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ABSTRACT In the realm of defect detection, there are distinctions in the emphasis placed on features
between the classification and localization components of the task. The classification task emphasizes
semantic information from the global context, while the localization task prioritizes spatial details such as
edges. Directly coupling these two subtask features can hinder model convergence and degrade performance
in the appearance defect detection of power adapters. To address this issue, we proposed the Task-feature
Decoupled Feature Pyramid Network (TDFPN) module based on YOLOv8n. This module enhances seman-
tic information and fuses corresponding features to improve detection performance in both localization
and classification tasks. Additionally, we introduced the EMA module to suppress redundant information,
enhance the model’s attention towards defects, and improve the precision rates of detection. Furthermore,
we replaced CIoU with an Inner-SIoU loss function that combines Inner-IoU based on auxiliary bounding
boxes with SIoU, considering the matching direction. This replacement accelerated model convergence and
improved the recall rates of detection. During training, transfer learning is employed by utilizing pre-trained
weights from the YOLOv8n backbone, along with frozen training, to enhance efficiency. The experimental
findings indicated that our proposed approach outperforms the original YOLOv8n model, demonstrating
a 3.12% enhancement in mAP@0.5 and a 14.41% improvement in mRecall@0.5.

INDEX TERMS Defect detection, deep learning, object detection, power adapter, YOLOv8.

I. INTRODUCTION
Various factors in the production process of the power adapter
can lead to defects on its surface. However, some aspects of
the texture and defects of the power adapter cannot be accu-
rately distinguished, which may compromise the efficiency
and accuracy of quality inspection. At present, common
defect detection methods include thermal imaging detec-
tion [1], laser scanning methods [2], and manual inspection
method. The non-destructive testing technology mentioned
above relies on human judgment and is easily influenced
by various factors, resulting in low detection accuracy,
time-consuming processes, and labor-intensive tasks, making
it somewhat inadequate for real-time detection tasks [3].
With the continuous advancement of computer technology,
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traditional machine learning and deep learning algorithms
based on computer vision are gradually emerging in the field
of defect detection.

In traditional machine learning-based methods, the fea-
tures used for learning are mainly roughly extracted through
traditional image processing operations such as edge detec-
tion, morphological processing, various image thresholding
techniques, etc., such as HOG [4], and SIFT [5]. Then clas-
sification is performed using classifiers such as SVM [6].
The detection performance largely depends on the quality
of the previously extracted features, which perform poorly
in complex scenes, especially for complex defect detection.
At the same time, each method is designed for specific
applications and requires manual feature design, a lot of
professional knowledge and experience, and cannot capture
complex defect features, with poor generalization ability and
robustness [7].
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Detection algorithms based on deep learning do not require
the manual design of feature extraction rules. They automati-
cally extract deeper features through convolution and other
operations, resulting in higher accuracy, applicability, and
robustness. The object detection algorithm based on deep
learning has a wide application space in remote sensing [8],
traffic detection [9], [10], [11], anomaly detection [12], and
industrial defect detection. With the rapid advancement of
computer technology, the utilization of convolutional neural
networks based on computer vision object detection algo-
rithms for defect detection in the field is on the rise. However,
there is still room for improvement in detecting multi-scale
variations and tiny defects [13].
The current mainstream defect detection algorithms are

divided into two main categories. One approach involves
a two-stage process that relies on region suggestion, such
as the Faster R-CNN [14] model. This two-stage object
detection algorithm exhibits a high level of precision. How-
ever, it necessitates a substantial computational workload and
demonstrates sluggish inference speeds. The other category
is the single-stage object detector based on object regres-
sion, as exemplified by the YOLO [15] series, which is
faster than the two-stage algorithm. The detection algorithm
of the YOLO series has undergone several version itera-
tions to ensure efficiency while improving accuracy, making
it a popular choice in the field of engineering inspection.
Subsequently, numerous academics suggested refining algo-
rithms to augment the efficacy of identifying defects within
models.

