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ABSTRACT Creating stylized 3D avatars and portraits from just a single image input is an emerging
challenge in augmented and virtual reality. While prior work has explored 2D stylization or 3D avatar
generation, achieving high-fidelity 3D stylized portraits with text control remains an open problem. In this
paper, we present an efficient approach for generating high-quality 3D stylized portraits directly from a
single input image. Our core representations are based on 3D Gaussian Splatting for efficient rendering,
along with a surface-guided splitting and cloning strategy to reduce noise. To achieve high-fidelity stylized
results, we introduce a Stylized Generation Module with a Style-Aligned Sampling Loss that injects
the input image’s identity information into the diffusion model while stabilizing the stylization process.
Furthermore, we incorporate a multi-view diffusion model to enforce 3D consistency by generating multiple
viewpoints. Extensive experimentation demonstrates that our approach outperforms existing methods in
terms of stylization quality, 3D consistency, and user preference ratings. Our framework enables casual users
to easily generate stylized 3D portraits through simple image or text inputs, facilitating engaging experiences
in AR/VR applications.

INDEX TERMS Virtual reality, 3D generation, diffusion model, Gaussian splatting.

I. INTRODUCTION
Creating photorealistic 3D avatars is a fundamental challenge
in augmented and virtual reality applications, as they
enable immersive and realistic representations for remote
interactions. Achieving realistic 3D portraits is particularly
crucial, as they precisely capture intricate details like hair
and expressions, fostering a sense of realism and vividness
during virtual interactions. However, in certain scenarios,
users may prefer stylized representations of themselves
over photorealistic portraits. This stylization encompasses
a diverse range of aesthetics, from cartoonish styles such
as Disney animated films to the distinct 2D look of
Japanese manga or even portraying themselves as different
entities like animals. Achieving such stylization capabilities
will facilitate engaging and interesting experiences within
AR/VR environments. Moreover, these techniques should be
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accessible to casual users, enabling stylized customization
through simple inputs like a single image or text prompts.

In recent years, there have been some prior efforts that
have explored the topic of stylizing portraits. However, these
methods are often limited to 2D stylization via Generative
Adversarial Networks (GANs) [1], [2], [3] or struggle to
achieve 3D stylization effects with a simple text prompt.
Recent work like StyleAvatar [4] uses CLIP [5] for more
flexible stylization by text input. However, they still rely on a
pre-reconstruction 3D portrait rather than directly generating
a 3D stylized portrait from a single image input.

With the emergence and advancement of large generative
diffusion models, some methods have attempted to leverage
diffusion models for 3D generation using only a single
image or text input [6], [7], [8]. These approaches are
based on a learnable 3D representation such as NeRF [9],
where images rendered from multiple viewpoints are fed
into the diffusion model to establish the SDS loss [7],
thereby distilling the 3D structure to achieve 3D generation.
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Among these, Zero-1-to-3 [6] learned a single-image dif-
fusion model for generating other viewpoints, successfully
achieving 3D generation from a single image. However, the
current quality of 3D models generated by such methods is
generally suboptimal, exhibiting color oversaturation, slow
generation speed, and unstable stylization.

In this paper, we propose an efficient and high-fidelity
3D stylized generation approach capable of generating a
high-quality 3D stylized portrait directly from a single input
image. Our method first adopts a 3D Gaussian Splatting
representation, which is an efficient 3D representation
capable of real-time and high-resolution rendering. However,
it is unstable during the generation process and prone to noise.
To address this, we propose a surface-guided splitting and
cloning strategy that distributes the generated point cloud
more uniformly across the geometric surface of the 3D
portrait, significantly reducing noise and improving the final
generation quality. Subsequently, to achieve better stylization
effects, we introduce a Stylized Generation Module with
Style-Aligned Sampling Loss. The core of this module lies
in its ability to inject the identity information from the
given single input image into the diffusion model while also
stably maintaining stylization and suppressing oversaturated
style generation, ultimately enhancing the generation quality.
Additionally, to ensure better 3D consistency, we incorporate
a multi-view diffusion model that simultaneously generates
multiple viewpoints to produce a 3D loss, improving the
quality of our 3D portrait generation. In the experimental
section, we conduct quantitative and qualitative experi-
ments, demonstrating that our method outperforms previous
approaches. We also conduct a user study, where users
express a strong preference for the generation quality
achieved by our method over other methods. In summary, our
contributions are:

• Introduce Gaussian Splatting for fast 3D portrait gener-
ation and a surface-guided splitting and cloning strategy
to reduce noise and improve the generation quality of 3D
portraits from a single image.

