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ABSTRACT Numerous short-term load forecasting models are available in the literature. However, the
improvement in forecast accuracy using the combination models has yet to be analyzed on a daily rolling
basis for a very long test period. In this paper, the characteristics of a combination of the Seasonal
Autoregressive Integrated Moving Average (SARIMA) — a linear model and Radial Basis Function networks
(RBFN) — a non-linear model have been studied in two different modeling frameworks, namely single series
(SS) and variable segmented series (VSS). The hourly load data from the Ontario Electricity Market (OEM)
and the Iberian Electricity Market (MIBEL) are used for the analysis. This dataset spans 12 years for OEM
and one year for MIBEL. The impact on prediction accuracy by the size of training data and the combining
individual forecasts has been studied for both markets. To achieve the empirical objective, a large number of
models(1,447,740 in number) are estimated to produce load forecasts on a daily rolling basis. The forecast
performance has been compared with the other models proposed in the literature. Among the linear models,
for all window sizes of training data, the forecast accuracy of the combination model is better than the model
selected with the minimum Akaike information criterion (AIC) and Bayesian information criterion (BIC)
in both frameworks. Moreover, the ensemble of RBFN and linear models produces the best forecast. The
results pinpointed that the proposed model’s precision and stability are higher than the earlier forecasting
models proposed for both markets. The novelty in the model is that only a single hourly time series is used
for forecasting, and there is no need for other explanatory variables.

INDEX TERMS Artificial intelligence, electricity market, load forecasting, radial basis function, single
series, variable segmentation.

NOMENCLATURES AND ABBREVIATIONS OEM Ontario electricity market.
The notation used throughout the paper is provided below. PACF Partial autocorrelation function.
ACF Autocorrelation function RBFN Radial basis function networks.
AIC Akaike information criterion. SARIMA  Seasonal autoregressive integrated moving
ANNSs Artificial neural networks. average.
AR Autoregressive STLF Short-term load forecasting.
ARMA Autoregressive moving average SS Single series.
BIC Bayesian information criterion. SVM Support vector machines.
DNN Deep neural networks. VSS Variable segmented series.
FL Fuzzy logic. L; Actual load at time ¢.
LSTM Long-short-term memory. B Backward shift operator.
MAPE Mean absolute percentage error. o, o;—1  Error components in load series after remov-
MA Moving average. ing seasonality for SARIMA model.
Dito D14 Input layer variables used for RBFN model.
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@1, ¢2, ., ¢p Parameters of non-seasonal AR (p) model.
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© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
VOLUME 12, 2024 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 58993


https://orcid.org/0009-0003-3852-8564
https://orcid.org/0000-0002-9202-6157
https://orcid.org/0000-0002-9652-3118

IEEE Access

N. Rani et al.: Short-Term Load Foresting Using Combination of Linear and Non-Linear Models

v, Gaussian radian function value at each hid-
den layer neuron in RBFN.

®q, &y, ... Parameters of seasonal AR (Ps) model.

®1, ©y,.. Parameters of seasonal MA (Qs) model.

(1—-B% Seasonal differencing operator with
periodicity s.

T Target / Forecast value of demand.

I. INTRODUCTION

The load forecasting is extremely useful for electric sector as
it helps in efficient power grid operation and planning [1]. The
load forecasting can be categorized into long-term, medium-
term, short-term and very short-term forecasting [2], [3].
STLF typically one hour to a couple of days ahead is required
by the utilities for their daily operations mainly for the unit
commitment (UC), the load dispatch and the energy transfer
scheduling activities [4]. Though on a longer time frame, the
electricity demand is affected by many exogenous factors
such as economic, demographic, technological, natural and
social factors; yet, on a short-term basis, it is affected by
weather variables, calendar, holiday and festival effects etc.
Moreover, certain unexpected events are also there which
make STLF a difficult exercise [5].

A. LITERATURE REVIEW

Several methods for the load forecasting have been reported
in the last decades [6], [7], [8], [9], [10], [11]. In these
models, three different paradigms of STLF have emerged:
(i) statistical analysis, (ii) artificial intelligence (AI) and
(iii) hybrid techniques. A model based on statistical analysis
comprises either a single load series (univariate) or load series
as a function of many exogenous variables i.e., multivariate
framework. The univariate models are: autoregressive (AR)
[12], moving average (MA) [13], ARMA [14], [15], [16],
adaptive ARMA [17], SARMA [18], [19], [20], [21],
[22], [23], [24], [25], [26], threshold AR [27], exponential
smoothing models [28], fractional ARIMA [29] and smooth
transition periodic autoregressive (STPAR) model [30]. It has
been observed that electricity load data is not only affected
by the previous lags of data but also by the weather
variables like temperature, wind speed, cloud cover, and
humidity etc. So multivariate weather-based models have
been reported such as multiple regression [32], [33], [34],
[35], [36], transfer function (TF) model [37], and ARMAX
models [38], [39]. Recently, a new class of non-parametric
models based on Al techniques have been proposed, which
mainly include FL [40], [41], ANNs [42], [43], [44], [45],
SVM [46], RBEN [47], [48] and transfer learning [49].
Hybrid techniques integrate the advantages of each of the
models and may improve the prediction accuracy in two
ways. For the first category, electricity load is predicted
by the different models [50], [51], [52], and the final
forecasting value is obtained by their combination. For the
second category, electricity load is decomposed into several
components, and the final forecasting value is the sum of
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predicted value of each component [53], [54]. Most of the
statistical methods are based on linear models that make
some assumptions about the characteristics of the load series.
The idea is conceptually based on the understanding that a
load pattern is a time series signal with seasonal, weekly,
daily and a few hourly periodicities. The AR models were
first presented by Yule [12] in 1926. Subsequently, Slutzky
introduced MA models [13]. The combination of the AR and
MA models, ARMA, was first implemented by Wold [55],
which showed that ARMA processes can be used to model
stationary time series data. Researchers applied least square
estimation (LSE) based autoregressive integrated moving
average (ARIMA) model for many a forecasting tasks [56],
[57]. Seasonal ARIMA [58], [59] and double SARIMA [60],
[61], [62] are powerful linear models extensively used to deal
with various forecasting issues.

A variety of different forecasting models are available
to forecast demand data, and it is essential to realize
that no single model is universally applicable [63]. The
fusion of SARIMA and non-linear models can overcome
the shortage of adopting only one kind of model and
provide more accurate results [64], [65], [66]. Karthika et.
al proposed [54] hybrid model ARIMA-SVM to predict the
hourly demand of southern region of India. Authers used
ARIMA to predict the demand after correcting the outliers
using percentage error method and its deviation is corrected
using SVM. Kao et.al. [64] proposed ensemble empiri-
cal mode decomposition(EEMD)-ARIMA-genetic algorithm
(GA)-SVR to predict the primary energy consumption of
Taiwan. Based on their findings, the results obtained when
using the hybrid model were far superior to those obtained
when only using the ARIMA or ARIMA-SVR models. The
main question in STLF is: whether to use a univariate or
a multivariate model. In many studies the superiority of
univariate models has been proved [67]. Recently, Makridakis
and Hibon [68], deduced that statistically sophisticated or
complex methods do not necessarily provide more accurate
forecasts than the simpler ones. The development of a multi-
variate model depends on the availability of accurate weather
forecasts. The utilization of forecast weather variables
introduces more uncertainty in the STLF model. Therefore,
the univariate methods are supposed to be sufficient for
short lead times because the weather variables tend to
change in a smooth fashion over short time frames, and
this will be captured in the changes in the demand series
itself. Moreover, the univariate methods are the only option
when meteorological forecasts are either unavailable or too
costly [69].

In almost all research discussed above, the forecast period
is from one hour to nearly one year. Work has yet to be done
to study the characteristics of SARIMA models for STLF by
utilizing time-series data in multiple frameworks on a daily
rolling basis. It has also been observed that the performance
of the forecast combinations of SARIMA and RBF network
has not been explored in case of load-series exhibiting
different volatility levels. Considering these gaps, this paper
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aims to study the STLF accuracy using a combination of
SARIMA and RBF network. The forecasting performance
has been done for real data sets of OEM and MIBEL by
utilizing parameter estimation periods of different window
sizes. The main contributions of the paper are summarised
as follows:

o The proposed models preferred to minimize parameter
dependency by using only single load series and its
previous lags values at different intervals. The proposed
forecasting model may help to deal with the situation
where lack of weather related variables and ultimately
contribute to the reduction of the load forecasting error.

« An improved, simple strategy to produce better load
forecast by combination of a linear and a non-linear
model has been proposed. In order to improve accuracy
and reduce forecast volatility, individual models have
been trained with training data of multiple sizes and
then forecasts have been combined. The effect of size
of training data for each model is also presented.

o The probability of accuracy increases by simple aver-
ages of SARIMA and RBFN models forecast. The
strength and effectiveness of individual models and their
ensemble for all window sizes have been validated for
a very long period of most volatile OEM from 2007 to
2018 and MIBEL for 2016.

o The forecasting performance of the proposed model is
compared with the benchmarks, individual SARIMA,
other ensemble models and the reported works [44].

o A comparative study among the benchmark, individual
models, and recent techniques in literature is performed.
The results reveal that all the models give better
performance in comparison to the benchmark models
for both markets. The combination of SARIMA SS and
RBFN has been found to be best among all the models
for OEM. The combination of SARIMA SS, VSS and
RBFN has been found to be best among all the models
for MIBEL demand.

To evaluate and reach these objectives, this paper is
divided into the following sections: Section II describes
the problem formulation; Sections III and IV present the
complete forecasting methodology and the computational
implementation respectively. The numerical results together
with interpretations are presented in section V. Finally,
conclusions are given in the last section.

Il. PROBLEM FORMULATION AND MODELS STRUCTURE
Theoretically, any function approximation model can be
represented as:

T =f(D;)+ ¢ ()

where, T is the target output, D; is the input vector, and ¢;
is the error series which is assumed to be homoscedastic
(and possibly normally distributed). In case of linear models
like SARIMA, f is a linear function; whereas, in non-linear
models like RBFN, this is a non linear function of input
variables [70].