Zhang et al. [16] proposed an insulator defect detection
algorithm based on an improved YOLOv8s model. Introduc-
tion of multi-scale large-kernel attention (MLKA) module to
enhance focus on features of different scales and low-level
feature maps. Adoption of an improved loss function using
SIoU to optimize detection performance and enhance feature
extraction capability for insulator defects. Zhong et al. [17]
proposed a steel surface defect detection algorithm based
on the improved YOLOv5 model. A Bidirectional Cascade
Path Aggregation Network (BIC-PAN) structure is proposed
to enhance feature fusion. The coordinate attention (CA)
mechanism is introduced to further improve the model’s
detection performance. Zhou et al. [18] introduced a PCB
defect detection algorithm based on MSD-YOLOv5. Intro-
duction of attention mechanism to enhance feature extraction
by highlighting important channels. Replacement of coupling
detection head with decoupling detection head to extract and
learn defect location and category information separately.
The solution to the problem of highly coupling different
information feature distributions and enhancement ofmodel’s
generalization ability.

The above-mentioned algorithm mainly improved the
multi-scale feature fusion, introduced attention mechanisms,
decoupled the detection heads, and enhanced the model’s
detection performance by using better loss functions. How-
ever, decoupling only the detection head, while the features
input for the classification and localization tasks are directly

coupled. This structure has some issues as it ignores the
spatial differences in attention points between the classifica-
tion and localization subtasks. Where classification features
require more semantic context information, while localiza-
tion features require more object edge information. Direct
coupling of features from different tasks leads to spatial
misalignment, affecting network convergence [19].
To address the above-mentioned issue, a task feature

decoupling YOLOv8n is proposed, which decouples the
input features of the classification and localization detec-
tion heads, and integrates corresponding features for the
classification and localization detection heads. The aim
is to improve the detection accuracy of the model for
power adapters while maintaining good real-time perfor-
mance and lower parameter counts. This paper makes the
following contributions: (1) Based on the YOLOv8n model,
an improved algorithm was proposed, designing an effec-
tive feature fusion module called TDFPN, applying the
EMA module to filter out redundant background informa-
tion, and constructing a more suitable Inner-SIoU regression
loss function. (2) We proposed the TDFPN module to
decouple classification and localization features, introduc-
ing Global-Context Feature Interaction (GCFI) to enhance
the global sensing ability of the network, and improve
recall and precision in power adapter defect detection; (3)
Applying the EMA attention mechanism to suppress redun-
dant information and enhance detection precision for power
adapter defects; (4) Developing the Inner-SIoU regression
loss function can enhance the convergence of the model and
notably enhance the recall rate for detecting power adapter
defects.

