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ABSTRACT With the rapid development of online shopping and prosperity of the e-commerce industry in
recent years, traditional warehouses are struggling to copewith increasing order volumes. Accordingly, smart
warehouses have gained considerable attention for their relatively high efficiency and productivity. In such
warehouses, robots transport shelves to picking stations on the basis of tasks assigned to them and then return
to the inventory area. An accurate task assignment method must be developed to achieve high efficiency in
smart warehouses; however, existing task assignment methods use limited information, resulting in a lack
of insight regarding future tasks in warehouses. This paper proposes a method based on the deep Q-network
(DQN) that considers inventory for task assignments. The developed DQN-based model determines shelf
return locations on the basis of current states to improve warehouse performance. The proposed method was
compared with a traditional task assignment method, namely regret and marginal-cost based task assignment
algorithm; the results indicated the proposed approach is more efficient and faster than the traditional method
and can accommodate more robots.

INDEX TERMS Automated warehouse, deep reinforcement learning, smart warehouse, task assignment.

NOMENCLATURE
G Graph representing the warehouse map.
V Set including all vertices in graph G.
E Set including all edges in graph G.
t tth time slot.
B Number of robots in the warehouse.
pb(t) Position of the bth robot at time t .
cb(t) Indication that the bth robot is carrying a

shelf at time t .
z(v, t) Indication of a static shelf at node v at

time t .
U Number of types of items in the warehouse.
F Number of shelves in the warehouse.
qu(t) Quantity of the uth-type item in the

warehouse.
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approving it for publication was Mohammad AlShabi .

qu,f (t) Quantity of the uth-type item on the f -th
shelf.

qlimit
u,f Upper limit of the quantity of the uth-type

item for the f th shelf.
O Number of orders.
du Total demand of the uth-type item in all

orders.
du,o Demand of the uth-type item in the oth order.
W Full task list.
Wo Task list extracted from the oth order.
lw Position of the target shelf in task w.
gw Position of the target picking station in

task w.
τ startw Time when task w is assigned.
τ endw Completion time of task w.
P(j, k) Cost of the shortest path between node j and

node k .
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Na Number of actions in the task assignment
model.

Nv Number of actions in the shelf reallocation
model.

n Length of the moving average.
Wn(t) Set of n completed tasks after time t .
S State space.
A Action space.
st Observed state at time t .
at Action selected at time t .
rt Reward received after action at .
Rt Discounted return at time t .

I. INTRODUCTION
The rapid growth of the e-commerce [1] industry in recent
years has presented new challenges and opportunities for
logistics and supply chain management [2]. With increasing
engagement in online shopping and the increasing demand
for fast delivery, warehouses play a crucial role in ensuring
efficient order fulfillment and customer satisfaction [3].
Traditional warehouses are struggling to cope with continual
increases in the volumes of online orders [4], and this
situation has led to growing interest in warehouse automation,
which exhibits potential for achieving improved efficiency,
accuracy, and cost-effectiveness in warehouses [5].

Smart warehouses–which are equipped with advanced
technologies such as robotics, artificial intelligence, and the
Internet of Things–have emerged as a solution to address the
limitations of traditional warehouses [6]. These state-of-the-
art facilities are designed to streamline processes, optimize
inventory management, and expedite order fulfillment [7].
A critical aspect of warehouse automation is the efficient
assignment of tasks within the warehouse [8].

In a smart warehouse, task assignment involves allocating
specific tasks, such as order picking or replenishment [9],
to a group of automated systems, including automated guided
vehicles, robotic arms, and conveyor systems [10]. The task
assignment process plays a vital role in ensuring smooth
warehouse operation and maximizing overall warehouse
productivity [11]. Efficient task assignment helps tominimize
travel distances, reduce congestion, and optimize resource
utilization.

The most typical task assignment problem is a classic gen-
eralized assignment problem [12], which involves assigning
a finite number of tasks to an equal number of agents to
minimize the total time or total number of steps required.
Such an assignment is known as one-shot task assignment,
in which each task is assigned exactly once and in which
each agent must perform only one task. Although one-shot
task assignment has advantages such as rapid computation
and the ability to find the optimal solution, it cannot be used
in continuously operating warehouses.

