) utilises residual blocks combined with transformer
blocks instead of standard convolution in the U-Net encoder
part, effectively capturing the pancreas’ multi-scale features
and high variability [45]. These methods demonstrate the
potential to improve segmentation accuracy and the model’s
contextual understanding, though they also face challenges
related to computational complexity, resource demands, and
data sensitivity.

D. SKIP CONNECTION VARIATIONS
In recent years, improvements in the skip connections of
the U-Net architecture have garnered significant attention.
The primary aim is to convey richer spatial information
during the down-sampling and up-sampling processes. One
model worth noting is the target-sensitive U-Net (tU-
Net), which purposefully optimises the skip connections
in traditional U-Net. Instead of duplicating low-resolution
features, tU-Net introduces a fuzzy skip connection module,
building more advanced semantic features. This not only
suppresses irrelevant background features but also enhances
features relevant to the target. This modification leads to an
approximate 5% improvement in segmentation accuracy [46].

Similarly, MRFormer optimises capturing the target and
its surrounding context by embedding multi-head attention
mechanisms and residual depth-wise convolutional networks
within the skip connections. Fang et al. demonstrate that
MRFormer outperforms the basic U-Net model in pancreatic
CT image segmentation [47]. Additionally, MDAG-Net
incorporates a novel multi-dimensional attention module
(MDAG) to bolster skip connections, capturing context
information and precisely defining target features more
effectively [48].
There are also other intriguing studies worthy of mention.

Li et al. improve model focus on areas of interest by adding
spatial and channel attention to skip connections [31]. Yan
and Zhang employ an adaptive weight allocation mechanism
and use adaptive convolution kernels to capture the target
region more precisely [32]. Wang et al. utilise dense
connections within skip connections, providing more paths
for higher-level feature transmission [33]. Lastly, Chen and
Wan introduce a ‘‘Feedback Fusion’’ strategy, effectively
integrating low-level and high-level features [34].

In summary, the strategies for improving skip connections
are diverse and complex. These enhancements have been
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experimentally proven to address various pancreatic CT
image segmentation challenges, such as enhancing segmen-
tation accuracy and reducing mis-segmentation.

E. ALTERNATIVE POOLING STRATEGY
Given the complexities of pancreatic anatomy and the
small size of the pancreas, segmentation of pancreatic CT
images is a challenging task crucial for precision medicine.
In this context, the role of pooling layers becomes crucial,
particularly regarding information compression and feature
selection [43].

Multi-Rate Depthwise Dilated Network (MR-DDN) is
an improvement over V-Net [43]. In this architecture,
conventional pooling layers are replaced with convolutions
and depthwise dilated convolutions are introduced to expand
the receptive field. Although this enhances the recognition
of small targets and reduces the number of parameters, the
increased complexity makes it unsuitable for real-time or
resource-constrained applications.

Multi-Level Pyramid Pooling Residual U-Net improves
performance by incorporating aMulti-Level Pyramid Pooling
(MLPP) module [39]. MLPP employs pooling at various
scales to capture multi-scale information, combined with
residual learning and adversarial training. This allows for
stronger feature extraction and generalisation capabilities but
at the cost of increased computational demands.

Dual Adversarial U-Net introduces innovative design
elements [49]. In addition to replacing standard pooling, the
model integrates attention mechanisms to optimise target
recognition. This resolves the issue of information loss
and improves focus on the task-specific region, although
computational complexity is increased as a result.

In summary, pooling layers are critical in U-Net and its
variants. Various pooling strategies have advantages and
disadvantages, offering opportunities for further optimisation
in future research.

F. ENSEMBLE AND OTHERS
U-Net and its various derivative models have achieved note-
worthy improvements in pancreatic CT image segmentation.
These improvements predominantly focus on data augmen-
tation, network architecture, interactive segmentation, and
multi-scale feature fusion.

Firstly, Nishao et al. introduce a novel approach that
combines data augmentation with the segmentation frame-
work [36]. The study specifically implemented data augmen-
tation techniques like Mixup and random image cropping,
demonstrating their superiority over conventional methods.
Moreover, the study deepened the traditional U-Net model,
especially in terms of down-sampling and up-sampling,
by increasing the original four layers to 6 layers to enhance
segmentation performance.