II. RELATED WORK
A. PREVIOUS RESEARCH
Xiao et al. [20] combined the transformer structure and
Bi-FPN [21] structure with the YOLO-v5 model to propose
the YOLOv5-Transformer-Bi-FPN (YOLOv5-TB) model.
The YOLOv5-TB model is used for zinc-coated steel defect
detection, which can accurately and quickly detect span-
gled defects on the surface of zinc-coated steel. Li et al. [22]
used depth-wise separable convolution on the original YOLO
network structure and enhanced the network’s feature extrac-
tion by incorporating MECA (More Efficient Channel
Attention). The ASPF (Atrous Fast Spatial Pyramid) mod-
ule is developed by employing dilated convolutions with
different expansion rates to capture a greater amount of
contextual information. Utilizing dense multi-scale weighted
fusion to enhance the accuracy of detection. Wu et al. [23]
proposed a lightweight YOLOX surface defect detection
network and introduced theMulti-scale Feature FusionAtten-
tion Module (MFFAM). Lightweight CSP structures are
used to optimize the backbone of the original network.
MFFAM uses different scales of receptive fields for feature
maps of different resolutions, after which features are fused
and passed into the spatial and channel attention modules
in parallel.
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B. YOLOv8
The YOLOv8 [24] object detection algorithm is innovative
and optimized based on the original YOLO series, to enhance
model performance. Firstly, YOLOv8 builds on the design
concept of YOLOv7 [25] to optimize the backbone network.
The C3 module has been replaced by the C2f module with
a richer gradient flow, improving the performance of the
model. Secondly, it introduces Distribution Focal Loss [24].
Additionally, Mosaic data enhancement [26] is utilized to
improve the accuracy of the model. Finally, decoupled detec-
tion heads and An Anchor-free design were adopted. These
improvements have enabled YOLOv8 to achieve good per-
formance, but there are still issues with low accuracy in the
power adapter detection scene. Firstly, there are defects in
the feature fusion of the neck structure of YOLOv8n, where
the features obtained by the classification detection head
and regression detection head are coupled, while these two
subtasks have different focus points on features. Secondly,
the feature extraction capability of the model for redundant
and complex background information is limited. Lastly, there
are many low-quality samples in the defect samples of the
power adapter detection scene, and CIoU only considers
aspect ratios. YOLOv8n is a lightweight version of YOLOv8.
Considering the industrial application requirements for power
adapter defect detection, it is essential to focus on both detec-
tion accuracy and speed. Based on the standard YOLOv8n
algorithm, its neck structure and regression loss function
are improved, and a defect detection algorithm for power
adapters, named YOLOv8n with decoupled task features,
is proposed. The model structure is shown in Figure 1
and Figure 2, and the details of the structure are presented
in Sections II-A and II-B.

FIGURE 1. Improved YOLOv8n framework.

III. METHODS
A. BETTER FEATURE FUSION TDFPN
The YOLOv8n network utilizes the PANet [27] network
structure for feature fusion, where the input features of

FIGURE 2. Improved YOLOv8n some detail of structure.

the classification and localization detection heads interact.
As shown in Figure 3:

FIGURE 3. PAFPN feature fusion framework.

However, there are differences in feature focus across
tasks. The network structure provides coupled features for the
localization and classification heads. YOLOv8n (Detection
COCO) pre-trained weights were used to visualize the Grad-
Cam [28] heat map of the detected object. The gradients of the
regression head and classification head backpropagation are
summed respectively, and the heat maps of the classification
head and regression head are generated, as shown in Figure 4
and Figure 5.

FIGURE 4. Comparison of thermal maps between classification and
positioning detection heads.

The classification task differs from the localization task.
Localization emphasizes edge features, whereas classifica-
tion emphasizes local features within a global perspective.
The direct coupling of classification features and regres-
sion features can result in spatial misalignment [19], which,
in turn, impacts the convergence of the network.

The classification task is a coarse-grained task that requires
richer semantic contextual information [29]. The localiza-
tion task, on the other hand, is a fine-grained task that is
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FIGURE 5. Visualization of the differences in the focus of classification
and localization tasks.

more critical for providing detailed boundary information.
Therefore, we need to decouple the features based on the
task, improve the semantic information of the classification
features, and integrate shallow features with more detailed
spatial information for the localization features. The classi-
fication, localization, feature decoupling, and coupling are
shown in Figure 6.

FIGURE 6. Classification, regression features decoupling, and coupling
schematic diagram.

TDFPN decouples the classification and localization fea-
tures, and integrates the features of interest into the subtasks.
The structure is illustrated in Figure 7.

FIGURE 7. TDFPN features fusion framework.