In traditional warehouse environments, the applied
order-picking method is often the person-to-goods method,
in which a picker travels through the aisles from a

station, retrieves the required items from the shelves,
and then returns to the station [13]. Many studies have
proposed improvements in picking speed by using strategies
such as order segmentation and zoning based on the
aforementioned method. However, applying such strategies
in high-throughput conditions is difficult because such
warehouses often have limited pickers. Thus, the utilization
of robots has considerable potential for item retrieval [14].

In recent times, goods-to-person warehousing facilities
have been increasingly automated, with task assignment often
being discussed in conjunction with path-finding methods.
Such automation is often achieved through multi-agent
picking and delivery [15]. In automated warehouses, robots
must handle a continuous flow of tasks and a warehouse’s
operating system must assign tasks to robots while planning
collision-free paths for their navigation. The efficiency of
such warehouses is evaluated on the basis of metrics such as
makespan and throughput. Chen et al. enhanced the efficiency
of task assignment by using a heuristic approach [16].
Specifically, those researchers utilized prioritized planning to
evaluate the cost of each assignment and then sequentially
select assignments on this basis. This method achieved high
efficiency; however, its high computational requirements
resulted in a long initial computation time.

The aforementioned studies have assumed that the ware-
house’s operating system cannot obtain information regard-
ing future orders from its current environment. However,
in real-world scenarios, additional information regarding
future task situations might be available. In this paper,
we propose a warehouse scenario that includes settings for
orders and item inventory. In previous studies, a robot’s task
has been assumed to involve only locations of a starting point
and an end point, and the randomly generated locations have
led to unpredictability. However, in the method proposed in
this paper, tasks are generated on the basis of orders and the
current inventory. Although future orders cannot be predicted,
information regarding the current inventory is accessible.
Intuitively, the higher the inventory amount on a shelf, the
higher is the likelihood of this inventory being used in the
future.

Although we increased the quantity of available infor-
mation in our scenario, we still required an algorithm
that could handle complex data. Therefore, we focused on
learning methods. Reinforcement learning (RL) is a machine
learning approach that involves an agent engaging in learning
through interactions with its environment and then using
learned policies to make decisions regarding subsequent
actions [17]. This method is suitable for handling uncertainty
and complex decision-making [18] and has achieved success
in multiple domains, including video gaming [19], energy
management [20], job scheduling [21], and network intrusion
detection [22]. Studies have utilized RL to address problems
in warehouse environments. Sartoretti et al. proposed the
use of RL for multi-agent path finding (MAPF) [23]. Those
researchers considered the state to comprise information
regarding the obstacles, robot positions, robot paths, and
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targets in the environment; treated robot movement as the
action; and employed deep neural networks to achieve dis-
tributed path finding. Li et al. incorporated task assignments
with MAPF in a warehouse environment [24]; however, they
could not explicitly differentiate between individual tasks
because of limitations in the action and state spaces. The
present paper proposes a task assignment method based on
the deep Q-network (DQN) [25]. The shelf positions and
inventory information are considered to be the state, and
the generated action determines the shelf that the robot
must transport. The agent can gradually learn more effective
strategies and implement task assignments on the basis of
feedback and rewards.

In the aforementioned research, tasks were often simplified
and the return positions of the shelves were not considered.
However, in real-world scenarios, after a robot transports
a shelf to the picking station, it often needs to return the
shelf to the storage area. The location where the shelf must
be returned can influence operation efficiency. For example,
if the inventory on a shelf is depleted, the shelf is not selected
again; in such a case, transporting the shelf to a location far
away from the picking station might be appropriate. In this
paper, we propose a shelf reallocation method based on
the aforementioned concept and the DQN. In this method,
shelves’ return positions are generated on the basis of the state
information for achieving effective shelf management.

The main contributions of this study are listed as follows.
• We developed a warehouse environment that provided
additional inventory and order information for task
assignment algorithms. In most related studies, tasks
have been represented using only a starting point and
an end point. However, in practical environments, tasks
are extracted from orders in a warehouse. A single order
might include multiple types of items, and the inventory
on the shelves can change as a picking operation
progresses. Accordingly, multiple robots may need to be
deployed to fulfill a single order.

• We proposed a task assignment method based on the
DQN; in this method, task assignment is performed
on the basis of inventory information. After task
assignment, a conflict-free path is generated by a path-
finding algorithm.