Secondly, Boers et al. employe an interactive segmentation
approach [8]. In this study, certain layers in the U-Net model
were unfrozen and renamed as iU-Net layers. If a user is

unsatisfied with the generated label map, manual intervention
is possible, followed by fine-tuning through retraining
the Fully Convolutional Network (FCN). Regarding multi-
scale feature fusion, two studies have made significant
contributions. Qiu et al. adopt a coarse-to-fine strategy and
performed vertical calibration of features at each scale [50].
In contrast, Li et al. introduce multi-level pyramid pooling
modules and adversarial mechanisms to capture richer multi-
scale features [39].

Furthermore, some studies have also incorporated attention
mechanisms to bolster model performance. To address the
issues of insufficient sensitivity to pancreatic details and
difficulty in distinguishing contextual information between
the pancreas and surrounding tissues, Li et al. proposed an
enhanced model known as the Multi-scale Attention Dense
Residual U-Net (MAD-UNet) [31]. This model bolsters
the network’s ability to capture image details through the
introduction of dense residual blocks and further enhances
the model’s focus on the pancreatic region via attention
mechanisms, thereby improving segmentation accuracy.
Additionally, MAD-UNet employs multi-scale feature fusion
techniques, enabling the network to concurrently learn
contextual information at various scales and strengthening
the overall understanding of pancreatic structures. These
innovative strategies have endowedMAD-UNetwith not only
improved accuracy and robustness in pancreatic segmentation
tasks but also heightened sensitivity to pancreatic details
and a richer representation of contextual information. MAD-
UNet holds significant practical value for pancreatic image
segmentation in clinical medicine. Advancing further, two
studies have explored 3D data and boundary information,
respectively. Chen and Wan proposed CTUNet, which
integrates the Transformer with 3D U-Net and deploys
Transformers at skip-connections to enhance the coherence
of global features [34]. A differentiated graph-based visual
saliency (GBVS) algorithm was introduced and extracted
more useful features through a V-mesh network [33].
Li et al. introduced a segmentation model called MSC-

DUNet, which addresses the issue of spatial information loss
due to frequent reddening phenomena [51]. It utilises adver-
sarial learning and incorporates multi-scale field selection
and multi-channel fusion modules to integrate multi-level
features. Lastly, Yan and Zhang introduce a 2.5D U-Net
model that includes attention mechanisms within the skip
connections and combines 2D and 3D convolutional layers
to capture more comprehensive spatial information [32]. This
architecture reduces computational complexitywhile enhanc-
ing segmentation accuracy, although it lacks precision in
boundary region segmentation. Table 1 provides an overview
of the strengths and limitations of each component-level
modification method within the U-Net architecture.

V. NETWORK-LEVEL MODIFICATIONS TO U-NET
Beyond intricate adjustments at the component level,
an extensive body of research is dedicated to redefin-
ing U-Net at the network level [20]. These extensive
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TABLE 1. An overview of advantages and limitations of component-level modifications to U-Net.

modifications encompass a holistic reimagining of the
structural and functional paradigms of the network, including
the integration of multiple inputs for complex imaging data
interpretation, the creation of parallel U-Net architectures
for varied feature processing, and the use of cascaded
U-Net strategies for iterative refinement. Additionally, the
combination of different network modules aims to harness
synergistic strengths, marking a shift toward more collabo-
rative learning processes tuned for the rising complexities in
medical imaging tasks. To elucidate this concept, Figure 4
depicts these network-level modifications to elucidate this
concept, emphasizing their divergent facets.