TDFPN is enhanced by incorporating the PAFPN structure
and introducing RSCF (Regress Specific Context Fusion) to
generate more detailed edge features for localization tasks.
Additionally, GCFI (Global Context Feature Interaction) is
introduced to handle high-level features with richer semantic
concepts, such as P5 [30], to enhance their semantic informa-
tion. The GCFI module handles its processing as follows:

Q = K = V = Flatten(P5) (1)

P5 = Reshape(FFN (MSHA (Q,K ,V ))) (2)

Firstly, feature P5 is flattened, serialized, and then embed-
ded with position information. The terms Q, K, and V denote
Query, Key, and Value respectively in this context. Seman-
tic information enhancement is then carried out by GCFI,
which is a combination of MHSA (Multi-head Self-attention)
[31], [32] and FFN (Feed Forward Network) [31]. Finally, the
reshape operation is applied to restore the shape of P5, which
is the inverse operation of Flatten. The structure of the GCFI
module shown in Figure 8 is illustrated.

FIGURE 8. Structure of GCFI.

Thanks to the global attention ability of multi-head
attention, the network’s global sensing field is effectively
improved without losing information about small objects,
enhancing the detection ability of large-scale change defects.
By introducing GCFI, the network can capture more semantic
information, enhancing the global sensing ability and laying
a stronger foundation for the subsequent modules to detect
and recognize objects in images.

The P5 processed through GCFI handling and channel
dimension reduction is called P6. P5, P4, and P3 are three
effective feature layers obtained by fusing PAFPN features,
and {P3, P4, P5} undergoes channel dimension reduction
through convolution. If the original feature before reduction
is Pl ∈ RBl×Cl1×Hl×Wl , then the reduced feature is Pl ∈

RBl×Cl2×Hl×Wl , where B represents the batch dimension,
Cl1 = 2Cl2 denotes the channel dimension, l is the index
of the feature layer where l = {3, 4, 5, 6}, and H and W
refer to the height and width dimensions. This process results
in {P3, P4, P5, P6}. Thanks to the semantic information
enhancement of the GCFI module, the {P3, P4, P5} features
at this time have gained stronger semantic information, which
is extracted as the three input features P3cls, P4cls, P5cls for
the classification detection head. P6 will be utilized as a deep
feature of P5 to contribute to the feature fusion in subsequent
positioning tasks.

In regression tasks, richer spatial detail information is
needed, which can usually be provided by shallow features.
Generally speaking, features at the current level are more
correlated with features at adjacent levels, while the corre-
lation with features at other levels may be lower. Directly
fusing features with large spans may lead to a ‘‘seman-
tic gap’’ [19], where spatial details do not match semantic
information, affecting network convergence. Therefore, when
combining features, features from adjacent levels are usually
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given priority. Thus, the RSCF module was born, as illus-
trated in Figure 9. The module takes {P3, P4, P5}, and P6
as input features, and through the fusion of adjacent shallow
and deep features, it provides more detailed edge information
for the localization head.

FIGURE 9. Structure of RSCF.

The process of RSCF can be expressed as follows.
P3reg = up (P4) +P3
P4reg = up (P5) + down (up (P5) +P3) +P4
P5reg = P6 + down (up (P5) +P4) +P5

(3)

where, up(·) is the nearest interpolation upsample, down(·) is
stride 2, and kernel size is 3 × 3 convolution.

B. ATTENTION MECHANISM MODULE EMA
The structure of the EMA [33] (Efficient Multi-Scale Atten-
tion) module is shown in Figure 10. The EMAmodule utilizes
three parallel paths to extract features and generate atten-
tion weights. In the 1 × 1 branch, channels are encoded
using two global average pooling operations, and features are
aggregated using a 1 × 1 convolution followed by a sigmoid
function. In the 3×3 branch, local cross-channel interactions
are captured by employing 3 × 3 convolution to expand the
feature space [34].

The EMA module achieves channel weighting and spatial
coding by grouping the channels using a limited number of
parameters with low complexity. After integrating it into the
C2f module of the TDFPN, it suppresses redundant infor-
mation, effectively enhancing the detection of power adapter
defects. The cross-space learning component encodes the
outputs of the 1 × 1 branch and 3 × 3 branch through
global average pooling. The spatial attention map is obtained
through a matrix dot product operation. This process effec-
tively integrates spatial information across multiple scales in
the output feature map, thereby enhancing the model’s ability
to selectively attend to defects at various scales.