• We proposed a shelf reallocation method based on
the DQN which takes the inventory of the shelves
into consideration. In this method, return positions of
shelves are generated on the basis of the current state.
The proposed approach involves the combination of
the aforementioned two methods. Simulations were
performed in this study to compare the efficiency and
runtime of our approachwith those of amodified version
of regret and marginal-cost based task assignment
algorithm (RMCA) [16].

The remainder of this paper is structured as follows:
Section II provides an overview of the relevant literature,
including that regarding multiagent path finding and RL.
Section III presents the research problem and objectives.

Section IV describes the RL algorithm proposed in this
paper. Section V details the experimental data and relevant
comparisons. Finally, Section VI presents the conclusions of
this study.

II. RELATED WORK
This section provides an overview of related algorithms used
in task assignment problems.

A. MULTI-AGENT PATH FINDING
The goal of multi-agent path finding (MAPF) is to find joint
paths in a multiagent system [26], [27], guiding all agents
to their destination without collisions. The existing MAPF
methods can be broadly categorized into fast solvers, optimal
solvers, and approximately solvers [28]. Fast solvers include
methods such as Kornhauser’s algorithm [29], hierarchical
cooperative A* [30], push-and-swap [31], and push-and-
rotate [32]. These solvers are characterized by short com-
putation time and low algorithm complexity. However, such
algorithms do not guarantee the quality of their solutions.

Optimal solvers include operator decomposition [33],
independence detection, M* [34], increasing Cost tree
search [35], conflict-based search [36], and constraint
programming [37]. These solvers can find the solutions
optimally. However, most of these algorithms have long com-
putation times and poor scalability, making them unsuitable
for real time applications in a large environment.

Approximate solvers, such as enhanced conflict-based
search [38] and extended increasing cost tree search [39],
offer a balance between computation time and solution
quality. They can significantly reduce computation time and
scale to larger map sizes than optimal solvers. They guarantee
the quality of solutions within a specific ratio of the optimal
solution. However, the runtime of the approximate solvers is
still longer than the fast solvers. Therefore, we adopt a fast
solver, hierarchical cooperative A*, to accelerate the learning
process.

B. REINFORCEMENT LEARNING
RL is a type of machine learning paradigm that enables
an agent to learn to make actions by interacting with
an environment [18]. The fundamental principle of RL
involves the agent learning from trial and error to maximize
a notion of cumulative reward. Tabular methods such as
Q-learning [40] and SARSA [18] are particularly suitable for
small to medium-sized discrete state and action spaces, where
the state and action spaces can be enumerated and stored
in memory efficiently. Tabular methods are straightforward,
easy to implement, and provide valuable insights into RL
algorithms’ underlying principles. However, they become
computationally infeasible for large or continuous state and
action spaces, which led to the development of function
approximation techniques in RL, such as deep neural
networks (DNNs), to address such challenges.
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FIGURE 1. Task assignment problem in a multirobot warehouse.

Deep Reinforcement Learning (DRL) methods combine
the principles of RL with DNNs, allowing agents to handle
high-dimensional state and action spaces [41]. DRL can
be categorized into value-based methods and policy-based
methods. Value-based RL estimates the value function of
different states or state-action pairs, and the policy is
derived from the value function [25]. Deep Q-network
(DQN) is a famous value-based DRL method known for
its simplicity, sample efficiency, and ability to handle large
state and action spaces [42]. Extensions such as Double
DQN (DDQN) [43], dueling network architectures [44], and
prioritized replay [45] are made to enhance the performance
of DQN further. They are particularly well-suited for discrete
environments. However, value-based methods may face
challenges in continuous state and action spaces, where
policy-based methods become more relevant.

Policy-based RL directly learns a policy function to make
decisions in an environment [18]. Policy-based DRLmethods
like deep deterministic policy gradient [46], proximal policy
optimization [47], and asynchronous advantage actor-critic
[48] have demonstrated great success in various applications.
These methods have several advantages, such as the ability
to handle continuous action spaces and better convergence
properties in high-dimensional and stochastic environments.
However, they may require more data to achieve compa-
rable performance to value-based methods, especially in
high-dimensional state spaces.

In this study, we have adopted DQN with a few extensions
to solve the task assignment problem since we are handling
discrete action spaces.