A. MULTI-INPUTS AND MULTI-MODAL U-NET
For pancreatic CT image segmentation using U-Net and
its variants, the strategic incorporation of multi-inputs
represents a significant research trajectory, vital for bringing
forth enhanced models. Multi-inputs provide an array of
contextual details beyond single-image inputs, thus enriching
the models’ analytical capabilities. Innovative methodologies
include positioning object detection algorithms ahead of the
U-Net to refine background noise reduction and sharpen
the focus on regions of interest. A notable technique is
the integration of a Region Proposal tasked with initial
object location, before merging these focused areas with the
original image for U-Net processing, enhancing segmentation
precision [38].
Uncertainty plays a pivotal role in influencing segmenta-

tion outcomes, prompting researchers to incorporate uncer-
tainty weights directly into the baseline U-Net architecture,
generated from methodologies like shadowed sets which
define regions of uncertainty. During the training process,
these weights undergo iterative adjustments, enabling the
model to steadily refine and calibrate the segmentation results
for increased accuracy [37].

Apart from image information, other types of data
can also be integrated into the model to enhance its
performance. An innovative approach supplements image
features with clinical attributes from case data. These features

are processed through a phenotype embedding model and
serve as inputs to U-Net, along with imaging data. Such
multi-modal inputs give the model a more comprehensive
understanding, thus optimising segmentation results [52].

In recent years, the integration of 3D information has
also been gaining attention. In an architecture called PBR-
UNet, the model generates probability maps representing
the likelihood of each pixel belonging to the pancreas, and
these maps are then fused with the original image to form
multi-channel data. This multi-channel input supplies the
model with richer local 3D contextual information, thereby
improving segmentation quality [53].
Attention mechanisms have also been widely employed

in multi-input schemes. In a method aimed at lightweight
3D voxels using 2.5D segmentation, researchers proposed
a Multi-Attention Context Network (MADC-Net) based
on U-Net. This network utilises multiple attention blocks
and Global Context Features (GCF) to capture meaningful
features and performs feature fusion through a module called
the Context Feature Fusion Model (CFFM) [35].

Additionally, some research has attempted to enhance
input data using more advanced image processing algorithms
like GBVS for more refined edge information processing.
These enhanced data are combined with the original image
as multi-inputs to further improve the model’s segmentation
performance [33].

Finally, an approach known as MDS-Net has been
introduced, utilising a unique stack-based fully convolutional
network structure and sliding window fusion technique.
This method captures 2D and 3D contextual information by
segmenting the input into multiple ‘‘stacks,’’ each comprising
several slices. These slices, processed through U-Net, yield
multiple segmentation outcomes, consolidated via a specific
fusion algorithm to produce the final image segmentation.
This strategy effectively leverages deep learning and prior
structural knowledge, showing exceptional performance,
especially in handling variability between different slices.
However, it also faces challenges, such as highly inconsistent
slices [54].

VOLUME 12, 2024 78733



C. Zhang et al.: State-of-the-Art and Challenges in Pancreatic CT Segmentation

FIGURE 4. An overview of network-level modification to U-Net.

In summary, multi-inputs can fuse information of various
types or scales and further improve segmentation accuracy by
integrating different algorithms or models. These innovative
fusion schemes have demonstrated immense potential and
applicability in enhancing the quality of pancreatic CT image
segmentation.

B. PARALLEL U-NETS
The evolution of pancreatic CT image segmentation methods,
particularly those based on U-Net and its derivatives, has
been significant. The strategic implementation of parallel
U-Net models, alongside the adoption of ensemble
approaches, has proven effective. These methods specifically
address the complex nuances involved in pancreatic segmen-
tation, leading to enhanced outcomes.

Liu et al. employ a unique multi-U-Net architecture by
deploying five Fully Convolutional Networks (FCNs) based
on U-Net in parallel [55]. Each network is trained with
different objective functions to optimise for various issues or
characteristics. The ensemble of five different segmentation
maps is then used to achieve more precise and robust
segmentation outcomes. This approach allows formulti-angle
information capture and effectively minimises background
noise through a superpixel labeling strategy.

Upon closer analysis, the study by Chen et al. introduce
a Target-Aware U-Net (tU-Net) distinguished by two inno-
vative modules: fuzzy skip connections and target attention
mechanisms [46]. These two modules run in parallel to
the standard U-Net and aim to enhance the accuracy

of pancreatic target segmentation. Combining fuzzy skip
connections and target-aware attention mechanisms boosts
the model’s ability to recognise small, variable pancreatic
structures.