C. BETTER REGRESSION LOSS FUNCTION INNER-SIOU
YOLOv8 classification loss uses Binary Cross Entropy Loss
(BCE Loss) [35]. The regression loss utilizes Distribution
Focal Loss and CIoU Loss [36]. The total loss is shown

FIGURE 10. Structure of EMA.

in Equation (4).

LossTOTAL = LossBOX + LossCLS + LossDFL (4)

CIoU only considers the difference in aspect ratio, and the
loss calculation method does not differ for samples with high
IoU and low IoU. In industrial defect detection scenarios,
samples with low Intersection over Union (IoU) values are
more prevalent than those with high IoU values. The penalties
of distance and aspect ratio enhance the impact on samples
with low Intersection over Union (IoU), which not only
affects the convergence of the network but also reduces the
generalization performance of the model [37].

The SIoU [38] method incorporates the angle loss into
the bounding box regression loss function by considering
the influence of the angle between the anchor box and the
ground truth (GT) box on bounding box regression. This is
mathematically defined as presented in Equation (5).

LSIoU = 1−IoU +
(� + 1)

2
(5)

The angular loss represents the minimum angle between
the connection of the GT box and the center point of the
Anchor box [39], as shown in Equation (6).

3 = sin

2sin−1
min(

∣∣∣xgtc − xc
∣∣∣ , ∣∣∣ygtc − yc

∣∣∣)√(
xgtc − xc

)2
+

(
ygtc − yc

)2
+ ∈

 (6)
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Angular loss is designed to adjust the anchor box to the
nearest axis and prioritize proximity to either the X-axis
or Y-axis based on the angle change. After considering the
angular cost, the distance loss is redefined as follows:

1 =
1
2

∑
t=2,h

(
1 − e−γρt) , γ = 2 − 3 (7)


ρx = (

bx − bgtx
wc

)
2

ρy =

(
by − bgty
hc

)2 (8)

Shape loss primarily refers to the difference in size between
the Ground Truth (GT) box and the Anchor box, with the
value of θ determining the importance of the shape cost [40].
The range of this parameter is from 2 to 6. The definition is
as follows.

� =
1
2

∑
t=w,h

(
1 − ewt

)θ
, θ = 4 (9)

ww =

∣∣w− wgt
∣∣

max(w,wgt )

wh =

∣∣h− hgt
∣∣

max
(
h, hgt

) (10)

Inner-IoU [41] is used to enhance existing bounding box
regression methods. The method accelerates the regression
process by using auxiliary bounding boxes and scale factor
ratios. The parameters are illustrated in Figure 11, and the
GT box and the Anchor box are represented as Bgt and B,
respectively. The centroids of the GT box and the inner GT
box are denoted by (xgtc , ygtc ), while (xc, yc) represents the cen-
troids of the Anchor box and the inner Anchor box. The width
and height of the GT box are denoted by wgt and hgt , respec-
tively, and those of the Anchor box are denoted by w and h.
The variable-ratio corresponds to the scaling factor, which is
usually in the range of [0.5, 1.5]. The derivation formula for
Inner-IoU is as follows.

bgtl = ygtc −
wgt ∗ ratio

2

bgtr = ygtc −
wgt ∗ ratio

2


bgtt = ygtc −

hgt ∗ ratio
2

bgtb = ygtc −
hgt ∗ ratio

2
(11)

bl = xc −
w ∗ ratio

2
, br = xc −

w ∗ ratio
2

bt = yc −
h ∗ ratio

2
, bb = yc −

h ∗ ratio
2

(12)

inter = (min
(
bgtr , br

)
− max

(
bgtl , bl

)
) ∗ ( min

(
bgtb , bb

)
− max

(
bgtt , bt

)
) (13)

union =
(
wgt ∗ hgt

)
∗ (ratio)2 + (w ∗ h) ∗ (ratio)2 − inner

(14)

IoU inner
=

inter
union

(15)

FIGURE 11. Diagram of Inner-IoU parameters.