• A Stylized Generation Module with Style Aligned
Sampling Loss that injects identity information while
stabilizing stylization and preventing oversaturation for
high-quality stylized 3D portrait generation.

• Utilization of the multi-view diffusion model that gener-
ates multiple viewpoints simultaneously to produce a 3D
consistency loss, enhancing the quality of the 3D portrait
generation.

II. RELATED WORK
In this section, we will review methods for stylization in both
2D and 3D domains. we will also discuss Gaussian Splatting
and related work for 3D generation, with a particular focus
on image-to-3D generation approaches.

A. 2D AND 3D STYLIZATION
The concept of style transfer and pioneering work in this
area was introduced by Gaty [10]. The goal of style transfer

is to modify an input image to make it conform to a
specific style. This concept has recently been extended to
3D [11], where 3D style transfer involves modifying a 3D
model such that its rendered images exhibit a particular style
while maintaining multi-view consistency. The style transfer
concept has profoundly influenced generative adversarial
network (GAN) [1]. A representative work in this field,
StyleGAN [12], combines the concept of style transfer with
GANs, implicitly encoding styles and enabling interpola-
tion between different styles to generate stylized images.
This idea from StyleGAN has inspired many subsequent
works [2], [3], [13], [14].

Compared to 2D style transfer, 3D editing and stylization
are rapidly developing [4], [15], [16], [17], [18]. Traditional
3D style transfer was generally based on traditional 3D
representations like meshes and point clouds [19], [20].
In recent years, with advancements in neural 3D represen-
tations [9], [21], many methods have utilized NeRF for 3D
style transfer. A representative work, SNeRF [22], achieves
3D style transfer by updating and stylizing each viewpoint
image. Instruct-NeRF2NeRF [15] takes this further by
combining NeRF with diffusion models [23], enabling
text-guided editing and stylization of 3D scenes. In the
portrait domain, AvatarCLIP [24] uses CLIP [5] to align the
rendered images of 3D representations with specific styles,
enabling 3D stylized portrait generation. StyleAvatar [4]
also employs CLIP alignment loss to stylize dynamic head
avatars. Control4D [17] goes even further by combining
GANs and diffusion models. However, these methods either
require pre-reconstructed 3D scenes or can only perform
style transfer based on text prompts, failing to leverage the
information from a given single image for 3D stylized portrait
generation.

B. 3D GENERATION
In recent years, 3D generation has witnessed rapid develop-
ment and progress [6], [7], [8], [25], [26], [27], [28], [29].
3D generation can be divided into two categories: direct gen-
eration methods and lifting from 2D to 3D methods. Direct
generation typically requires a large number of 3D models
as a training dataset and demands enormous computational
resources for training [30]. The lifting 2D to 3D approach
was introduced by DreamFusion [7]. The core idea behind
this approach is to utilize a neural 3D representation such
as NeRF [9], render it from various viewpoints, and then
align the rendered images with images generated by a large
generativemodel such as Stable Diffusion [23]. DreamFusion
introduced the SDS loss, which can backpropagate the
gradients to update the neural 3D representation contin-
uously and achieve 3D generation. While these methods
are time-consuming, they ultimately produce higher-quality
3D generation results [25], [27], [31]. This line of research
has also spawned numerous methods for generating 3D
content from a single image. Zero-1-to-3 [6] introduced an
image-to-3D diffusion model that, given a single image,
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FIGURE 1. The 3D generation pipeline of our method.

generates images from other viewpoints. Subsequently,
Magic123 [32] and DreamCraft3D [26] expanded in this
direction, further enhancing the quality of their gener-
ated outputs. However, these methods can only gener-
ate content based on the provided single image and
cannot produce 3D stylized portraits. Additionally, these
approaches heavily rely on the given image being a
front-facing view, and their generation results are not
robust when provided with other viewpoints, such as a
side view.