Li et al. also introduce an innovative Dual Adversar-
ial U-Net incorporating Generative Adversarial Networks
(GANs) and pyramid pooling modules [49]. These combined
technological elements improve the synergistic performance
between the segment and the discriminator, allowing the
model to capture key information at different scales. This
multi-scale and multi-angle information fusion strategy
further validates the utility of U-Net parallelisation and
ensemble strategies in enhancing segmentation accuracy.

In summary, the parallelisation and ensemble of multiple
U-Nets allow for more precise localisation of Regions of
Interest (ROI) and multi-scale and multi-angle information
fusion. Such optimisation strategies have also increased the
model’s sensitivity to small and complex target structures.
These parallel and ensemble U-Net strategies undoubtedly
offer a range of promising optimisation pathways and
directions worthy of further exploration in pancreatic CT
image segmentation.

C. CASCADED U-NETS
The Cascaded U-Net architecture has attracted widespread
interest in the medical image segmentation domain, particu-
larly for pancreatic CT images. The research community has
continuously put forth innovative modifications and practical
applications tailored to the U-Net architecture, tackling the
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inherently challenging features in pancreatic CT imaging,
such as inconsistent contrast and structural variability.

Cascaded U-Net demonstrates immense potential, espe-
cially in contrast-enhanced and non-enhanced CT images.
For instance, Sriram et al. employ domain adaptation
techniques and a multi-stage 3DU-Net architecture to narrow
the gap in segmentation performance between these two
types of scans by utilising synthetic non-enhanced CT images
generated from intravenous contrast (IVC) scans [56]. The
key to this approach lies in its success in overcoming the
issue of indistinct pancreatic borders in non-contrast CT
images, showcasing Cascaded U-Net’s capability in handling
complex medical imaging tasks.

Further research strengthens U-Net’s application by
combining information across dimensions and leveraging
view adaptiveness. Chen et al. highlight the importance of
dimensional adaptiveness through a fusion of 2D and 3D
networks, employing an innovative Dimensional Adaptation
Module (DAM) for better capturing 3D structural informa-
tion [57]. Concurrently, the View Adaptive 3D U-Net in [44]
accentuates the importance of spatial awareness and ROI
localisation through view-adaptive training approaches and
cascading methods.

Notably, the Two-Stage 3D U-Net architecture proposed
by Zhao et al. adopts a dual-stage approach [58]. Initially, a
3D U-Net is used for rough pancreatic localisation and initial
segmentation to determine the ROI; subsequently, another
more refined 3D U-Net is employed for further precise
segmentation, especially within the ROI. This two-stage
method effectively balances speed and accuracy, showcasing
the possibility of precise segmentation in complex anatomical
structures, albeit requiring higher computational resources
and more refined data annotation.

Moreover, facing the intrinsic uncertainty in pancreatic
segmentation, the Multi-Scale Prediction Network with
Pancreatic Uncertainty (MP-Net) introduced by Yoon et al.
utilises a cascading strategy that considers pancreatic
uncertainty, applying a specialised 2D MP-Net following
preliminary 2D U-Net segmentation [59]. This method
enhances segmentation accuracy and reduces variability
among different patients.

In summary, through innovative network design, dimen-
sional adaptiveness, view-adaptive training, and considera-
tion of uncertainty, these studies demonstrate the powerful
potential of Cascaded U-Net in pancreatic CT image seg-
mentation. Despite challenges in dataset size, computational
complexity, and generalizability, these innovative approaches
provide a solid foundation for enhancing segmentation
accuracy, handling the complexity of medical images, and
propelling future research in this field.

D. INTEGRATION WITH OTHER MODELS
With the U-Net architecture as a cornerstone, a broad
spectrum of approaches is being explored to advance its
capabilities. The enhancement strategies are diverse, focusing

on module optimisation, applying forward-thinking training
methods, and amalgamation with complex algorithms to
refine segmentation accuracy.

Regarding module optimisation, Dai et al. specifically
design a Trans-deformer module to address the nonlinear
deformations in the pancreas [60]. In conjunction with
the Scale Inter-Active Fusion (SIF) module, this module
efficiently fuses local and global features. Furthermore,
the study employs wavelet analysis to tackle the issue of
blurred edges in the pancreas, thereby enhancing the model’s
capability for detail recognition.