III. SYSTEM MODEL AND PROBLEM FORMULATION
This section describes the formulation of the task assignment
problem in multirobot warehouses (Fig. 1). After orders are
received by a warehouse, they are decomposed into tasks
and stored as a list. The warehouse server then allocates
these tasks and suitable paths to available robots. The robots
pick up items in the warehouse by transporting the required
shelves to the picking station. After picking is performed, the

robots take the shelves to the assigned locations in the storage
area. It is desirable to minimize the cost and maximize the
throughput through task assignment and shelf reallocation.

A. WAREHOUSE MODEL
The warehouse considered in this study was formulated as
a two-dimensional, four-connection grid map, in which each
vertex is connected to its neighbors in four directions. The
term G = (V, E) denotes the warehouse map, where the
vertex set V includes all positions and where the edge set
E represents the connections between vertices [16]. In the
research problem, we considered a discrete-time model t ∈

N, where N is the set of natural numbers. The term B ∈ N
denotes the number of robots in the warehouse, and pb(t) ∈ V
denotes the position of the bth robot in time slot t , where
b ∈ N and b ≤ B. In every time slot, robot b can stay at
the same position (i.e., pb(t) = pb(t + 1)) or move along the
edge such that (pb(t), pb(t+1)) ∈ E . Each robot can carry one
shelf in any time slot. Let cb(t) ∈ {0, 1} indicate whether the
bth robot carries a shelf in time slot t , and let z(v, t) ∈ {0, 1}
indicate a static shelf on vertex v ∈ V in time slot t . A robot
can move under static shelves when it is not carrying another
shelf; that is, cb(t) = 0. Once a robot picks up a shelf, it can
no longer travel under static shelves. To avoid collisions, the
following constrains are made:

pb(t) ̸= pb′ (t) ∀b,∀t, b ̸= b′, b′
≤ B (1)

(pb(t), pb(t + 1)) ̸= (pb′ (t + 1), pb′ (t)) ∀b,∀t, b ̸=b′, b′
≤B

(2)

cb(t) + z(pb(t), t) ≤ 1 ∀b ≤ B,∀t. (3)

Constrain (1) indicates that robots cannot pass through the
same position in the same time slot;constrain (2) prevents
robots from moving along the same edge in opposite
directions in the same time slot; Constrain (3) implies that
a robot cannot travel through shelves when carrying one.

B. ORDER AND INVENTORY MODEL
The warehouse is assumed to contain specified quantities of
U ∈ N types of items. The term qu(t) represents the total
quantity of the uth item type in time slot t , in which u, qu(t) ∈

N and u ≤ U . All the items are randomly placed on shelves,
and each shelf has a limitation on the quantity of each type of
item that it can hold. The total number of shelves is denoted
as F , the quantity of the uth item type on the f th shelf in time
slot t is denoted as qu,f (t), and the upper limit of the quantity
of each item type on a shelf is denoted as qlimit

u,f . The shelves
are assumed to be fully stocked initially; that is, qu,f (0) =

qlimit
u,f . Moreover, all the items are assumed to be located on
the shelves initially; thus, we can calculate the total quantities
of item by qu(t) =

∑F
f=1 qu,f (t),∀u; ∀t.

An order is composed of required quantities of one or
multiple items. The term du represents the total demand for
the uth item type. Assuming that O ∈ N orders exist, the
demand for the uth item type in the oth order is denoted
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as du,o, where o, du,o ∈ N and o ≤ O. Thus, we can calculate
the total demand as du =

∑O
o=1 du,o,∀u.

The total demand for all the orders should not exceed the
inventory in the warehouse; that is, du ≤ qu(0),∀u. To fulfill
the demand, every order must be divided into more minor
tasks, each of which must include the positions of a shelf and
picking station. The termWo denotes the list of tasks obtained
from the oth order. Each task w ∈ Wo is associated with a
tuple (lw, gw, τ startw , τ endw ), where lw represents the coordinates
of the target shelf of w, gw represents the coordinates of
the picking station of w, τ startw denotes the time when w
is assigned, and τ endw represents the completion time of
w. The complete task list W constitutes the union of task
lists obtained from all the orders and can be expressed
as W =

⋃O
o=1Wo.