VOLUME 12, 2024

A. SARIMA MODEL STRUCTURE

The load time series L; is regarded as the realisation of
a non-static stochastic process. General form of ARIMA
model [71] is as:

¢B (1 —BY L =0B)a 2

where, B is the backward shift operator that defines B"L; =
Lin;

¢(B)=1—¢1B— B —... - ¢, B’ (€)

is a polynomial in B of degree p; ¢1, ¢, ..
parameters of non-seasonal AR (p) model,

0(B)=1—06,B—6:8* —...—6,BY, )

..., ¢p are the

is a polynomial in B of degree g; 601, 65, ...,6, are the
parameters of the non-seasonal MA(g) model and a; should
be independently and identically distributed (iid). For the
process to be stationary, the characteristic equation ¢(B) = 0
has all its roots outside the unit circle. Similarly, for the
invertibility of the process, the roots of #(B) = 0 should
lie outside the unit circle. 1 — B is the ordinary differencing
operator and it removes the trend in load-series data, d
specifies the degree of non-seasonal integration. In particular,
load series are often well represented by the models in which
one or more roots of the characteristic equation are unity. The
load series exhibits several levels of seasonality; therefore,
the load at a given hour is dependent on the load values at the
previous hour, at the same hour on the previous day and week
ie.,(t—1), (t—24) and (t — 168). Since L ; is a correlated time
series, the forecasting model can be assumed by the SARIMA
model. The seasonality in the L; can be removed by a model
of the form:

®B*)(1 —B*)L; = O(B")a; (&)

Here, (1 —B*) seasonal differencing operator with periodicity
s. Seasonal differencing removes seasonality in the observed
load series in the same way as ordinary differencing (d)
removes a polynomial trend.

®B)=1—® B — ®B* —...— ®pB*,  (6)
OB°)=1-0B* —@B* —...—0pB%, (1)

®(B*), O(B?) are polynomial of degree P and Q respectively.
Model (8) is used to link the current behaviour for L, _; with
previous load observations.

OB°)(1 — B)L—1 = OB o ®)

Now the error components «; , o;—1, would be in general
correlated and are related by ARIMA model (9):

¢B (1 — B o, = 0(B)ay, )

Substituting (9) in (5), general multiplicative linear model
is [71]:

®(B*)(1 — B*)¢(B)(1 — BY'L, = O(B*)0(B)a, ~ (10)

In standard notion, (10) is SARIMA (p,d,q) x (P, 1,Q)
model for load time series L;.
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TABLE 1. Input layer variables used for RBFN model.

1. Forecast hour index in the form of sine curves (D1 — D2)
sin(nmw/24), n=1,2,3,.......,24
cos(nm/24), n=1,23,......,.24

2. Hourly demand data of past 7 i.e..D — 1 to D — 7 days (D3 — Dg)
3. Hourly average of past 7 days D1g
4. Moving Averages: MA(24) (D11), MA(168) (D12)
5. Hourly demand data of past 14, 21 days (D13, D14)
D, —> ¥; Input unit: Linear transfer function
Hidden unit: y(.) Gaussian radian
function
Output unit: f{.) Linear activation
Dz .‘ function
Ds —»
T
Dy —>

Hidden Layer of Radial
Basis Function

Input Layer Output Layer

FIGURE 1. A diagram of radial basis function neural network (RBFN)
model.

B. RBFN MODEL STRUCTURE

The RBF network consists of three layers: an input layer,
a hidden layer and an output layer. The main forecast
variables used as input neurons in the model are given in
Table 1. The RBF networks are better at learning local
data patterns. Each RBF network is a linear combination of
non-linear functions known as radial basis function W shown
in figure (1). Input at m hidden neurons is X; = [|[D—Cjl| ; j =
1,..., mwhere D = [Dy, D», ....., D4] is input vector and
center, C; = [Cj1, Cp, ... .., Cj14] is adjustable parameters

can be determined by training algorithm. Hidden unit uses
_ew?
Gaussian radian function ¥(z) = e¢ o2 , u is mean, o is

standard deviation of input z and so output at each hidden
layer neuron is given by

3,

2

Yi=e % (11)

where spread (o) is also an adjustable parameter for each
neuron in hidden layer. The output of the RBF network is
given as:

T=3w (12)
j=1

where the output T is represented as a sum of m radial basis
functions W;, each associated with a different center C;, and
weighted by an appropriate coefficient w;. Weights w; are
estimated through training. For the input variables near the
center, the output W; is large.
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IIl. FORECASTING METHODOLOGY
The methodology used for the load forecasting by linear
SARIMA model can be described by the following four main
steps:
1) Identifying trends and applying data transformations
« Identifying polynomial and seasonal trends
« Eliminating exponential trends
o Testing for data stationarity: Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) test [72],
Dickey-Fuller test [73],
2) Model selection and estimation of parameters
o Computing autocorrelation function (ACF) and
partial autocorrelation function (PACF)
« Tentative model selection
o Parameters estimation using maximum likelihood
estimation (MLE)
o Selecting a model with the lowest Akaike Infor-
mation Criteria (AIC) and Bayesian Information
Criteria (BIC) values
3) Model validation using residual analysis
o Infer residual from the fitted model
o Testing residuals for Normality
e Q-Q plot of residuals
e Observing ACF and PACF of residuals, Plotting
graph of standardized residuals
4) Forecasting
« Forecast demand from selected model with mini-
mum AIC and BIC values
« Calculate combination forecast from all the esti-
mated models.
The RBF network approach consists of the following steps:
1) model selection
2) data normalization
3) updating model parameters using training data of
rolling windows
4) producing forecasts with multiple models
5) combining forecasts.
The proposed COM model calculates the forecast by
averaging the predictions of individual models across all
window sizes. MATLAB has been used as the programming
environment and the code was run using Intel i7, 8 GB RAM
2.90 GHz system (www.mathworks.com).

A. BENCHMARK MODELS
For comparison purpose, the following two benchmarks

models have been selected:
Benchmark 1: Last day model (D1)

Yk = Ynk—1 (13)
Benchmark 2:Last week model (D7)
Yok = Yar—7 (14)

where, h = 1,2, ..24 hours of a day, Y 1 is K™ hour load
of (k — 1) day, Yx_7 is h™ hour load of (k — 7)" day and
Yp.x is forecast load of A" hour of k™ day.
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B. METRICS FOR ACCURACY ASSESSMENT
The mean absolute percentage error ( MAPE ) is employed
to evaluate the performance of the various models. If L; is the
actual load at time ¢ and it is the forecast for the same period,
then the MAPE for N observations [74] is as:
1 UL, -1
MAPE = NZ | 100 % (15)
t=1

IV. CASE STUDY AND COMPUTATIONAL
IMPLEMENTATION
For computational implementation, the historical hourly
demand data of the OEM (https://www.ieso.ca/power-
data) from March, 2006 to December, 2018 and MIBEL
(https//www.mibel.com/en/home_en/) from January, 2015 to
December, 2016 have been collected. For comparing the
variability of demand of OEM and MIBEL markets,various
statistical measures for 2016 presented in table 2. The
value of measures of dispersion, i.e., range and the standard
deviation, is comparatively significant for OEM demand.The
coefficient of skewness for MIBEL and OEM are 0.07 and
0.38, respectively. The coefficient of skewness for OEM
is relatively large.In addition to above measure of central
tendency, dispersion and skewness, one more measure,
kurtosis enables authers to have an idea about the peakedness
of the data. For both markets, its value is less than 3 which
indicates that frequency curve of demand is flatter than the
normal curve. Coefficient of variation which is 100 times
the coefficient of dispersion based upon standard deviation
is slightly greater for MIBEL for first four months.

A complete description from model selection to model
forecast for OEM has been presented in this section. In similar
ways, models for MIBEL demand have been analyzed. It can
be observed from Figure (2) that the load data series is
non-stationary in nature. In the short term, the load series
depends on the changing nature of the weather variables,
calendar, holiday effects, and electricity market conditions.
Since most of the demand in the electricity market is settled
on a day-ahead basis, the impact of minor price variations on
load demand is minimal.

Initially the demand data is converted in two different
frameworks, i.e. single series (SS) and variable segmented
series (VSS). In SS model, complete 24 hourly demand data
is used. This model computes one-day-ahead forecasts using
forecast horizon of 24 hours.

A. FORECASTING STEPS IMPLEMENTATION IN SS

This section briefly describes all the steps for forecasting one
day using the SARIMA model by dividing demand into a
single-series framework.

1) IDENTIFICATION TRENDS AND APPLYING DATA
TRANSFORMATION

In order to identify the suitable tentative linear model, the
properties of load series i.e., correlated observation, non-
stationary, daily and weekly seasonality are examined. The
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TABLE 2. Comparision of basic characteristics.