Applying the Inner-IoU loss to the SIoU is shown in
equation (17):

LossInner−SIoU = LossSIoU + IoU − IoU inner (16)

The total loss of replacing Inner-SIoU with CIoU is as
follows:

Lossnow = LossInner−SIoU + LossCLS + LossDFL (17)

By introducing angle constraints and shape loss, SIoU
accelerates the convergence speed of bounding box regres-
sion, allowing the model to learn the appearance defects
of power adapters more quickly and improving detection
performance. Inner-IoU enhances the model’s detection
capabilities for high and low IoU samples by calculat-
ing losses using auxiliary bounding boxes of different
scales without introducing additional loss terms. Combining
SIoU with Inner-IoU forms Inner-SIoU, which signifi-
cantly improves the model’s convergence speed, enhances
the model’s learning ability for quality-imbalanced IoU
samples, strengthens the model’s generalization ability
and overall performance, and significantly increases the
recall rate of power adapter defect detection. Experimen-
tal results demonstrating these improvements are presented
in Section IV-D.

IV. EXPERIMENT
A. DATASET AND DEFECT CLASSES
In this study, a dataset comprising 235 images depicting vari-
ous types of power adapter appearance defects was employed.
Published at http://ieee-dataport.org/12647. These defects
were categorized into five classes: label, mark, scratch,
smudge, and spill, with each class containing 32, 38, 58, 80,
and 32 images, respectively. To augment the dataset, various
techniques such as vertical and horizontal flipping, mirroring,
rotation, and panning were applied, resulting in a total of
4840 images. The dataset was then partitioned into training,
validation, and test sets in an 8:1:1 ratio. Figure 12 shows a
detailed image of label and mark defects, Figure 13 shows
a detailed image of scratch and spill defects, and Figure 14
shows a detailed image of smudge defects.
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FIGURE 12. Detail diagram of label and mark defect.

FIGURE 13. Detail diagram of scratch and spill defect.

FIGURE 14. Detail diagram of smudge defect.

TABLE 1. Comparison of FPS, and parameter with added improvement.

B. EXPERIMENTAL ENVIRONMENT CONSTRUCTION
AND EVALUATION METRICS
The experimental setup includes the utilization of a
Windows 10 operating system, PyTorch 1.7.1 deep learning
framework, an Intel i5-11400K CPU, and an RTX 3080 GPU.
Input image size is 640 × 640, with 100 training epochs,
and transfer learning utilizing the pre-trained weights of the
model backbone. To safeguard the pre-trained weights of the
backbone model from perturbation during the initial training
phases, the weights are kept frozen for the first 50 epochs,
allowing only model fine-tuning. The batch size is set at
16 during the frozen stage and 8 during the unfreezing stage.
The model’s initial learning rate is 0.01, with a momentum
value of 0.937, using the SGD optimizer. The cosine learn-
ing rate scheduler is used, and a weight decay of 0.005 is
applied.

FIGURE 15. Change diagram of the loss function (removed the first value).

To assess the enhanced model’s efficacy, its performance
is measured across various metrics including precision (P),
recall (R), average precision (AP), mean average preci-
sion (mAP), mean precision across all defect classes (mP),
mean recall across all defect classes (mR), and mean average
precision across all defect classes (mAP).

C. RESULTS AND ANALYSES
TDFPN is denoted as Method 1, EMA as Method 2, and
Inner-SIoU as Method 3. The experiments are conducted on
a defective dataset of power adapters, and the effectiveness of
the improvement is determined by evaluation metrics such as
mP@0.5, mR@0.5, mAP@0.5, (@0.5 represents IoU= 0.5),
FPS, and Param.