Dogan et al. introduce a two-stage method, initially
employing Mask R-CNN for the coarse localisation of
the pancreas on 2D CT slices, followed by 3D U-Net to
further refine these candidate regions, thereby producing
segmentation results [61]. The advantages of this method
include higher accuracy, as it can learn compelling features
from image data through deep learning models and reduced
computational cost. Although 3D networks require more
computational power and memory, the study achieves good
segmentation performance under lower GPU capabilities
through a two-stage approach and memory processing
optimisation.

In the study by Davradou et al., a streamlined two-part
method is presented. Initially, YOLO v4 is employed to
generate an estimated probability map for rough localisation
of the pancreas. YOLO stands for ‘‘You Only Look Once’’
which is a fast and popular method for detecting objects
in images by making just one pass. It’s great for quick
tasks like finding where the pancreas might be in a scan.
Following this, a modified U-Net performs the segmentation
on the localised regions. Post-segmentation, a morphological
active contour algorithm is applied as a post-processing
technique, refining the segmentation results [62]. This
method effectively combines deep learning and traditional
image processing techniques, proving efficient, especially in
limited data scenarios or where computational resources are
scarce.

Liu et al. address the challenge of obtaining a large
number of annotated voxel images for training by propos-
ing a Graph-Enhanced Partitioning Segmentation network
(GEPS-Net) that incorporates an iterative uncertainty-guided
pseudo-label refinement semi-supervised learning frame-
work [63]. GEPS-Net integrates a graph enhancement
module into U-Net, focusing on handling spatial relationship
information. The study utilises a 3D U-Net to extract high-
level features. It employs a Graph Convolutional Network
(GCN) to leverage detailed information, such as spatial rela-
tionships modelled by regional adjacency graphs. Although
this method enhances segmentation accuracy, it also has
limitations, such as the inherent constraints of GCN and the
stability of spatial relationship information.

To address challenges posed by class imbalance, back-
ground noise, and the non-rigid geometric characteristics
of the pancreas, recent research has introduced innova-
tive training strategies. A significant development among
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these is the use of a deformable U-Net model enhanced
by Deep Q-Networks (DQN) [64]. This approach trains
the model to learn context-adaptive localization strategies,
enabling precise identification of the pancreas against
complex backgrounds. The deformable U-Net is tailored
to accommodate the geometric variations of the pancreas,
utilizing geometrically deformable filters that improve fea-
ture extraction. By integrating deep reinforcement learning
with deformable convolutional networks, this method not
only increases sensitivity to detailed pancreatic features
but also enhances the model’s ability to process contextual
information, as evidenced by its performance on the NIH
dataset. Tang et al. introduce the Curriculum Knowledge
Switching (CKS) framework to address limited samples [65].
This framework enhances the model’s adaptability by incre-
mentally introducing tasks of different difficulty levels.

As for algorithmic integration, Gong et al. propose an
optimised scheme that combines the level set method [66].
This scheme enables pixel-level probability maps generated
byU-Net to serve as initial conditions for the level setmethod,
achieving finer image segmentation. On the other hand,
Liu et al. employ a joint approach of semi-supervised learn-
ing and graph augmentation [63]. The study significantly
improves segmentation accuracy by generating pseudo-labels
and applying graph augmentation algorithms.

In addition, some innovative network architectures and
fusion strategies, such as multi-stagemorphological guidance
methods, were introduced in [67] and the MDS-Net network
fusion strategy in [54].

In summary, the ongoing adaptation and application of
U-Net and its variants in pancreatic CT segmentation paved
the way for integrated andmultifaceted research. By applying
novel integration and optimization strategies, the fundamen-
tal performance of the U-Net model is elevated and directed
towards surmounting the inherently multifarious challenges
present in medical image segmentation. The culmination of
these advancements is represented in the dynamic landscape
of current research, as systematically outlined in Table 2,
which underscores the strengths and potential limitations
of each network-level modification within the overarching
schema of the U-Net architecture.