Month| Mean | Max Min SD (6\Y KR SK
(MWh) (MWh) (MWh) (MWh
Jan. 5929 | 7895 | 3509 | 1090 | 18.38 | 1.71 | -0.15
Feb. 6065 | 8084 | 4116 | 1023 | 16.85 | 1.69 | -0.15
éo March| 5868 | 7810 | 3786 | 982 16.73 | 1.75 | -0.10
A | April. | 5554 | 7253 | 3684 | 853 1536 | 1.75 | -0.06
= | May. | 5235 | 6650 | 3581 | 809 1545 ] 1.62 | -0.14
S [June. | 5377 | 6368 | 3562 | 828 1539 | 1.68 | -0.07
g July. | 5740 | 7301 | 3890 | 874 1523 | 1.69 | -0.03
A Aug. | 5422 | 6900 | 3821 | 789 14.54 | 1.71 | -0.08
d Sept. | 5557 | 7315 | 3950 | 826 14.87 | 1.73 | -0.05
g | Oct. 5296 | 6944 | 3783 | 820 1548 | 1.70 | -0.01
S | Nov. | 5689 | 7881 | 3718 | 996 17.5 1.80 | -0.04
Dec. | 5843 | 7919 | 3671 | 1011 | 17.3 1.84 | -0.01
2016 | 5629 | 8084 | 3509 | 948 16.83 | 1.95 | 0.07
Jan. 16646 | 20836| 12116| 1962 | 11.79 | 2.22 | -0.18
Feb. 16482 20766 12533 1798 | 1091 | 2.24 | -0.19
o | March] 15192] 20063 | 11717| 1717 | 11.3 2.39 | 0.16
§ April. | 14458 17821 11286 1545 | 10.68 | 2.17 | -0.03
5 May. | 14074] 19885[ 10461| 2060 | 14.64 | 3.02 | 0.62
S | June. | 15419] 21692] 10596| 2358 | 15.29 [ 2.45 [ 0.24
g July. 16798 22659 10985 2940 | 17.50 | 1.86 | 0.03
A | Aug. | 17625| 23100 12287 2783 | 15.79 | 1.90 | -0.09
s | Sept. | 15378| 23213] 10855] 2587 | 16.82 | 3.03 | 0.58
8 Oct. 14138 18189 10663 | 1748 | 12.36 | 1.92 | -0.13
Nov. | 14858| 19369| 11211 1816 | 12.22 | 2.14 | -0.03
Dec. | 16099| 20688 11684| 1997 | 12.40 | 2.25 | -0.08
2016 | 15597 23213 10461 2417 | 1549 | 2.71 | 0.38
SD:standard deviation, CV:Coefficient of variation
KR:Kurtosis, SK: Coefficient of skewness

28000 T T T T T

% 20000 .
18000 .
16000 .
14000 ‘“

12000 b

10000 L L L
0 20000 40000 60000 80000 10000 12000

Time(hour)

FIGURE 2. Hourly demand data of OEM (March 2006 to Dec. 2018).

Augmented Dickey-Fuller and KPSS tests are conducted on
the training demand time-series. For identification of SS
models for January 2007, the demand data of 4 September
to 31 December 2006 has been considered as the sample
period and is denoted by {S;,r =1,2...,2856}.

2) MODEL SELECTION AND ESTIMATION OF PARAMETERS

The model selection techniques rely on the ACF and PACF
analysis. These functions are systematic and helpful in the
determination of SARIMA model order, in the preliminary
estimation of model parameters, and in diagnostic checking.
From Figure 3, it is clear that S; is non-stationary in nature,
since the ACF dies down slowly with oscillations. Here,
a tendency for the sample ACF not to die out quickly is
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FIGURE 3. ACF for the sample period of OEM.
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FIGURE 4. PACF for the sample period of OEM.

taken as an indication that a root close to unity may exist
and it is confirmed by the KPSS and the augmented Dickey-
Fuller tests. The PACF shown in Figure 4 is also typical of a
non-stationary series with periodicities and with large spikes
at 1, 2, 23, 24, 144,145,167,168 lags. In order to remove
trend, a non-seasonal transformation (1 — B)S; of sample
data S; is applied and is denoted by dS;. When ACF and
PACEF of dS; are studied, it shows the presence of seasonal
pattern at lags 24. To remove this seasonality at lags 24 a
seasonal transformation (1 — B2%)dS, of demand data dS,
is applied and is denoted by D24dS;. The study of ACF
(Figure 5) and PACF (Figure 6) of D24dS; shows the presence
of one more seasonal behaviour. A seasonal transformation
(1 — B'%)S, of demand data S, is applied and is denoted by
D168S;.

The analysis of ACF (Figure 7) and PACF (Figure 8)
of D168dS; demonstrate seasonal MA lags at (24, 48 and
72) and seasonal AR lags at (168) respectively as shown in
equation( 16).

(1 —B)(1 — B'%¥)(1 — ®,B'%%) 5,
= (1 —0,B* — ©,B® — ©:8%) ¢, (16)

Now the error components «;, o;—1 are correlated and
assumed to be related by ARMA model. To identify the
non-seasonal MA lags, it can be observed from (Figure 7)
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FIGURE 5. ACF of D24d S; for the sample period of OEM.
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FIGURE 6. PACF of D24dS; for the sample period of OEM.
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FIGURE 7. ACF of D168 dS; for the sample period of OEM.

that ACF spikes also appear at lags 1, 7, 14, 16, 23. The order
of non-seasonal AR model can be examined from the PACF
(Figure 8) which shows significant spikes at lags (1, 2, 4, 5,
24, 48). So, ARMA model (17) for «; is:

(1 — ¢1B — ¢oB* — ¢p4B* — ¢psB° — $poaB>* — pusB*®)v,

=(1—6,B—6:B" —01uB" — 6,4B'® — 63B%) q,
(17
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FIGURE 8. PACF of D168dS; for the sample period of OEM.

Using (17) in (16), the SARIMA model is selected (18):

(1 — ¢1B — ¢oB* — ¢uB* — ¢sB° — ¢pouB* — pusB*®)
x (1 — B)(1 — ®,B'"%®)(1 — B!%®)s,
=(1-6B— 97B7 - 014314 — 9]6316 - 923323)

x (1 — ©1B* — ©,B® — ©:8%)q, (18)

From the analysis of Figures 7 and 8, one more SARIMA
model (19) is identified:

(1 — ¢1B — ¢sB° — ¢7B")(1 — B)(1 — B'%®)
x (1 — ®1B* — ®,B'%%)s,
= (1 —6;B)(1 — ©1B* — ©,B" — @387 — 04B8'%)q,
(19)

Now the parameters coefficients of models (18) and (19)
are estimated in MATLAB using maximum likelihood
estimation (MLE) method for the training data of 17 weeks.
On comparison of AIC and BIC values, the model (18) has
been selected as first tentative model for January and is named
SSJANI. Similarly the analysis of ACF (Figure 5) and PACF
(Figure 6) plots for seasonal and non-seasonal differences
of demand S; has been carried out. The ACF and PACF for
sample period after double seasonal differencing and single
non-seasonal differencing dD24D168S; are also observed.
Based on the analysis of these transformed series, two more
tentative models are identified for January: SSJAN2 (20) and
SSJAN3 (21).

(1 —¢1B)(1 — BY(1—®;B**—®,B*® — ;B> — 9B
—®sB— B (1 — B*HS, = (1 — 6:B)(1 — ©,B*
— ©,8% — ©;8'20 — ©;B'8 — 9,82 — @58
(20)
(1—¢1B—p2B*)(1—B)(1-B*)(1— @ B> — &,B" — 0387
— ®4B% — 5B — d¢B1*MS, = (1 — 6;B)(1 — ©,B*
. ®2B48 _ @33120 _ @43168 . @53216 . ®63288)at
(21)
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3) MODEL VALIDATION USING RESIDUAL ANALYSIS

The adequacy of all the three SARIMA models (18), (20)
and (21) is tested prior to using them for forecasting. The
model validation has been done based on residual and
forecast error analysis. The residuals are calculated on the
estimation set, while forecast errors are calculated based on
the test set. The residuals for the estimated SARIMA models
are calculated using the infer function in MATLAB. The
diagnostic checking is performed by the residual analysis.
This is done using (i) residual plot, (ii) checking for
normality of the residuals, (iii) quantile-quantile (Q-Q) plot,
(iv) analysis of ACF and PACF of residual, (v) plot of
Standardized residual,(vi) Durbin-Watson statistic test, and
(vii) Ljung Box Q test. All the three models have been found
to be adequate for forecasting. The diagnostic checking for
predicting load of 5 January, 2007 by the model (18) using
training window size of 17 weeks is shown in Figures 9
and 10. The observation of the standardized residuals (white
noise) and QQ plots (straight line) for 2856 residuals in
Figure 9 confirms the validation of the model (18). The
ACF and PACF tests for residual conducted to verify the
selected model. Figure 10, demonstrates ACF and PACF of
the residuals are smaller than the absolute value 0.07. As the
values of ACF and PACF are less than the absolute value
0.1 so no autocorrelation and partial autocorrelation exist
within the residuals. The validation is performed randomly
for prediction corresponding to different days and the
satisfactory validation results by all the models are obtained.
Similarly, for identification of SS models for the month of
February, the demand for previous 17 weeks have been used.
This process of identification and diagnostic checking is
repeated for the selection of SS models for every month of the
different test period. Initially, a total of 12 x 3 = 36 models
are selected as the tentative SARIMA models for forecast of
daily demand by the SS models.

4) FORECASTING
For one day forecast using only single series of load, the
parameters of all the three SARIMA models have been
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FIGURE 9. Residual analysis for prediction 5 January 2007 (SSJAN1
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FIGURE 10. ACF and PACF of residual for predicting 5 January 2007
(SSJAN1 model).

estimated for a given window size of estimation data. Then,
the model with the lowest values of AIC and BIC has been
selected among them for forecast. This selected model is
named as SSmin model. The average of forecast from each
of these SARIMA models is also calculated and named as
SSave model forecast. Repeating the same steps, 12 years
of demand have been forecasted using parameter estimation
window sizes of 63, 70, 77,..., and 140 days on a rolling
basis. The authors want to highlight the large number of
models estimated. To achieve our objective of assessing the
forecast accuracy over a very long time period (12 years),
a total of (365 x 12 + 3) x 3 x 12 = 157,788 models
are estimated by the SS model alone for twelve different
parameter estimation window sizes.
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FIGURE 11. OEM demand box plot for 24-hour subseries for each hour
March 2006 to december 2018.