C. OBJECTIVES
Objectives such as the makespan and sum of costs can be
optimized in task assignment problems. Makespan represents
the time required to complete all given tasks, whereas the
sum of costs represents the total cost incurred by all the
robots. These objectives are often used in one-shot problems.
However, in a lifelong scenario, the optimization of a metric
that indicates throughput is preferred to enhance efficiency.
In the present scenario, we made cost per task (CPT) as one
of our optimization objectives, which can be calculated as

CPT =

∑
w∈W

τ endw − τ startw

|W |
. (4)

where CPT stands for the average time consumed by a task.
Another objective optimized in the research problem is total
relative cost (TRC), which can be expressed as:

TRC =

∑
w∈W

(τ endw − τ startw − P(lw, gw)) (5)

where P(j, k) denote the lowest path cost between nodes j,
k ∈ V .

Equation (5) calculates the difference between the actual
time spent by robots in performing a set of tasks and the
ideal time required to perform the same tasks. The relative
cost provides the agent with an understanding of how much
additional time has been spent by a robot on a task and
prevents the agent from selecting actions solely according to
the task duration.

IV. METHODOLOGY
This section introduces a DQN-based dispatch system for
task assignment and shelf reallocation. Fig. 2 displays the
flowchart of the entire process performed by robots in a
warehouse. This process comprises a path-finding module
and two DQNs that solve the task assignment problem and
determine the positions of returning shelves. If a robot is
available, it sends a request to the task assignment system.
This system then selects a task from the task list according
to the current state in the warehouse and generates a
collision-free path for the robot by using the path-finding

FIGURE 2. Flowchart of the entire process performed by robots in a
warehouse.

module. After receiving a task from the task assignment
system, the robot follows the provided path and completes
its work at a picking station. It then sends a request to the
shelf reallocation system, which selects a returning position
and generates a path to this position by using the path-finding
module. The robot becomes available again upon its return to
the storage area.

A. REINFORCEMENT LEARNING
To effectively address uncertainty and utilize the large
quantity of data available within a warehouse, we employed
RL to solve the task assignment problem. This subsection
provides a brief description of RL. In time slot t , the RL
agent observes the current state st ∈ S and selects an action
from the policy at = π (st ) ∈ A, where S is the state
space,A denotes the action space, and π (st ) is the policy that
generates an action based on state st . After interacting with
the environment, the agent receives a reward rt and observes
the next state st+1. The goal is to find a policy that maximizes
the discounted return Rt = 6∞

τ=tγ
τ−trτ , where γ ∈ [0, 1],

where γ ∈ [0, 1] denotes the discount rate. Three value
functions are used to evaluate and improve the policy, namely
the Q-value, state value function, and advantage function.
The Q-value of a state-action pair (s, a) is defined as the
expectation of the discounted return:

Q(s, a) = E
[
Rt |st = s, at = a

]
. (6)

The return obtained on the basis of the Q-value in the next
state by using the policy π can be calculated as:

Q(s, a) = E
[
rt + γE[Q(st+1, π(st+1)) |π ] |st = s, at = a

]
.

(7)

The state value function can be expressed as:

V (s) = E
[
Q(s, π(s)) |π

]
. (8)
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The advantage function is expressed as:

A(s, a) = Q(s, a) − V (s). (9)

The advantage function represents the importance of each
action [49]. Tabular solution methods often use the value
functions in (6)-(9) to address small state spaces. In high-
dimensional state and action spaces, deep neural networks
are used to approximate the aforementioned three value
functions. The functions Q(s, a; θ ), V (s; θ ), and A(s, a; θ )
denote the value functions approximated using the network
weight θ .

B. TASK ASSIGNMENT METHOD
This subsection describes the task assignment problem in
the RL framework. In particular, details regarding the state
representation, action space, and reward design are provided.

1) STATE SPACE FOR TASK ASSIGNMENT:
Because the task assignment problem is handled by a
centralized system, all information except that regarding
future orders is assumed to be available. To obtain sufficient
data, a map of the entire warehouse was used to determine
the state. The available information was divided into the
following channels:

1) Channel 1: The position of a selected robot
2) Channel 2: The positions of all other robots
3) Channel 3: The positions of all obstacles
4) Channel 4: The positions and inventory of all static

shelves
5) Channel 5: The traffic information related to the other

robots
6) Channel 6: channels for task information

Channels 1-3 comprise binary maps that indicate the
positions of objects. Channel 4 indicates the locations of all
static shelves, with the corresponding values representing the
inventory ratio of goods on each shelf. This ratio can be
calculated as:

inventoryRatio(f ) =

U∑
u=1

qu,f (t)

qlimit
u,f × U

(10)

where f is the index of the shelf. Previous studies have
assumed that all tasks are unknown to the system before
their release time. However, we believe that the inventory
information can provide the learning network with insights
regarding future tasks. The intuition is that the more items a
shelf holds, the more likely is that shelf to be included in a
task.