VI. DISCUSSION AND ANALYSIS
A. DATASETS
In pancreatic computed tomography (CT) image segmenta-
tion, several key public datasets have emerged as substantial
drivers advancing the field. These datasets not only underpin
and validate innovative algorithms but also foster integration
of machine learning and deep learning in medical image anal-
ysis, thanks to diverse samples and high-quality annotations.
Highlighted below are primary datasets instrumental in this
field:

NIH-TCIA Pancreas-CT Dataset: Furnished by The Can-
cer Imaging Archive (TCIA), under the auspices of the
National Institutes of Health (NIH), this dataset comprises
82 enhanced 3D CT scans of the abdomen, capturing a wide

demographic spectrum across various age groups and genders
and encompassing both healthy volunteers and individuals
afflicted with pancreatic cancer [68]. The dataset’s high
resolution and demographic diversity render it an invaluable
resource for inquiries into pancreatic structures.

Medical Segmentation Decathlon (MSD) Challenge: This
seminal competition furnishes 421 cases of portal venous
phase CT scans, each targeting pancreatic tumours [69].
The presence of imbalanced labels markedly impinges on
the performance and precision of segmentation algorithms,
thereby galvanising researchers to devise novel strategies
adept at navigating the inherent diversity and complexity.

‘‘Multi-Atlas Labeling Beyond the Cranial Vault’’ (BTCV)
Challenge 2015: Stemming from multi-centre clinical inves-
tigations, this compendium features 50 superior-quality
abdominal CT scans, augmenting sample heterogeneity and
representativeness [70]. It is versatile, catering to various
tasks, including meticulous segmentation and annotation
of the pancreas. It paves the way for a more profound
comprehension of intricate abdominal anatomical structures
and facilitates cross-dataset algorithm validation.

International Symposium on Image Computing and Digital
Medicine (ISICDM) 2018 Pancreatic Segmentation Chal-
lenge: This challenge zeroes in on the accurate diagnosis
of pancreatic cancer, proffering exhaustively annotated data
crafted manually. The employment of anonymous test data
bolsters the transparency and reproducibility of investigative
methodologies, spurring the genesis of avant-garde technolo-
gies and methodologies [66].

Clinical Proteomic TumorAnalysis Consortium-Pancreatic
Ductal Adenocarcinoma (CPTAC-PDA) Dataset: Endorsed
by the Clinical Proteomic Tumor Analysis Consortium
(CPTAC), this dataset is dedicated to an exhaustive
exploration of pancreatic ductal adenocarcinoma (PDA),
showcasing 91 meticulously annotated abdominal CT
scans [71]. This wealth of information lays a robust
groundwork for strides in the diagnosis and therapeutic
approaches pertaining to PDA.

Upon systematic review, it has been discerned that
the NIH-TCIA dataset reigns supreme in application in
pertinent research, commanding a usage frequency of 68.5%.
In contrast, the MSD and proprietary datasets are utilised at
a rate of 12.96%, with other datasets trailing in adoption.
Despite the NIH-TCIA dataset’s constrained sample size,
potentially impinging on the generalizability of models, its
stringent standards and practicality have garnered widespread
acclaim. This recognition has catalysed researchers to initiate
preliminary training on proprietary datasets, subsequently
capitalising on these public datasets for augmented validation
and refinement, thereby fortifying the robustness and reliabil-
ity of the resulting models.

B. PERFORMANCE METRIC ANALYSIS
In medical image segmentation, relying solely on a single
metric often inadequately captures a model’s multifaceted
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TABLE 2. An overview of advantages and limitations of network-level modifications to U-Net.

performance. For example, the Dice Similarity Coefficient
(DSC) and Intersection over Union (IoU) are highly sensitive
to small-region segmentation but may not precisely indicate
overall model effectiveness. Similarly, accuracy can be
misleading in imbalanced classes, inherently favoring the
majority class. The Average Surface Distance (ASD) primar-
ily evaluates average edge alignment but lacks sensitivity to
general border agreement. The Hausdorff Distance (HD) is
highly sensitive to outliers, where a single aberrant point can
drastically distort evaluation outcomes. Additionally, while
reducing false-negatives, a high Recall rate can increase false-
positives, affecting Precision.