B. FORECASTING STEPS IMPLEMENTATION

IN VSS MODELS

In VSS model, the hourly demand data has been split into
24 hourly sub-series, one corresponding to each hour of the
day. A box plot of these 24 hourly sub-series is shown in
Figure (11). It can be observed that the peak hours sub-series
have wider range as compared to off-peak hours. The VSS
model computes one day ahead forecast using one-step ahead
forecast for each hour of the next day using the respective
hourly sub-series. Six tentative models have been identified
based on the ACF and PACF of each hour load series. The
graph in Figure 12 presents the non-seasonal and seasonal
(s = 7) differenced subseries of hourl for training data of
119 days. It indicates that the transformed hourl demand
can be assumed to be a stationary time series. The process
is repeated with different days in the estimation series to
identify six tentative SARIMA models for hourl. Once the
tentative models are formulated, the related model parameters
are estimated using the MLE algorithm. Then, a one step
ahead forecast for each hour of the next day for a given
window size of training data has been made by selecting one
model having the lowest AIC and BIC values.This selected
model is named as VSSmin model. We also calculated the
average forecast for each hour from six tentative SARIMA
models and named it as VSSave model forecast. For one day
forecast, the parameters of all the SARIMA models have been
estimated for a given window size of training data. A total of
(365 x 12+ 3) x 144 = 631, 152 models have been estimated
for a test period of twelve years using 126 days window size
of training data.

C. FORECASTING STEPS IMPLEMENTATION IN RBF
NETWORK MODELS

In RBFNs, the main issues are: selection of training data,
number of hidden neurons in hidden layer. The hidden layer
has been set with radial basis function and output layer has a
linear activation function. To reduce training data bias, each
network trained with a past data of 14, 21, 28, 35, 42, 63 and
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FIGURE 12. OED for hour1 after seasonal (s=7) and non-seasonal
differences.

84 days before D-day. The entire training data divided in the
ratio of 85:15 and a repeated random sub-sampling applied.
The number of random initializations [/ taken as 10 and
then averaged to reduce the random initialization bias. After
multiple experiments, the number of hidden neurons has been
taken as 20, 20, 20, 25 and 25 for the training window size
of 7, 14, 21, 28, 35 days respectively. The spread factor is
also fixed at 3.5.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, the forecast performance of various models
is compared and the impact of varying window size of
parameter estimation data sets has been analysed.

A. COMPARISON OF INDIVIDUAL MODEL PERFORMANCE
Linear demand forecast has been obtained using two
approaches: (i) by the model having lowest AIC and BIC
value, and (ii) by averaging forecast of all the SARIMA
models using all parameter estimation window datasets.
Better results have been obtained by the SS model, so forecast
for this model has been shown for all the window sizes.
Apart from this, demand also forecasted by the VSS model
for different window sizes; but, no significant differences in
the forecast performance were observed. So the best forecast
results of the VSS have been presented for the window size of
126 days respectively. Non-linear demand forecast have been
obtained using RBF network with different size of training
data 14, 21, 28, 35, 42, 56 days and different number of
neurons in hidden layer.

The forecast MAPE performance of the SS, VSS, and RBF
network models using parameter estimation of window size
of 140, 126, and 28 days, respectively, is compared with
benchmark models in Table 4. The following models have
been compared:

VSS1: VSSmin model using window size 126 days,

VSS2: VSSave model using window size 126 days,

SS1: SSmin model using window size 140 days,

SS2: SSave model using window size 140 days,

RBFN: RBF network model using window size 28 days
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TABLE 3. Count of days having best performance among six models for
OEM.

Model D7 D1 VSS2 | SS2 RBFN| COM
Count of days 389 475 552 1076 | 989 902

TABLE 4. Yearly MAPE comparision OEM.

Model D7 D1 VSS1| vS§S2| SS1 | SS2 | RBFN) COM
2007 6.63 | 5.63 | 3.84 | 3.69 | 3.07 | 298 | 3.07 | 2.39
2008 549 | 493 | 339 | 326 | 2.81 | 2.79 | 2.77 | 2.24
2009 528 | 5.08 | 325 | 3.17 | 2.84 | 2775 | 271 | 2.24
2010 6.36 | 4.80 | 3.57 | 343 | 294 | 2.85 | 2.88 | 2.32
2011 536 | 495 | 355 | 3.44 | 292 | 2.85 | 2.81 | 2.29
2012 592 | 504 | 3.89 | 3.73 | 3.16 | 3.06 | 2.61 | 2.51
2013 7.08 | 5.05 | 3.75 | 3.65 | 3.03 | 3.01 | 2.72 | 2.57
2014 5.84 | 490 | 3.71 | 3.59 | 295 | 292 | 2.50 | 2.41
2015 6.73 | 5.01 | 3.89 | 3.78 | 3.14 | 3.06 | 2.73 | 2.61
2016 746 | 544 | 433 | 417 | 342 | 338 | 2.87 | 2.78
2017 6.63 | 528 | 4.047| 395 | 3.42 | 337 | 2.84 | 2.75
2018 7.43 | 5.15 | 451 | 433 | 381 | 3.68 | 2.96 | 2.95
12 Years | 6.35 | 5.11 | 3.81 | 348 | 3.12 | 3.06 | 2.75 | 2.50

COM: combination of SS2 and RBFN forecast

It can be observed that all the proposed linear models give
better performance in comparison to D1 and D7 models.
However, VSS2 gives smaller MAPE than VSS1 each year
(Table 4). Same results are obtained on comparison of
SS1 and SS2 models. These observations conclude that
average forecast is better than the forecast obtained by the
model which has lowest AIC and BIC values. The SS2
outperforms among all the other linear models. The accuracy
of combination SS2 is better than D7, D1 and VSS2 by
51.96%, 40.33%, and 12.40% respectively. The non-linear
RBFN model performs better than the SS2. Overall, best
performance is obtained by the combination of linear and
non-linear models. The accuracy of COM model is better
than D7, D1, VSS2, SS2 and RBFN by 60%, 51%, 28.16%,
18.30% and 9.09% respectively. Tables 5 and 6 compare
the relative change in mape value yearly with different
window sizes of training data by SSmin and SSavg models,
respectively.

B. DAILY PERFORMANCE COMPARISON

The proposed model is more accessible as it utilizes only
previous values of available load series only. Table 7 depicts
the daily performance of the individual models for one of
the most volatile weeks. Linear model (SS2) performs better
for four days, non-linear model (RBFN) for one day, and
proposed for two days. But for a complete week, the proposed
model performance is best. Count of days having minimum
MAPE among all six models carried out for the 12 years,
and results are presented in Table 3. It shows a similar
probabilistic count of days as in Table 7.

C. IMPLEMENTATION OF METHODOLOGY

FOR MIBEL DEMAND
The forecast performance of the models using parameter
estimation of ten window sizes of 21, 28, 35,..., 84 days is
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TABLE 5. Yearly MAPE comparison of OEM demand by SSmin model
using different window sizes (WS).

TABLE 8. Monthly MAPE comparison of OEM demand for the year 2012.

Month | D7 Dl VSS2| ANNI1 ANN2Z SS2 | RBFN COM

WS |63 |77 [91 |98 |105 |[112 [119 [126 | 133 | 140 | Avg
2007 | 3.18 [3.13 |3.05 |3.09 | 3.16 | 3.13 | 3.14 | 3.06 | 3.09 | 3.07 | 3.00
2008 |2.97 |2.85 |2.89 |12.93 | 2.84 | 2.88 | 2.87 | 2.86 | 2.83 | 2.81 | 2.78
2009 |2.96 |2.87 [2.78 | 2.81 | 2.80 | 2.82 | 2.77 | 2.80 | 2.80 | 2.84 | 2.75
2010 |3.01 {3.00 [2.95]2.98 |2.95(2.97 [2.92 298 [2.93 294 |2.88
2011 13.02 [2.94 [2.96 |2.95[2.94 [3.0 [2.97 [2.94]292]2.92[2.88
2012 |3.17 |3.17 | 3.12 |3.16 | 3.12 | 3.12 | 3.11 | 3.14 | 3.15 | 3.16 | 3.06
2013 13.30 | 3.18 [3.11 |3.09 | 3.12 | 3.16 | 3.18 | 3.19 | 3.06 | 3.03 | 3.07
2014 |3.08 {2.95 [3.01 |2.94 |3.02 {2.99 [2.99 |2.94 [2.92 295 |2.90
2015 |3.35|3.25 |3.20 |3.27 | 3.22 |3.23 | 3.18 | 3.16 | 3.16 | 3.14 | 3.11
2016 | 3.54 | 3.53 |3.47 |3.47 | 3.44 |3.45 | 3.46 | 3.43 | 3.43 |3.42 | 3.37
2017 |3.49 |3.40 [3.42|3.41 |3.38 |3.42 |3.34 |3.39 |3.39 | 3.42 | 3.39
2018 |3.75 [3.76 |3.76 | 3.76 | 3.76 | 3.78 | 3.82 | 3.81 | 3.78 | 3.81 | 3.69
Avg |3.23 |13.17 |3.14 |3.15|3.14 | 3.16 | 3.14 | 3.13 | 3.12 | 3.13 | 3.07

TABLE 6. Yearly MAPE comparision of OEM demand by SSavg model
using different window sizes (WS).

WS |63 |77 |91 |98 |105 [112 |119 | 126 |133 | 140 | Avg
2007 |3.08 |3.06 |3.022.97|3.16|3.13|3.14|2.99|3.02 | 2.98 | 2.99
2008 |2.8312.80|2.80|2.82|2.78|2.81|2.81|2.80]2.82]2.79|2.78
2009 |3.1012.79 |2.76 | 2.73 | 2.75 | 2.75 | 2.74 | 2.77 | 2.76 | 2.75 | 2.75
2010 |2.91 2.88 |2.87|2.87 |2.86|2.83|2.82|2.87|2.88|2.85|2.84
2011 |3.44]2.88|2.87|2.86|2.88|2.88|2.88)2.89|2.85]|2.85|2.85
2012 |3.13 |3.11 | 3.04 | 3.06 | 3.08 | 3.05 | 3.06 | 3.06 | 3.07 | 3.06 | 3.04
2013 |3.14]3.12 |13.05|3.05|3.06 | 3.08 | 3.05 | 3.04 | 3.04 | 3.01 | 3.05
2014 12.96 12.95|2.93[2.93|2.93]294]2.94]|2.93]2.95]2.92|2.90
2015 |3.11]3.09 | 3.08 | 3.08 | 3.09 | 3.08 | 3.08 | 3.09 | 3.12 | 3.06 | 3.07
2016 |3.44|3.45|3.41|3.41|3.38|3.39|3.39|3.38|3.40|3.38|3.37
2017 |3.393.36 |3.36 | 3.37 | 3.35 | 3.36 | 3.32 | 3.38 | 3.39 | 3.37 | 3.33
2018 |3.69 |3.70 | 3.67 | 3.70 | 3.69 | 3.67 | 3.70 | 3.69 | 3.68 | 3.68 | 3.65
Avg [3.19]3.09 |3.07 |3.07 |3.07 | 3.07 | 3.07 | 3.07 | 3.08 | 3.06 | 3.05

TABLE 7. Forecasting accuracy (MAPE) comparison of OEM demand for
one week.