C. GAUSSIAN SPLATTING
Gaussian Splatting is an emerging 3D representation that
leverages Gaussian point clouds for rasterized rendering [33].
Compared to neural representations like NeRF, Gaussian
Splatting does not require dense ray sampling, significantly
improving rendering speed and reducing the memory require-
ments. Gaussian Splatting has spawned many improved
methods and applications [34], [35], [36], [37], [38]. In the
portrait domain, Animatable Gaussian [38] introduced the
combination of human 3D representations with Gaussian
Splatting, enhancing the accuracy and realism of 3D avatar
reconstruction. In the field of 3D generation, DreamGaus-
sian [35] proposed the use of Gaussian Splatting and diffusion
models for fast and efficient 3D generation. Although
Gaussian Splatting is highly efficient, its robustness is
relatively limited. In this paper, we introduce a novel splitting
and cloning mechanism to improve the robustness of 3D
portrait generation and reduce noise.

III. METHOD
Our method’s entire pipeline is illustrated in Fig. 1,
comprising three main modules: the 3D Gaussian splatting
representation and rendering module, the stylized generation
module with style-aligned sampling loss, and the multi-view
generation module.

• First, our method leverages an efficient 3D Gaussian
splatting representation to iteratively render images
from various viewpoints.

• Subsequently, we feed the input single image and
Gaussian Splatting rendered images into the stylized
generation module. The stylized generation module can

extract the identity information from the input single
image and generate the style aligned sampling loss.

• We also feed the rendered images the multi-view
diffusion model to generate 3D loss.

• The SAS loss and 3D loss are backpropagated through
gradients to the 3D Gaussian Splatting representation,
gradually achieving stylized 3D portrait generation.

A. GAUSSIAN SPLATTING REPRESENTATION
The Gaussian splatting representation we employ is a
point cloud representation consisting of a series of discrete
Gaussian points pi, i ∈ {1, 2 . . . n}. Each point encapsulates
attributes describing properties of 3D objects or scenes.
Unlike traditional point cloud representation, each point in
the Gaussian splatting representation possesses additional
attributes beyond position x ∈ R3, color c ∈ R3,
and opacity α ∈ R3. It also includes the rotation
quaternion r ∈ R4 and the scaling factor s ∈ R3.
Furthermore, the core of Gaussian splatting lies in its
automatic cloning and splitting of each point, gradually
increasing the number of points to describe high-quality
detail. In the subsequent sections, we will introduce Gaussian
Splatting rendering for 3D portrait generation and propose
a surface-guided splitting and cloning strategy for Gaussian
Splatting, aimed at reducing noise during the 3D generation
process.

1) GAUSSIAN SPLATTING RENDERING
As mentioned above, the Gaussian Splatting representation
we adopt consists of an N-point Gaussian point cloud,
where each point in the point cloud is characterized by five
attributes: position x, opacity α, color c, scaling factor s, and
rotation r. To render the Gaussian point cloud, each point pi
is first projected onto the corresponding viewpoint by project
matrix P, and the covariance matrix 6 of each Gaussian
point can be calculated based on its rotation r and scaling
factor s:

6 = RSSTRT , (1)

where R is the rotation matrix calculated by rotation
quaternion r , S is the 3×3 scaling matrix where the diagonal
elements are equal to the scaling factor s. Subsequently, the
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rendering property X such as color c of each point can be
transformed into Gaussian distribution:

G(X ) = exp−
1
2 (X−x)T6−1(X−x) . (2)

Then we rasterize Gaussian points onto the rendering plane
and obtain the color for each pixel by integrating the densities
and multiplying them by their associated colors:

zr =

∑
i∈N

ciαi
i−1∏
j=1

(1 − αj). (3)

2) SURFACE-GUIDED CLONING AND SPLITTING
The splitting and cloning of Gaussian point clouds are
fundamental operations within the original Gaussian Splat-
ting representation. It could automatically detect points
requiring splitting and cloning during the training process.
This operation gradually increases the Gaussian points,
which enhances the resolution of the 3D representations and
improves the quality of the 3D generation.