Therefore, a multi-metric assessment approach is com-
monly adopted to evaluate the performance of segmentation
models comprehensively. The reviewed literature indicates
that the DSC, Recall, and Jaccard index are the most
frequently applied metrics, with usage rates of 97%, 38%,
and 24%, respectively. This underscores the research com-
munity’s appraisement of these metrics’ overall coverage
and reliability. It is important to note that despite the
limitations discussed, each metric has its indispensable value
and relevance in specific circumstances. Table 3 compiles
the studies demonstrating the best performance within
various metric categories, providing a collective and balanced
perspective on model performance through the consideration
of the metrics as mentioned above.

The analysis for the performance evaluation is grounded in
an in-depth study of the data presented in Table 3. It is evident
that a significant number of studies preferentially utilized the
NIH-TCIA pancreas dataset for model training and testing,
attributed to its extensive sample coverage and precise anno-
tations. The range of performance scores for the DSC metric
oscillates between 66.82% and 89.89%, with one study,
[60], achieving the highest score of 89.89%±1.82. Although
Recall is less widely employed compared to DSC, [60] also
leads with a superior score of 91.13%±1.48 in this metric.
Utilization of the Jaccard index is relatively infrequent;
nonetheless, [46] scores 78.52%±4.14, demonstrating robust
performance. As for processing time, significant variations
are present across different studies, governed by the variation
in hardware and software configurations used; notably, [30]
reports a processing time of just 0.179 seconds, while [50]
extends up to 1.26 minutes.

FIGURE 5. The percentage of K-Fold cross-validation utilization in model
validation.

FIGURE 6. Distribution of categories within the total population.

C. EMERGING TRENDS IN PANCREATIC CT IMAGE
SEGMENTATION
The rapid advancements in deep learning and computer
vision technologies have profoundly impacted the healthcare
industry, particularly in tasks related to medical imag-
ing, such as classification, detection, and segmentation.
U-Net has become a pivotal biomedical image segmentation
architecture within this domain, offering crucial support
for diagnostic processes. In the past few years, pancreatic
CT image segmentation research has undergone significant
changes and developments. Below are some of the major
trends:
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TABLE 3. Performance evaluation of each study.

• Evolution in Handling CT Images: With the rapid
advancement of Graphics Processing Unit (GPU) tech-
nology, the methods for processing CT images are
evolving from 2D to a mixture of 2D and 3D, and
eventually leaning towards pure 3D processing. This
trend reflects the increased computational capabili-
ties that allow researchers to handle more complex

three-dimensional data, thereby achievingmore accurate
image segmentation.

• Extraction and Fusion of Multi-Scale Features:
Researchers are increasingly applying the extraction
and fusion of multi-scale features to gain a more
comprehensive understanding of images. This strategy
helps the model capture information at different scales
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and regions in the image, thereby improving the
segmentation accuracy.

• Transformer-based U-Net Variants: Inspired by self-
attention mechanisms, researchers have explored
Transformer-based U-Net variants. These variants
enhance the model’s ability to capture global and local
contextual information, albeit at the cost of increased
computational burden.

• Multi-Modal Fusion: Researchers are investigating how
to extract valuable features further through multi-modal
fusion. This approach aids in synthesising information
from different imaging modalities, enhancing model
performance.

• Coarse-to-Fine Strategy: This strategy initially locates
the region of interest (ROI) through a preliminary
network model and then performs fine segmentation to
improve model performance.

• Additionally, the analysis of Figures 5 and 6 reveals
further insights: Data from Figure 5 shows that approx-
imately 80% of the studies use K-fold cross-validation,
which enhances the robustness and generalizability of
the training process, ensuring that themodel is not overly
fitted to a particular subset of the data. According to
Figure 6, other models are being combined with U-Net,
and modifications are being made to the convolutional
layers, including the addition of attention mechanisms
and integration of residual networks. Simultaneous
modifications to multiple aspects of U-Net can lead to
better segmentation outcomes.