Models Year | D7 D1 SS2 VSS2 | RBFN | COM
2007

Jan 3 6.187 2.819 1.441 3.517 2.576 2.006
Jan 4 4.635 1.948 1.117 1.175 3.091 2.181
Jan 5 2.411 2.259 1.397 1.891 2.325 1.619
Jan 6 3.283 8.37 1.545 1.739 4.260 2.547
Jan 7 2.289 2.465 4.124 4.021 3.278 2.211
Jan 8 17.235| 12437 | 9.525 13.04 2.563 6.112
Jan 9 6.965 2.124 2.139 2.576 2.436 1.106
Avg. 6.144 4.63 3.041 3.994 2.933 2.540

—D7--D1--VS8S---SS —RBFN —COM

12 24 3% 48 60 8 9% 108 120 132 144

72
Month
FIGURE 13. Comparison of monthly MAPE OEM for long period.

calculated for MIBEL demand of 2016. A total of (658, 800
SARIMA models are estimated using ten different window
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Jan. 6.01 | 421 | 349 | 289 | 2.17 | 272 | 2.17 | 1.97
Feb. 421 | 349 | 261 | 276 | 205 | 248 | 2.28 | 1.98
March | 5.78 | 499 | 346 | 280 | 2.53 | 3.08 | 3.44 | 2.67
April 396 | 482 | 289 | 249 | 231 | 3.02 | 2.59 | 2.19
May 5.12 | 5.61 | 3.72 | 2.67 | 2.17 | 3.08 | 240 | 2.07
June 11.01] 6.59 | 548 | 348 | 249 | 413 | 294 | 2.59

July 8.2 6914| 5.61 | 383 | 2.78 | 427 | 3.11 | 2.87
Aug. 859 | 6.12 | 537 | 3.65 | 2.68 | 4.16 | 3.08 | 2.64
Sep. 638 | 640 | 422 | 3.03 | 272 | 3.03 | 3.26 | 2.59
Oct. 332 | 396 | 281 | 2.25 | 220 | 2.23 | 2.03 | 1.68
Nov. 430 | 370 | 2.01 | 223 | 2.11 | 2.09 | 2.09 | 1.73
Dec. 397 | 3.68 | 3.03 | 229 | 248 | 232 | 199 | 1.86
Avg. 592 | 504 | 3.73 | 291 | 238 | 3.04 | 2.62 | 2.24

TABLE 9. Forecasting accuracy (MAPE) comparison of MIBEL for 2016.

Models | D7 D1 SS3 SS4 VSS3 | VSS4 | RBEN| COM
Jan. 594 | 634 | 224 | 213 | 299 | 279 | 342 | 2.26
Feb. 4.05 | 6.89 | 245 | 2.27 1.97 1.9 2.01 1.65
March. | 412 | 7.04 | 233 | 225 | 2.01 | 2.01 2.55 1.96
April. | 539 | 584 | 228 | 2.15 1.96 1.99 | 2.66 1.68
May. 3.81 7.67 | 237 | 2.07 1.61 1.56 | 3.23 1.84
June. 386 | 643 | 234 | 206 | 201 | 228 |28 1.84
July. 269 | 594 | 069 | 0.68 | 098 | 0.78 1.35 | 0.62
Aug. 6.24 | 535 1.74 1.71 1.34 1.27 1.94 1.17
Sept. 328 | 5.87 | 0.81 0.79 | 0.82 | 0.76 | 1.25 | 0.63
Oct. 263 | 7.32 | 2,12 | 2.02 1.61 1.39 | 2.01 1.56
Nov. 572 |72 347 | 340 | 216 | 2.18 | 2.65 | 3.28
Dec. 7.1 7.61 293 | 2.88 | 330 | 3.30 | 4.14 | 4.06
2016 4.57 | 6.63 | 2.14 | 2.03 | 2.09 195 | 240 1.69

sizes for MIBEL one year forecast. Results of average
forecast of individual models and com model are presented
in Table 9. The following models have been compared for
MIBEL demand forecast:

VSS3: average forecast all window size of VSSmin model,

VSS4: average forecast all window size of VSSave model,

SS3: average forecast all window size of SSmin model,

SS4: average forecast all window size of SSave model,

RBEN: average forecast all window size of RBF network
model

COM2: combination of VSS4, SS4 and RBFN forecast.
SARIMA models perform better then RBFN model for
MIBEL demand. VSSave model performance is best among
the individual models. The accuracy of COM2 model is better
than D7, D1, VSS4, SS4 and RBEN by 63%, 74%, 13 %, 19%
and 30 % respectively. It is remarkably observed in Tables4,
8, 9 that the com model is ameliorating MAPE compared to
single models for both markets.

D. COMPARISON WITH MODELS IN LITERATURE

Table 8 depicts the monthly performance comparison for the
year 2012 with the earlier models proposed for OEM [44].
Here ANNI and ANN?2 are the artificial neural network
models forecasted demand without and with considering
temperature data respectively. Here also, COM approach
provides more accurate prediction with a less MAPE not
only every month but also complete year 2012. According
to Table 8, the proposed model achieved a significant
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TABLE 10. Comparison of the proposed model with models in the
literature.

Ref [ Model | Market |EV TD PF |HF |MAPE (%)
ANN GIPS T,PD |1997- |2000 [ DA |1.75t03.04
[42] 1999
ANN OEM T,PD |[2007 |2012 | DA |2.05t02.78
[44] to
2011
RBFN PIM WETH| 48 3 DA | DME 2.62 to
[48] days days 3.45:
Hybrid | southern | T,WF, | One 2015 | DA | 5.16
[54]| ARIMA- | region, | TI year
SVM India (2014)
Double | MEK PD 52 one |hour |lessthan5
[62]| SARIMA weeks | month ahead
1 step
ahead
Hybrid | Taiwan |T 1965 |4 one- | 1.346 to
[64]| EEMD- to years | step- | 4.782
ARIMA- 2014 ahead
GA-
SVR
Two- Brazilian 1990- | 1999, 1999:  3.08
[69]] level 1998 | 2000 2000: 3.56
SAR
DNN KEM T, H,|3years| 10 DA |2.19t02.27
[76] SR, weeks
CC,
WD
Hybrid | New T, DT, | 20 4 DA | 1.53t02.51
[77]| SVR, England | TL PD | days weeks
ARIMA
LSTM | Victoria |T, TI, 2015 |2016 |3DA |3.15
[78] Aus- PD
tralia
Hybrid | Malaysia,| T, TI, | 2009- |31 24h, |2.69, 4.96
[79]]| stacked | New DT, 2011, |Dec |48h
ap- England | PD 2003- | 2009
proach day, 2014
hour
feature
SARIMA| OEM , | PD 14 13 DA | 1.68t02.98
RBFN, | MIBEL days years
COM to 140
days
EV: Explanatory variables,TD: training data,PF:Period of forecast,

HF:Horizon of Forecast, T:Temperature, WF:weather factor, H:humidity,
SR:solar radiations, CC:cloud cover ,WD:wind speed, DA: day-ahead
PD:previous lags value of demand, DT: Day Type, TI: Time Index
,GIPS:Greek intercontinental power system.

PIM: Pennsylvania—New Jersey—Maryland

improvement in accuracy compared to single models D7,
D1, ANNI1, ANN2 by 62%,55%, 23% and 6% respectively.
Table 10 indicates that long load forecast on a rolling
basis using only a single load series is not predicted in the
literature. In [69], Soares and Medeiros presented the results
for only two years and MAPE changes from 3.08 to 3.56.
The proposed model performance is consistent in the whole
period of testing, with an absolute difference of MAPE of two
consecutive years not exceed to 0.2. A large amount of the
training data is required to estimate parameters by models
ANN, DNN, and LSTM in Table 10, but in the proposed
model, only data from some weeks is sufficient. In Summary,
the following observations are made:

o VSS, SS, and RBFN models perform better than

benchmark models.
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o For OEM, the performance of SS model is better
than VSS model. RBFN models is best among all
the presented individual models. For MIBEL, the
performance of VSS models is better than SS and RBFN
models.

o For all the parameter estimation window sizes, the
SSave performs better than the SSmin for both markets.
The forecast accuracy of combination forecasts for all
window size by SSave model (Table 6) and SSmin model
(Table 5) are closely matched, although SSave is better
linear model for OEM.

e The model performance varies with the window
size of parameter estimation data sets. Linear model
(SARIMA) forecast gets improved on increasing win-
dow sizes but for non-linear it is reverse. Forecast
performance of RBFN is best when training data of
28 days is used.

o Monthly (Figure 13, Table 9) and the yearly (Table 4)
MAPE are smaller for the forecast by using COM model.
It shows that combination of models produced better
forecast than the individual model [75].

« It can be observed that the probability of getting better
forecast with the COM model is highest than the ANN1
and ANN2 models used in literature, Table 8.

o From the study of the daily MAPE of all models,
the COM model reasonably reduces MAPE when the
performance of individual models is comparable.

The empirical results have verified the feasibility of the pro-
posed method. It combines the merits of every single models
to overcome the limitations of low-precision prediction of
single models. Therefore, it can be deduced that the proposed
combination technique is perfectly tailored for STLF.