Specifically, the original detection strategy is implemented
through thresholding based on gradients backpropagation.
It computes the gradients for each point in the direction of
2D screen space:

E =

√
(

∂L
∂x2D

)2 + (
∂L

∂y2D
)2, (4)

where L is the loss function. If E exceeds the threshold βE ,
which indicates significant variation in its nearby region,
we require additional points through splitting or cloning
operations to describe this region of the 3D model:

xnew = xold + d,d ∼ N (0, sold ) (5)

However, such cloning or splitting processes can generate
considerable noise. To address this, we propose a novel
surface-guided cloning and splitting strategy. Since we
generate 3D portrait models, the Gaussian points should
be distributed on a relatively smooth surface. Thus, newly
splitting or cloning points should be positioned near the
surface rather than randomly offset:

xnew = xold + (d − d · n),d ∼ N (0, sold ), (6)

where n is the normal direction calculated by PCA decompo-
sition of its near Gaussian points:

6n = cov(x ′
− x),

n = PCAmin(6n), (7)

where x ′ is the near points of the center point x and
their distance is less than 0.01. Through the surface-guided
splitting and cloning strategies, we significantly enhance the
robustness of the 3D head portrait generation process, reduce
the noise of the Gaussian point cloud, and consequently
improve the overall quality of the generated models.

B. STYLE ALIGNED SAMPLING LOSS
To achieve 3D stylized portrait generation, we leverage
diffusionmodels and propose SAS (Style Aligned Sampling).
Our approach is inspired by DreamFusion. Specifically,
to generate stylized 3D portraits, we use text y to describe
the desired style, and then iteratively train the 3D Gaussian
Splatting representation to ensure its rendering results z
aligned with the given textual style description. During this
generation process, we render observations from multiple
random viewpoints C and feed these rendered images into
the diffusion model. The diffusion model then computes the
distance between these images and the specified style. If we
use SDS (Score Distillation Sampling), the loss function
will be:

∇LSDS (θ ) ≈ EC,t,ϵ

[
ω(t)(ϵp(zt , t, y) − ϵ)

∂g(θ,C)
∂θ

]
.

(8)

However, this loss function suffers from two main issues.
First, it cannot utilize the given input image I, and the
generated results can only be controlled by text y. Second, the
SDS loss gradually oversaturates the generated style, leading
to unnatural results. To address these issues, we propose SAS
(Style Aligned Sampling) loss, a loss function that preserves
the identity and consistency with the given input image I
while ensuring stable and natural stylization.

1) IDENTITY-PRESERVING SAMPLING
we employ InstantID [39] to ensure identity consistency with
the input image I. InstantID maintains identity consistency
of portrait by incorporating the identity information into
the diffusion model in two ways. First, InstantID encodes
the image and injects the encoded identity Ie into the
cross-attention layers of the diffusion model:

Znew = Att(Q,K ,V ) + λ · Att(Q,K Ie ,V Ie ) (9)

Then, InstantID extracts the landmark information Il from
the image and incorporates it into the diffusion model via
ControlNet Fc:

Ynew = F(zt , t, y) + Fc(Il). (10)

Finally, we introduce the identity information of the input
image into the diffusion model, and the loss function could
be formulated as:

∇LSDS (θ ) ≈ EC,t,ϵ

[
ω(t)(ϵp(zt , t, y, Ie, Il) − ϵ)

∂g(θ,C)
∂θ

]
.