The label on the defect type indicates a long tube shape.
This type of feature usually requires a large receptive field
with detailed edge information. The smudge shows signif-
icant scale changes, limited texture information, and con-
siderable morphological changes. Therefore, for the smudge
defect model, attention must be paid to weak edge details,
local texture information, and the need for a large receptive
field. Method 1 decouples the features and then enhances the
P5 features with rich semantic information. This approach
avoids feature coupling, which can cause the model to
misinterpret blemish edges and result in leakage detec-
tion. Meanwhile, Method 1 enhances the global sensing
ability of the network through the global contextual inter-
action of P5 features, thereby improving the accuracy of
defect classification. Experimental results demonstrate that
Method 1 increases the precision rate by 1.44%, the recall
rate by 2.67%, and the mAP@0.5 by 0.72% compared to the
original model. Furthermore, Method 1 improves the AP of
the label and smudge defects classes by 2.71% and 1.37%,
respectively, confirming the effectiveness of the enhance-
ment. Method 2 focuses on the feature layer of Cf2 fusion
to reduce redundant information and enhance the model’s
focus on defects. This consequently improves the precision
of the network. Due to the smaller scale of marks, spills, and
scratches, which bear some resemblance to the background
noise, there was a decrease in R by 2.24%, 1.83%, and 4.80%,
respectively. On the other hand, the larger scale of label
and smudge improved R by 1.69% and 1.91%, respectively.
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TABLE 2. Comparison of average precision with added improvement.

TABLE 3. Comparison of recall with added improvement.

TABLE 4. Comparison of precision with added improvement.

Although the mR@0.5 decreased by 1.06%, the model’s
precision mP@0.5 improved by 1.94%, and the mAP@0.5
increased by 0.52%. Method 3 resulted in a significant
increase in the network’s recall for label, scratch, spill,
smudge, and mark by 27.35%, 7.46%, 15.24%, 15.28%,
and 6.73%, respectively. Although mP@0.5 decreased
by 2.02%, mAP@0.5 increased by 2.15%. TABLE 1 illus-
trates that the enhancement increased the complexity of the
network, resulting in a decrease in the speed of inference.
However, it still fulfills the criteria for real-time detection.
It can be seen from TABLE 2, TABLE 3, and TABLE 4 that
the evaluation indicators of the three methods on the defect
dataset have all improved, proving the effectiveness of the
model improvement.

D. LOSS FUNCTION COMPARISON
From Figure 15, it can be seen that LossCIoU is replaced by
LossInner−SIoU . The total loss is reduced, and convergence
occurs more quickly.

E. ABLATION STUDIES
The above experiments demonstrated the effectiveness of
each method. To confirm the compatibility of the proposed
methods, ablation experiments were conducted for each
method. mAP@0.5 and FPS were used as evaluation metrics.
Methods 1, 2, and 3 are noted asA, B, andC, respectively. The
experimental findings indicate a high level of compatibility
among different methodologies, and the model that integrates

all methods has improved the mAP@0.5 for defects by 3.12%
according to TABLE 5.

TABLE 5. Results of the ablation experiment.

F. MODEL COMPARISON
The approach outlined in this study is contrasted with preva-
lent object detection algorithms like Faster R-CNN, Effi-
cientDet, YOLOv5, YOLOX [42], YOLOv7, etc. YOLOv5,
YOLOX, and YOLOv7 utilize the same data augmentation
and training hyperparameters as YOLOv8n, along with the
same training strategy. Small Object Detection Head (SODH)
is added to YOLOv8n for enhancing small object detection.

The results in TABLE 6 indicate that, compared to the
YOLO algorithm series, the enhanced YOLOv8n algorithm
demonstrates significant superiority in mAP@0.5 and has a
lower parameter count. Although there is a slight decrease
in real-time performance, it still meets the requirements for
industrial detection.