VI. CONCLUSION

In this paper, day-ahead load forecasting methodology for
building SARIMA and RBF models has been discussed.
The models have been developed using the demand series
in two frameworks: (i) single series, (ii) variable segmented
series. The metrics for accuracy assessment i.e., MAPE of
all the models has been compared on daily, monthly, and
yearly basis for two markets real data. The parameters and
weights of all the models for each demand series have been
estimated for different window size of estimation data. The
performance of linear models has been compared on the
basis of two approaches:(i) by the model having lowest
AIC and BIC values, and (ii) by averaging forecast of
all the SARIMA models.Results showed that all models
outperformed compared to the benchmark models D7 and
D1 in both markets. Forecast by SARIMA models (SSave,
VSSave) gives smaller MAPE than (SSmin, VSSmin) respec-
tively for both markets. Among all individual models, RBFN
performance is good for OEM demand and linear models
using VSS framework perform better for MIBEL demand.
Overall, proposed model, COM produces best forecast than
all other forecast for both real demand data. For longer
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durations, the performance of the model has been further
validated and it is proved that simple average is a prudent
strategy for combining the demand forecasts of multiple
models. For future directions, the proposed COM model can
be designed with auto-selection of best training data window
based on volatility associated with the historical demand
series.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

G. E. Huck, A. A. Mahmoud, R. B. Comerford, J. Adams, and E. Dawson,
“Load forecast bibliography phase 1,” IEEE Trans. Power Appar. Syst.,
vol. PAS-99, no. 1, pp. 53-58, Jan. 1980, doi: 10.1109/TPAS.1980.319608.
S. Fan and R. J. Hyndman, ““Short-term load forecasting based on a semi-
parametric additive model,” IEEE Trans. Power Syst., vol. 27, no. 1,
pp. 134-141, Feb. 2012, doi: 10.1109/TPWRS.2011.2162082.

F. AlHarji, M. R. AlRashidi, and K. M. El-Naggar, “Long-term electrical
load forecast in Kuwaiti and Egyptian power systems,” J. Eng. Res., vol. 6,
no. 3, pp. 116-135, 2018.

D. W. Bunn, “Short-term forecasting: A review of procedures in the
electricity supply industry,” J. Oper. Res. Soc., vol. 33, no. 6, pp. 533-545,
Jun. 1982, doi: 10.1057/jors.1982.116.

E. A. Feinberg and D. Genethliou, “Load forecasting,” in Applied
Mathematics for Restructured Electric Power Systems, J. H. Chow,
F. F. Wu, and J. Momoh, Eds. Boston, MA, USA: Springer, 2005,
pp. 269-285, doi: 10.1007/0-387-23471-3_12.

G. Gross and F. D. Galiana, “Short-term load forecasting,” Proc. IEEE,
vol. 75, no. 12, pp. 1558-1573, Dec. 1987, doi: 10.1109/proc.1987.13927.
M. T. Hagan and S. M. Behr, “The time series approach to short term
load forecasting,” IEEE Trans. Power Syst., vol. PS-2, no. 3, pp. 785-791,
Aug. 1987, doi: 10.1109/TPWRS.1987.4335210.

I. Moghram and S. Rahman, “Analysis and evaluation of five short-term
load forecasting techniques,” IEEE Trans. Power Syst., vol. 4, no. 4,
pp. 1484-1491, Nov. 1989, doi: 10.1109/59.41700.

H. K. Alfares and M. Nazeeruddin, “Electric load forecasting: Literature
survey and classification of methods,” Int. J. Syst. Sci., vol. 33, no. 1,
pp. 23-34, Jan. 2002, doi: 10.1080/00207720110067421.

A. A. Mamun, M. Sohel, N. Mohammad, M. S. H. Sunny, D. R. Dipta, and
E. Hossain, “A comprehensive review of the load forecasting techniques
using single and hybrid predictive models,” IEEE Access, vol. 8,
pp. 134911-134939, 2020, doi: 10.1109/ACCESS.2020.3010702.

S. Wu, J. Jiang, Y. Yan, W. Bao, and Y. Shi, “Improved coyote algorithm
and application to optimal load forecasting model,” Alexandria Eng. J.,
vol. 61, no. 10, pp. 7811-7822, Oct. 2022, doi: 10.1016/j.2€j.2022.01.032.
G. U. Yule, “Why do we sometimes get nonsense correlations between
time series? A study in sampling and the nature of time series,” J. Roy.
Stat. Soc., vol. 89, no. 1, pp. 1-63, 1926.

E. Sluzky, “The summation of random causes as the source of cyclic
processes,” Econometrica, J. Econ. Soc., vol. 5, no. 2, pp. 105-146, 1937.
F. Galiana, E. Handschin, and A. Fiechter, “Identification of
stochastic electric load models from physical data,” IEEE Trans.
Autom. Control, vol. AC-19, no. 6, pp.887-893, Dec. 1974, doi:
10.1109/TAC.1974.1100724.

N. D. Uri, “Forecasting peak system load using a combined time series and
econometric model,” Appl. Energy, vol. 4, no. 3, pp. 219-227, Jul. 1978,
doi: 10.1016/0306-2619(78)90004-1.

H. He, T. Liu, R. Chen, Y. Xiao, and J. Yang, “High frequency short-
term demand forecasting model for distribution power grid based on
ARIMA,” in Proc. IEEE Int. Conf. Comput. Sci. Autom. Eng. (CSAE),
vol. 3, May 2012, pp. 293-297, doi: 10.1109/CSAE.2012.6272958.

J.-F. Chen, W.-M. Wang, and C.-M. Huang, “Analysis of an adaptive
time-series autoregressive moving-average (ARMA) model for short-term
load forecasting,” Electr. Power Syst. Res., vol. 34, no. 3, pp. 187-196,
Sep. 1995, doi: 10.1016/0378-7796(95)00977-1.

E. H. Barakat, J. M. Al-Qassim, and S. A. A. Rashed, “New model for
peak demand forecasting applied to highly complex load characteristics of
a fast developing area,” IEE Proc. C, Gener., Transmiss. Distrib., vol. 139,
no. 2, p. 136, 1992, doi: 10.1049/ip-c.1992.0022.

G. A.N. Mbamalu and M. E. El-Hawary, ‘Load forecasting via suboptimal
seasonal autoregressive models and iteratively reweighted least squares
estimation,” IEEE Trans. Power Syst., vol. 8, no. 1, pp. 343-348, 1993,
doi: 10.1109/59.221222.

59004

(20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

[30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

G. Juberias, R. Yunta, J. G. Moreno, and C. Mendivil, “A new ARIMA
model for hourly load forecasting,” in Proc. IEEE Power Eng. Soc.
Transmiss. Distrib. Conf., vol. 1, Apr. 1999, pp. 314-319.

G. A. Darbellay and M. Slama, “Forecasting the short-term demand for
electricity,” Int. J. Forecasting, vol. 16, no. 1, pp. 71-83, Jan. 2000, doi:
10.1016/50169-2070(99)00045-x.

S. Saab, E. Badr, and G. Nasr, “Univariate modeling and forecasting of
energy consumption: The case of electricity in Lebanon,” Energy, vol. 26,
no. 1, pp. 1-14, Jan. 2001, doi: 10.1016/30360-5442(00)00049-9.

J. W. Taylor, L. M. de Menezes, and P. E. McSharry, “A comparison
of univariate methods for forecasting electricity demand up to a day
ahead,” Int. J. Forecasting, vol. 22, no. 1, pp. 1-16, Jan. 2006, doi:
10.1016/j.ijforecast.2005.06.006.

J. W. Taylor and P. E. McSharry, “Short-term load forecasting methods:
An evaluation based on European data,” IEEE Trans. Power Syst.,
vol. 22, no. 4, pp.2213-2219, Nov. 2007, doi: 10.1109/TPWRS.2007.
907583.

S. S. Pappas, L. Ekonomou, D. C. Karamousantas, G. E. Chatzarakis,
S. K. Katsikas, and P. Liatsis, “Electricity demand loads modeling using
AutoRegressive moving average (ARMA) models,” Energy, vol. 33, no. 9,
pp. 1353-1360, Sep. 2008, doi: 10.1016/j.energy.2008.05.008.

J. Deng and P. Jirutitijaroen, ‘‘Short-term load forecasting using time
series analysis: A case study for Singapore,” in Proc. IEEE Conf.
Cybern. Intell. Syst., Jun. 2010, vol. 1, no. 1, pp.231-236, doi:
10.1109/ICCIS.2010.5518553.

S. R. Huang, ““Short-term load forecasting using threshold autoregressive
models,” IEE Proc. Gener. Transm. Distrib., vol. 144, no. 5, pp. 477-481,
doi: 10.1049/ip-gtd:19971144.

E. H. Barakat, M. A. Qayyum, M. N. Hamed, and S. A. A. Rashed,
“Short-term peak demand forecasting in fast developing utility with
inherit dynamic load characteristics. I. Application of classical time-series
methods. II. Improved modelling of system dynamic load characteristics,”
IEEE Trans. Power Syst., vol. 5, no. 3, pp.813-824, 1990, doi:
10.1109/59.65910.

F. Wu, C. Cattani, W. Song, and E. Zio, “Fractional ARIMA with an
improved cuckoo search optimization for the efficient short-term power
load forecasting,” Alexandria Eng. J., vol. 59, no. 5, pp.3111-3118,
Oct. 2020, doi: 10.1016/j.aej.2020.06.049.

L. F. Amaral, R. C. Souza, and M. Stevenson, “A smooth transition
periodic autoregressive (STPAR) model for short-term load forecasting,”
Int. J. Forecasting, vol. 24, no. 4, pp.603-615, Oct. 2008, doi:
10.1016/j.ijforecast.2008.08.006.

A. D. Papalexopoulos and T. C. Hesterberg, “‘A regression-based approach
to short-term system load forecasting,” IEEE Trans. Power Syst., vol. 5,
no. 4, pp. 1535-1547, 1990, doi: 10.1109/59.99410.

W. Charytoniuk, M. S. Chen, and P. Van Olinda, “Nonparametric
regression based short-term load forecasting,” IEEE Trans. Power Syst.,
vol. 13, no. 3, pp. 725-730, Aug. 1998.