VII. FUTURE DIRECTIONS AND CHALLENGES
Having delineated the key trends shaping the realm of
pancreatic CT image segmentation, it becomes imperative
to pivot our discussion toward the uncharted territories of
future research and the hurdles that lie ahead. Despite the
remarkable strides already made, persistent challenges and
untapped avenues could further elevate the performance
of U-Net and its variants in medical imaging analytics,
especially when grappling with the intricate structures of the
pancreas.

A. MODEL REFINEMENT AND ROBUSTNESS
Although U-Net excels in various medical image segmen-
tation scenarios, it has certain limitations when dealing
with the pancreas, which may have diverse morphologies,
varying sizes, and complex pathological conditions. Future
research should focus on developing advanced models
specifically designed for various pancreas morphologies and
physiological states. This could include the integration of
more advanced edge-detection algorithms and denoising
modules to increase the model’s robustness for specific tasks.

B. DATA IMBALANCE AND ANNOTATION COSTS
In pancreatic segmentation, the target area (i.e., the pancreas)
is often much smaller than the entire image, exacerbating

the issue of data imbalance. To tackle this problem, future
research might consider adopting novel loss functions,
multitask learning, and semi-supervised learning techniques
to handle data imbalance and costs more efficiently.

C. MULTI-MODALITY AND TEMPORAL SEQUENCE
ANALYSIS
Cross-modal analysis, such as integrating CT, Magnetic
Resonance Imaging (MRI), and X-ray images, along with
temporal sequence data, may offer more comprehensive and
detailed information for future research. This improves the
model’s generalization capabilities and provides additional
clinically relevant information.

D. INCORPORATION OF PRIOR KNOWLEDGE AND
UNCERTAINTY QUANTIFICATION
Given that existing models are largely data-driven, incorpo-
rating prior knowledge from anatomy and physiology into
the models could enhance their robustness and accuracy.
In addition, quantifying model uncertainty is another area
deserving further study, as it can offer more reliable support
for medical decision-making.

E. ALGORITHM INTERPRETABILITY AND CLINICAL
APPLICATION
Enhancing the algorithms’ interpretability is crucial before
U-Net and its variants can be widely adopted in clinical
settings. This will strengthen healthcare professionals’ trust
in the models and serve as a foundation for their application
in clinical environments.

F. DEVELOPMENT OF EVALUATION METRICS
Current evaluation metrics such as the Dice coefficient
and Intersection over Union (IoU) may only partially
capture the complexities and clinically relevant details of
segmentation tasks. Therefore, developing more clinically
relevant evaluation metrics, such as specific indicators for
the early diagnosis of pancreatitis or pancreatic cancer, is an
important direction for future research.

These research directions and challenges highlight the
need for in-depth theoretical research and empirical vali-
dation to achieve higher accuracy and reliability in future
clinical applications. Through these focused methodologies
and practical insights, the enormous potential and appli-
cability of U-Net and its variants in pancreatic CT image
segmentation are further demonstrated.

VIII. CONCLUSION
This review systematically investigates the latest advance-
ments and challenges in pancreatic CT image segmentation
using U-Net and its variants. Detailed quantitative assess-
ments reveal that ensemble learning and transformer-based
U-Net variants exhibit significant advantages in handling
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noise and label imbalances, especially when validated on the
NIH andMSDdatasets. These findings highlight the potential
of these technologies to improve the accuracy and efficiency
of medical image processing.

Future research should focus on developing models with
enhanced interpretability and visual clarity to strengthen
their applicability in clinical settings. Additionally, there is
an urgent need to devise effective methods for integrating
multimodal data from various sources, with an emphasis
on optimizing computational efficiency. Addressing the
limitations of current datasets by implementing innovative
semi-supervised or unsupervised learning methods is a
critical step towards enhancing the practical usability of
models.

The unique contribution of this paper lies not only in the
systematic evaluation of existing U-Net architectures and
their improvement strategies but also in thoroughly assessing
their performance across multiple publicly available datasets,
thereby confirming their effectiveness. These achievements
not only provide a solid foundation for future research but
also clearly demonstrate how technological innovations can
further advance precision medicine and imaging techniques,
particularly in the field of pancreatic CT image segmentation.
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