(11)

2) STYLE-PRESERVING SAMPLING
To ensure stable stylization during training without over-
saturation, we first use the diffusion model to randomly
generate a set of images Is that conform to the corre-
sponding style. These images are natural and do not exhibit
oversaturation effects. We then calculate the mean µs and
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covariance matrix 6s of all the images in the latent space.
Subsequently, when we render a new image and compute
the loss by diffusion model, we first obtain the generated
image:

z′
= αtz + βt (ϵp(zt , t, y, Ie, Il) − ϵ). (12)

Then we map it to the natural and non-oversaturated
distribution using Eigenvalue Decomposition:

6s = TsVsT−1
s , 6g = TgVgT−1

g ,

z′
m = TsV

−
1
2

s V
−

1
2

g T−1
g (z′ − µg) + µg, (13)

where µg and 6g are the mean and covariance matrix of
generated image Ig. The formulation of our proposed SAS
loss is:

∇LSAS (θ ) ≈ EC,t,ϵ

[
ω(t)(z′

m − z)
∂g(θ,C)

∂θ

]
. (14)

By employing SAS loss, we can maintain a stable style
without introducing oversaturation artifacts.

C. MULTI-VIEW DIFFUSION MODEL
To mitigate the issue of multi-face and multi-head during the
3D portrait generation process from a single input image,
we introduce the multi-view diffusion model MVDream
as an additional 3D supervision. The multi-view diffusion
model can simultaneously generate images from multiple
viewpoints given the corresponding camera parameters C.
It establishes correlations across different views through
3D attention, enabling more consistent generation across
views, thereby avoiding the multi-head or multi-face
problem.

Specifically, in our 3D generation process, we incorporate
the multi-view diffusion model to construct the following
3D loss:

∇L3D(θ ) ≈ EC,t,ϵ

[
ω(t)(ϵp(zt , t, y,C) − ϵ)

∂g(θ,C)
∂θ

]
.

(15)

IV. EXPERIMENT
A. IMPLEMENTATION DETAILS
1) GAUSSIAN SPLATTING INITIALIZATION
In the initial generation process, we randomly sample N =

10, 000 points from the head of the SMPL model to serve
as the initial point cloud. Then, each Gaussian point in the
point cloud is initialized with the opacity α = 0.2, scaling
factor s = (0.02, 0.02, 0.02), color c = (0, 0, 0), and rotation
quaternion r = (1, 0, 0, 0).

2) PARAMETERS OF GAUSSIAN SPLATTING
During the 3D generation process, we adopt the following
parameters for Gaussian Splatting. We implemented a
learning rate of 0.05 for opacity α, 0.01 for color c, 0.001 for
rotation r, and 0.001 for scale s. The learning rate for the
position x exponentially decayed from 0.001 to 0.0001 as

the training progressed. In the Gaussian splitting and cloning
process, we set the gradient threshold βE to be 0.0002. For
points with scaling larger than 0.01, we employ the cloning
operation, while for points smaller than 0.01, we utilize the
splitting operation. During the surface-guided cloning and
splitting process, we use the KNN algorithm to select 6 points
for estimating the surface normal and generated new points
along the surface. We performed splitting and cloning every
100 iteration steps, with the entire training process consisting
of 3000 iterations.

3) STYLE ALIGNED SAMPLING LOSS
In the 3D stylized generation process, we employed the
Stable Diffusion 1.5 [23] model as the base diffusion model.
We utilized InstantID [39] to inject the identity information
of the input image I, with a control scale of 1.0. Before 3D
generation, we randomly sampled 20 images corresponding
to the target style, using a classifier-free guidance scale
of 7.5 and 20 inference steps. We then compute the
mean and covariance of these images in the latent space
for Style-preserving Sampling. During SAS sampling, the
classifier-free guidance scale is set to 50.0, and the noise
scale for sampling is U(0.02, 0.98) for the first 1000 iterations
and U(0.02, 0.5) for the latter 2000 iterations. The weight
of the SAS loss is set to 1.0 throughout the training
process.

4) MULTI-VIEW DIFFUSION MODEL
We utilize MVDream [8] as the multi-view diffusion model
to provide 3D supervision during the 3D generation process.
At each iteration, we randomly select four viewpoints with
equal intervals and render the corresponding images, which
are then fed into MVDream to compute the 3D SDS loss. The
classifier-free guidance scale forMVDream is set to 10.0, and
the weight of the 3D loss during the entire training process
is 0.05.