H. Mori and N. Kosemura, ““Optimal regression tree based rule discovery
for short-term load forecasting,” in Proc. IEEE Power Eng. Soc.
Winter Meeting. Conf., Jan. 2001, pp. 421-426, doi: 10.1109/PESW.2001.
916878.

S. Kumar, S. Mishra, and S. Gupta, “Short term load forecasting
using ANN and multiple linear regression,” in Proc. 2nd Int. Conf.
Comput. Intell. Commun. Technol. (CICT), Feb. 2016, pp. 184-186, doi:
10.1109/CICT.2016.44.

R. P. Broadwater, A. Sargent, A. Yarali, H. E. Shaalan, and J. Nazarko,
“Estimating substation peaks from load research data,” IEEE Trans. Power
Del., vol. 12, no. 1, pp. 451-456, 1997, doi: 10.1109/61.568270.

T. Haida, S. Muto, Y. Takahashi, and Y. Ishi, “Peak load fore-
casting using multiple-year data with trend data processing tech-
niques,” Electr. Eng. Jpn. English Transl. Denki Gakkai Ronbun-
shi, vol. 123, no. 1, pp. 1101-1108, 1998, doi: 10.1002/(SICI)1520-
6416(19980715)124:1<7::AID-EEJ2>3.0.CO;2-B.

M. Y. Cho, J. C. Hwang, and C. S. Chen, “Customer short term load
forecasting by using ARIMA transfer function model,” in Proc. Int.
Conf. Energy Manage. Power Del. (EMPD), Nov. 1995, pp. 317-322, doi:
10.1109/EMPD.1995.500746.

H.-T. Yang and C.-M. Huang, “A new short-term load forecasting
approach using self-organizing fuzzy ARMAX models,” IEEE Trans.
Power Syst., vol. 13, no. 1, pp. 217-225, Feb. 1998, doi: 10.1109/59.
651639.

VOLUME 12, 2024


http://dx.doi.org/10.1109/TPAS.1980.319608
http://dx.doi.org/10.1109/TPWRS.2011.2162082
http://dx.doi.org/10.1057/jors.1982.116
http://dx.doi.org/10.1007/0-387-23471-3_12
http://dx.doi.org/10.1109/proc.1987.13927
http://dx.doi.org/10.1109/TPWRS.1987.4335210
http://dx.doi.org/10.1109/59.41700
http://dx.doi.org/10.1080/00207720110067421
http://dx.doi.org/10.1109/ACCESS.2020.3010702
http://dx.doi.org/10.1016/j.aej.2022.01.032
http://dx.doi.org/10.1109/TAC.1974.1100724
http://dx.doi.org/10.1016/0306-2619(78)90004-1
http://dx.doi.org/10.1109/CSAE.2012.6272958
http://dx.doi.org/10.1016/0378-7796(95)00977-1
http://dx.doi.org/10.1049/ip-c.1992.0022
http://dx.doi.org/10.1109/59.221222
http://dx.doi.org/10.1016/s0169-2070(99)00045-x
http://dx.doi.org/10.1016/s0360-5442(00)00049-9
http://dx.doi.org/10.1016/j.ijforecast.2005.06.006
http://dx.doi.org/10.1109/TPWRS.2007.907583
http://dx.doi.org/10.1109/TPWRS.2007.907583
http://dx.doi.org/10.1016/j.energy.2008.05.008
http://dx.doi.org/10.1109/ICCIS.2010.5518553
http://dx.doi.org/10.1049/ip-gtd:19971144
http://dx.doi.org/10.1109/59.65910
http://dx.doi.org/10.1016/j.aej.2020.06.049
http://dx.doi.org/10.1016/j.ijforecast.2008.08.006
http://dx.doi.org/10.1109/59.99410
http://dx.doi.org/10.1109/PESW.2001.916878
http://dx.doi.org/10.1109/PESW.2001.916878
http://dx.doi.org/10.1109/CICT.2016.44
http://dx.doi.org/10.1109/61.568270
http://dx.doi.org/10.1002/(SICI)1520-6416(19980715)124:1<7::AID-EEJ2>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1520-6416(19980715)124:1<7::AID-EEJ2>3.0.CO;2-B
http://dx.doi.org/10.1109/EMPD.1995.500746
http://dx.doi.org/10.1109/59.651639
http://dx.doi.org/10.1109/59.651639

N. Rani et al.: Short-Term Load Foresting Using Combination of Linear and Non-Linear Models

IEEE Access

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

H. Cui and X. Peng, “Short-term city electric load forecasting with
considering temperature effects: An improved ARIMAX model,” Math.
Problems Eng., vol. 2015, pp. 1-10, Jul. 2015, doi: 10.1155/2015/589374.
S. E. Papadakis, J. B. Theocharis, and A. G. Bakirtzis, “A load curve
based fuzzy modeling technique for short-term load forecasting,” Fuzzy
Sets Syst., vol. 135, no. 2, pp. 279-303, Apr. 2003, doi: 10.1016/s0165-
0114(02)00211-7.

M. Joshi, G. Sharma, P. N. Bokoro, and N. Krishnan, “A fuzzy-PSO-
PID with UPFC-RFB solution for an LFC of an interlinked hydro
power system,” Energies, vol. 15, no. 13, p. 4847, Jul. 2022, doi:
10.3390/en15134847.

G. J. Tsekouras, F. D. Kanellos, V. T. Kontargyri, C.D. Tsirekis,
1. S. Karanasiou, C. N. Elias, A. D. Salis, and N. E. Mastorakis,
“A comparison of artificial neural networks algorithms for short term
load forecasting in Greek intercontinental power system,” in Proc. WSEAS
Int. Conf. Circuits, Syst., Electron., Control Signal Process., vol. 1, 2008,
pp. 15-17.

A. Baliyan, K. Gaurav, and S. K. Mishra, “A review of short term load
forecasting using artificial neural network models,” Proc. Comput. Sci.,
vol. 48, pp. 121-125, Jan. 2015, doi: 10.1016/j.procs.2015.04.160.

K. B. Sahay, N. Kumar, and M. M. Tripathi, “Short-term load forecasting
of Ontario electricity market by considering the effect of temperature,” in
Proc. 6th IEEE Power India Int. Conf. (PIICON), Dec. 2014, pp. 1-6, doi:
10.1109/POWERI.2014.7117662.

A. L. Arvanitidis, D. Bargiotas, A. Daskalopulu, V.M. Laitsos, and
L. H. Tsoukalas, “Enhanced short-term load forecasting using artificial
neural networks,” Energies, vol. 14, no. 22, p. 7788, Nov. 2021, doi:
10.3390/en14227788.

Y. K. Penya, C. E. Borges, and I. Ferndndez, *“Short-term load forecasting
in non-residential buildings,” in Proc. IEEE Africon, Sep. 2011, pp. 1-6,
doi: 10.1109/AFRCON.2011.6072062.

W.-Y. Chang, “Short-term load forecasting using radial basis function
neural network,” J. Comput. Commun., vol. 3, no. 11, pp. 4045, 2015,
doi: 10.4236/jcc.2015.311007.

S. R. Salkuti, “Short-term electrical load forecasting using radial basis
function neural networks considering weather factors,” Electr. Eng.,
vol. 100, no. 3, pp. 1985-1995, Sep. 2018, doi: 10.1007/s00202-018-
0678-8.

1. Ozer, S. B. Efe, and H. Ozbay, “A combined deep learning application
for short term load forecasting,” Alexandria Eng. J., vol. 60, no. 4,
pp. 3807-3818, Aug. 2021, doi: 10.1016/j.a¢j.2021.02.050.

J. Y. Fan and J. D. McDonald, ““A real-time implementation of short-term
load forecasting for distribution power systems,” IEEE Trans. Power Syst.,
vol. 9, no. 2, pp. 988-994, May 1994, doi: 10.1109/59.317646.

A. Abraham and B. Nath, “A neuro-fuzzy approach for modelling
electricity demand in Victoria,” Appl. Soft Comput., vol. 1, no. 2,
pp. 127-138, Aug. 2001, doi: 10.1016/s1568-4946(01)00013-8.

C.-M. Lee and C.-N. Ko, ““Short-term load forecasting using lifting scheme
and ARIMA models,” Expert Syst. Appl., vol. 38, no. 5, pp. 5902-5911,
May 2011, doi: 10.1016/j.eswa.2010.11.033.

L. C.P. Velasco, D. L. L. Polestico, G. P. O. Macasieb, M. B. V. Reyes, and
F. B. Vasquez, “Load forecasting using autoregressive integrated moving
and artificial neural network,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 7,
pp. 23-29, 2018.

S. Karthika, V. Margaret, and K. Balaraman, “Hybrid short term
load forecasting using ARIMA-SVM,” in Proc. Innov. Power Adv.
Comput. Technol. (i-PACT), Vellore, India, Apr. 2017, pp. 1-7, doi:
10.1109/TPACT.2017.8245060.

H. Wold and G. Tintner, “A study in the analysis of stationary time
series,” J. Political Economy, vol. 48, no. 1, pp. 119-120, 1940, doi:
10.1086/255506.

N. Amjady, “Short-term hourly load forecasting using time-series
modeling with peak load estimation capability,” IEEE Trans. Power Syst.,
vol. 16, no. 3, pp. 498-505, Aug. 2001, doi: 10.1109/59.932287.

V. S. Ediger and S. Akar, “ARIMA forecasting of primary energy
demand by fuel in Turkey,” Energy Policy, vol. 35, no. 3, pp. 1701-1708,
Mar. 2007, doi: 10.1016/j.enpol.2006.05.009.

H. I. Zuhaimy and K. A. Mahpol, “SARIMA model for forecasting
Malaysian electricity generated,” Matematika, vol. 21, pp. 143-152,
Dec. 2005.

S.-J. Huang and K.-R. Shih, “Short-term load forecasting via ARMA
model identification including non-Gaussian process considerations,”
IEEE Trans. Power Syst., vol. 18, no. 2, pp. 673-679, May 2003, doi:
10.1109/TPWRS.2003.811010.