G. EFFECT COMPARISON
To assess the detection performance before and after improv-
ing the YOLOv8n model, comparative experiments were
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FIGURE 16. Comparison of detection effect before and after improvement (above is before improvement, below is after improvement).

TABLE 6. Comparison of experimental results of models.

conducted on samples containing spill, label, scratch, mark,
and smudge for comparison. The enhanced model results in
improved detection accuracy, as illustrated in Figure 16.

H. BAIDU PADDLE ALUMINUM BLADE SURFACE
INDUSTRIAL DEFECT DETECTION EXPERIMENT
The source of this dataset is the open-source dataset ‘‘Indus-
trial Defect Object Detection on Aluminum Sheet Surface’’
provided by Baidu Paddle AI Studio. https://aistudio.baidu.
com/datasetdetail/135640. (accessed on 22 February 2024)
It includes categories such as pinhole (zhen_kong), abrasion
(ca_shang), fold (zhe_zhou), and smudge (zang_wu). The
images are sized at 640 × 480, totaling 412 images, and
the dataset has been augmented to include 8,400 images.
The dataset partitioning strategy remains consistent. Keep the
dataset partitioning strategy consistent. Increase the training
hyperparameter batch size by two times, while keeping the
other parts consistent. The model comparison experiments
are shown in TABLE 7.

I. ALIYUN TIAN CHI ALUMINUM PROFILE SURFACE
DEFECT DETECTION EXPERIMENTS
This dataset is derived from the preliminary open-source
dataset of the 2018 Guangdong Industrial Intelligent

TABLE 7. Comparison of test results of aluminum sheet surface defect
dataset.

Manufacturing Big Data Innovation Competition - Intelligent
AlgorithmCompetition, specifically focusing on ‘‘Aluminum
Profile Surface Defect Identification’’. https://tianchi.aliyun.
com/dataset/148297. (accessed on 22 February 2024) Image
size is 2560 × 1920, totaling 1887 pictures. The cate-
gories include: dent (aoxian), non-conductivity (budaodian),
rubbing flower (cahua), orange peel (jupi), leakage of
bottom (loudi), bruise (pengshang), pitting (qikeng), con-
vex powder (tufen), coating cracking (tucengkailie), and
smudge spots (zangdian). The dataset has been expanded to
9435 images, and the dataset division strategy and hyperpa-
rameter configuration remain consistent with the experiments
in Section IV-H. A comparison of the model results is shown
in TABLE 8.

TABLE 8. Comparison of test results of aluminum profile surface defect
dataset.

V. CONCLUSION
We have implemented enhancements based on the YOLOv8n
algorithm to improve its performance in detecting appearance
defects in power adapters.

(1) Introducing the TDFPN feature fusion structure aims
to provide relevant features for classification and localiza-
tion tasks, enhance the network’s global sensing ability,
and improve the recognition rate of defects. (2) Applying
the EMA attention mechanism helps suppress redundant
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information, thereby enhancing the detection accuracy of
the network with only a slight increase in parameters.
(3) Adopting Inner-SIoU instead of CIoU can accelerate
model convergence while significantly improving the recall
rate of detection. (4) Enhanced algorithms were employed
to test datasets containing power adapter defects, aluminum
foil surface defects from Baidu Paddle, and aluminum profile
surface defects from Aliyun Tian Chi. The results indicated a
respective increase inmAP@0.5 of 3.12%, 0.41%, and 5.61%
when compared to YOLOv8n. These findings demonstrate
the effectiveness of the enhancements made and highlight the
model’s ability to generalize.

This article enhances the accuracy of the model based
on YOLOv8n, which has demonstrated some effectiveness.
In industrial scenarios, there is often a lack of defect
data, and fully supervised learning necessitates a substan-
tial amount of annotated data for training. This process is
time-consuming and labor-intensive. In future research, semi-
supervised learning methods can be adopted by utilizing a
combination of a large amount of unlabeled data and labeled
data to further enhance the practicality and generalization
ability of the model.
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