B. QUALITATIVE EVALUATION
We qualitatively evaluate our approach through visual effects
and comparison with SOTA methods. The results of our
method are showcased in Fig. 4. For each case, we first
present the basic 3D cartoon stylization using the text
prompt ‘‘3D cartoon style.’’ Subsequently, we demonstrate
various stylizations, such as ‘‘green orc style,’’ ‘‘golden
statue style,’’ and ‘‘realistic style.’’ Our approach can
generate high-quality 3D portraits from a given single
image. The results demonstrate a well-controlled styl-
ization that does not appear oversaturated. Furthermore,
our method uses Gaussian Splatting and exhibits fast
generation speeds, completing the whole process within
10 minutes.

To further evaluate our method, we conducted compar-
isons with existing single-image 3D generation techniques.
Since current single-image 3D generation methods do
not support stylization, we first stylize the given image
and then use the corresponding method for image-to-3D
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FIGURE 2. Qualitative comparison case 1.

generation. The comparative results are presented in Fig. 2
and Fig. 3, where it can be observed that existing image-
to-3D generation methods exhibit lower generation quality
and lack stability, producing oversaturated and unnatural
results.

C. QUANTITATIVE EVALUATION
We also evaluate our approach through quantitative exper-
iments. Firstly, we render a total of 120 rendered images
around the circle. Then we employ CLIP to compute the
consistency between the rendered images and the given
image identity, as well as the consistency with the target
text style. Additionally, to assess the naturality of the
stylization, we calculate the average saturation as a measure
of oversaturation. The results are presented in Table 1.
Our method achieves better image identity consistency,
and our style consistency is higher compared to other
methods. Furthermore, the saturation of our generated results

is lower, indicating a more natural stylization to a certain
extent.

In addition to the visual comparisons, we also report the
average generation time in Table 2. It can be observed that our
method exhibits fast generation speeds compared to zero123
and dreamcraft3D. Our approach requires only 5 minutes to
generate high-quality results.

D. USER STUDY
To further validate the visual quality of our method,
we conducted a user study. In the user study, we collected
preferences from 117 participants across 50 different sets
of generation results. Each participant was randomly shown
20 sets, with each set containing results from four methods:
DreamGaussian, Zero123, Dreamcraft3D, and our proposed
approach. The participants were asked to select the result that
best preserved the input image identity, the stylization they
most preferred, and the result with the highest overall quality.
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FIGURE 3. Qualitative comparison case 2.

TABLE 1. Quantitative comparisons with image-to-3D methods.

The statistical results, as illustrated in Figure 5, demonstrate
that our method achieved the best performance.

E. ABLATION STUDY
We performed an ablation study to evaluate the contributions
of various components in our method, including the SAS
loss and the multi-view diffusion model. The results are
presented in Table 1. It can be observed that without
ID-preserving sampling, our method’s identity consistency
significantly decreases. If Style-preserving sampling is
removed, our method exhibits reduced style consistency,

increased saturation, and more unnatural generation results.
Furthermore, the absence of the multi-view diffusion model
leads to a decline in all evaluation metrics for our method’s
3D generation results.

V. LIMITATION
While our method achieves a fast stylized generation of 3D
portraits from a single image, it still requires a relatively
long waiting time of approximately 10 minutes, which is
not ideal for practical applications and user experiences.
Additionally, our current approach can only generate a static
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FIGURE 4. 3D stylized portrait generation results of our method.

3D portrait and lacks the capability to control dynamic facial
expressions. Furthermore, we found that incorporating the

instantID during stylization can influence the diversity of
stylization results.
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FIGURE 5. User Study of our methods and other image-to-3D methods.

VI. DISCUSSION
We presented an efficient approach for generating high-
quality 3D stylized portraits from a single image input. Key
strategies include: 1) A 3D Gaussian Splatting representation
with a surface-guided splitting and cloning strategy to reduce
noise. 2) A Stylized Generation Module injecting iden-
tity while stabilizing stylization to prevent oversaturation.
3) A multi-view diffusion model enforcing 3D consistency
across viewpoints. Extensive experiments demonstrated our
method’s superiority over previous approaches in stylization
quality, 3D consistency and user preference.
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