VOLUME 12, 2024

(60]

[61]

[62]

[63]

(64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(77

(78]

(79]

N. Mohamed, M. H. Ahmad, Z. Ismail, and S. Suhartono, *“Short term
load forecasting using double seasonal ARIMA model,” in Proc. Regional
Conf. Stat. Sci., 2010, vol. 10, no. 1, pp. 57-73.

J. W. Taylor, “Triple seasonal methods for short-term electricity demand
forecasting,” Eur. J. Oper. Res., vol. 204, no. 1, pp. 139-152, Jul. 2010,
doi: 10.1016/j.€jor.2009.10.003.

S. A. W. Dinata, M. Azka, M. Faisal, Suhartono, R. Yendra, and
M. D. H. Gamal, “Short-term load forecasting double seasonal ARIMA
methods: An evaluation based on Mahakam-East Kalimantan data,” in
Proc. 4th INDOMS Int. Conf. Math. ITS Appl. (IICMA), 2020, pp. 1-13,
doi: 10.1063/5.0017643.

E. Chodakowska, J. Nazarko, and L. Nazarko, “ARIMA models in
electrical load forecasting and their robustness to noise,” Energies, vol. 14,
no. 23, p. 7952, Nov. 2021, doi: 10.3390/en14237952.

Y.-S. Kao, K. Nawata, and C.-Y. Huang, “Predicting primary energy
consumption using hybrid ARIMA and GA-SVR based on EEMD
decomposition,” Mathematics, vol. 8, no. 10, p. 1722, Oct. 2020, doi:
10.3390/math8101722.

M. S. Al-Musaylh, R. C. Deo, J. F. Adamowski, and Y. Li, “Short-
term electricity demand forecasting with MARS, SVR and ARIMA
models using aggregated demand data in Queensland, Australia,” Adv.
Eng. Informat., vol. 35, pp. 1-16, Jan. 2018, doi: 10.1016/j.aei.2017.
11.002.

T. Panapongpakorn and D. Banjerdpongchai, *‘Short-term load forecast for
energy management systems using time series analysis and neural network
method with average true range,” in Proc. Ist Int. Symp. Instrum., Control,
Artif. Intell., Robot. (ICA-SYMP), Jan. 2019, pp. 86-89, doi: 10.1109/ICA-
SYMP.2019.8646068.

B.-J. Chen, M.-W. Chang, and C.-J. Lin, “Load forecasting using
support vector machines: A study on EUNITE competition 2001,” IEEE
Trans. Power Syst., vol. 19, no. 4, pp. 1821-1830, Nov. 2004, doi:
10.1109/TPWRS.2004.835679.

S. Makridakis and M. Hibon, ‘“The M3-competition: Results, conclusions
and implications,” Int. J. Forecasting, vol. 16, no. 4, pp.451-476,
Oct. 2000, doi: 10.1016/s0169-2070(00)00057-1.

L. J. Soares and M. C. Medeiros, ‘““Modeling and forecasting short-term
electricity load: A comparison of methods with an application to Brazilian
data,” Int. J. Forecasting, vol. 24, no. 4, pp. 630-644, Oct. 2008, doi:
10.1016/j.ijforecast.2008.08.003.

S. Schniirch and A. Wagner, “Electricity price forecasting with
neural networks on EPEX order books,” Appl. Math. Finance,
vol. 27, no. 3, pp. 189-206, May 2020, doi: 10.1080/1350486x.2020.
1805337.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control, 3rd ed. Hoboken, NJ, USA: Wiley, 1994.

D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin, “Testing
the null hypothesis of stationarity against the alternative of a unit
root,” J. Econometrics, vol. 54, nos. 1-3, pp. 159-178, Oct. 1992, doi:
10.1016/0304-4076(92)90104-y.

D. A. Dickey, W. R. Bell, and R. B. Miller, “Unit roots in time
series models: Tests and implications,” Amer. Statistician, vol. 40, no. 1,
pp. 12-26, Feb. 1986, doi: 10.1080/00031305.1986.10475349.

S. K. Aggarwal, L. M. Saini, and A. Kumar, “Electricity price
forecasting in deregulated markets: A review and evaluation,” Int.
J. Electr. Power Energy Syst., vol. 31, no. 1, pp. 13-22, Jan. 2009, doi:
10.1016/j.ijepes.2008.09.003.

F. Chan and L. L. Pauwels, “Some theoretical results on forecast
combinations,” Int. J. Forecasting, vol. 34, no. 1, pp. 64-74, Jan. 2018,
doi: 10.1016/j.ijforecast.2017.08.005.

S. Ryu, J. Noh, and H. Kim, “Deep neural network based demand side
short term load forecasting,” Energies, vol. 10, no. 1, p. 3, Dec. 2016, doi:
10.3390/en10010003.

G. Cai, W. Wang, and J. Lu, “A novel hybrid short term load forecasting

model considering the error of numerical weather prediction,”
Energies, vol. 9, no. 12, p.994, Nov. 2016, doi: 10.3390/
en9120994.

N. Al Khafaf, M. Jalili, and P. Sokolowski, “Application of deep learning
long short-term memory in energy demand forecasting,” in Proc. Int. Conf.
Eng. Appl. Neural Netw. Springer, 2019, pp. 31-42, doi 10.1007/978-
10033-030-20257-6_3.

M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi, F. S. Oueslati, and
H. Abu-Rub, “A novel stacked generalization ensemble-based hybrid
LGBM-XGB-MLP model for short-term load forecasting,” Energy,
vol. 214, Jan. 2021, Art. no. 118874.

59005


http://dx.doi.org/10.1155/2015/589374
http://dx.doi.org/10.1016/s0165-0114(02)00211-7
http://dx.doi.org/10.1016/s0165-0114(02)00211-7
http://dx.doi.org/10.3390/en15134847
http://dx.doi.org/10.1016/j.procs.2015.04.160
http://dx.doi.org/10.1109/POWERI.2014.7117662
http://dx.doi.org/10.3390/en14227788
http://dx.doi.org/10.1109/AFRCON.2011.6072062
http://dx.doi.org/10.4236/jcc.2015.311007
http://dx.doi.org/10.1007/s00202-018-0678-8
http://dx.doi.org/10.1007/s00202-018-0678-8
http://dx.doi.org/10.1016/j.aej.2021.02.050
http://dx.doi.org/10.1109/59.317646
http://dx.doi.org/10.1016/s1568-4946(01)00013-8
http://dx.doi.org/10.1016/j.eswa.2010.11.033
http://dx.doi.org/10.1109/IPACT.2017.8245060
http://dx.doi.org/10.1086/255506
http://dx.doi.org/10.1109/59.932287
http://dx.doi.org/10.1016/j.enpol.2006.05.009
http://dx.doi.org/10.1109/TPWRS.2003.811010
http://dx.doi.org/10.1016/j.ejor.2009.10.003
http://dx.doi.org/10.1063/5.0017643
http://dx.doi.org/10.3390/en14237952
http://dx.doi.org/10.3390/math8101722
http://dx.doi.org/10.1016/j.aei.2017.11.002
http://dx.doi.org/10.1016/j.aei.2017.11.002
http://dx.doi.org/10.1109/ICA-SYMP.2019.8646068
http://dx.doi.org/10.1109/ICA-SYMP.2019.8646068
http://dx.doi.org/10.1109/TPWRS.2004.835679
http://dx.doi.org/10.1016/s0169-2070(00)00057-1
http://dx.doi.org/10.1016/j.ijforecast.2008.08.003
http://dx.doi.org/10.1080/1350486x.2020.1805337
http://dx.doi.org/10.1080/1350486x.2020.1805337
http://dx.doi.org/10.1016/0304-4076(92)90104-y
http://dx.doi.org/10.1080/00031305.1986.10475349
http://dx.doi.org/10.1016/j.ijepes.2008.09.003
http://dx.doi.org/10.1016/j.ijforecast.2017.08.005
http://dx.doi.org/10.3390/en10010003
http://dx.doi.org/10.3390/en9120994
http://dx.doi.org/10.3390/en9120994
http://dx.doi.org/10.1007/978-10033-030-20257-6_3
http://dx.doi.org/10.1007/978-10033-030-20257-6_3

IEEE Access

N. Rani et al.: Short-Term Load Foresting Using Combination of Linear and Non-Linear Models

NEELAM RANI received the B.Sc. (Non-
medical), M.Sc. (Mathematics), and M.Phil.
(Applied Mathematics) degrees from Kurukshetra
University, Kurukshetra, and Guru Jambheshwar
University, India, respectively. She is currently
a Research Scholar with the Department of
Mathematics, Thapar Institute of Engineering and
Technology, Patiala, Panjab, India. She has more
than 15 years of teaching and seven years of
research experience. Her research interests include

time series forecasting using statistical and artificial intelligence method.

SANJEEV KUMAR AGGARWAL received the
M.Tech. and Ph.D. degrees from NIT, Kuruk-
shetra, in 2004 and 2010, respectively. He is cur-
rently an Associate Professor with the Department
of Electrical and Instrumentation Engineering,
Thapar Institute of Engineering and Technology,
Patiala, Panjab, India. He has more than 20 years
of teaching and research and industrial experience.
His research interests include power system opera-
tion and control, artificial intelligence applications

in power systems and forecasting.

59006

-

SANJEEV KUMAR received the B.Sc. (Non-
Medical), M.Sc. (Mathematics) degrees from
Kurukshetra University, Kurukshetra, and the
Ph.D. degree from SLIET Longowal, Deemed to
be University, Sangrur, Punjab, India. He is cur-
rently an Assistant Professor with the Department
of Mathematics, Thapar Institute of Engineering
and Technology, Patiala. He has vast experience
of 20 years of teaching and 12 years of research
experience. He has published research articles,

including SCI journals, scopus indexed journal, conferences based on
development and analysis of various iterative methods, moore-penrose
inverse, applications of system of non-linear equations, and iterative methods
with basin of attractions set-up. His research interests include numerical
analysis and its applications.

VOLUME 12, 2024