Channel 5 represents the path information of other robots.
Our aim was to integrate all the path information into the
state. However, the complete representation of the paths of
numerous robots can lead to an increase in the number of
state dimension, which results in a decrease in learning speed.
To avoid this problem, all the path information can be merged
into an abstract map, which represents the total time that each
position will be occupied by a robot in the future.

In channel 6, Na channels are added to the input, where Na
is the number of actions customized by the user. A total of
Na tasks are selected from the task list in advance, and each
task is converted into a map. Each map contains information
regarding the shortest path required to complete that task.
The Na tasks are selected according to the shortest distance
between the shelves and the robots, and the shortest path is
calculated by a single-agent A*, with collisions among all
agents being ignored.

2) ACTION SPACE FOR TASK ASSIGNMENT:
In the state space, we selected Na tasks as candidates.
Consequently, in the present case, the actions involved
choosing one of the Na tasks. Training may involve situations
where invalid actions are generated. For example, when the
number of remaining tasks is smaller than Na, resulting in
vacancies in the action space, actions with no actual tasks
cannot be selected. In such cases, the final action is forced
to be chosen from one of the valid actions.

3) REWARD FUNCTION FOR TASK ASSIGNMENT:
As mentioned in section III, our goal was to minimize TRC
through (5), which involved maximizing its negative value.
In RL, this value can be treated as the return, which is
the accumulation of discounted rewards. Consequently, our
reward was simply designed as the relative cost:

reward = P(lw, gw) − τ endw + τ startw . (11)

This reward design prevents the agent from relying solely
on the path length to judge the quality of tasks. If the task
duration is directly used as the reward, the agent might be
misled into prioritizing the selection of the shortest tasks;
however, the longer tasks must still be performed eventually.
It is desired to enable agents to select suitable tasks on the
basis of factors such as traffic conditions and shelf positions
to prevent these tasks from getting caught in traffic, which
results in decreased efficiency. Therefore, we used a reward
that subtracted the actual time spent on performing a task
from the theoretical time that should be spent on performing
said task. This approach ensured that the longer the required
waiting time for a task, the lower was the reward.

C. SHELF REALLOCATION METHOD
This subsection describes an RL method for shelf reallo-
cation, including details regarding the state representation,
action space, and reward design.

1) STATE SPACE FOR SHELF REALLOCATION:
The RL model used for shelf reallocation shares similarities
with the task assignment model, with both models using
similar information. The states used in the shelf reallocation
approach are listed as follows:

1) Channel 1: The position and inventory of the returning
shelf

2) Channel 2: The positions of all robots apart from the
selected robot
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3) Channel 3: The positions of all obstacles
4) Channel 4: The positions of the starting points of the

current tasks
5) Channel 5: The traffic information related to the other

robots
6) Channel 6: Additional channels for shelf vacancies

Channel 1 indicates the location of the returning shelf,
with the value representing the inventory ratio of goods
on the shelf (10). Intuitively, shelves with lower inventory
amounts are suitable for placement farther from the picking
station, and this information might help the agent determine
a more suitable return location. Channels 2-4 comprise
binary maps that indicate the positions of objects. As in the
task assignment model, channel 5 in the shelf reallocation
model contains an abstract map representing future traffic
conditions. Finally, channel 6 comprises Nv channels added
to the input. A total ofNv candidates are preselected for return
positions, and each of these candidates is converted into amap
that contains information regarding the shortest path to the
shelf. These candidates are selected at various distances from
the picking station to maximize the degree of variety in the
actions.

2) ACTION SPACE FOR SHELF REALLOCATION:
Similarly, because Nv candidates are selected in the state
space, the corresponding actions involve selecting one of Nv
positions. During training, if invalid actions are generated,
the actual action is forced to be selected from the set of valid
actions.

3) REWARD FUNCTION FOR SHELF REALLOCATION:
The target of optimization is CPT, which represents the
average cost incurred by the tasks. The CPT value provides
the agent with an understanding of the level of efficiency
within the facility. Notably, CPT serves as a valuable
metric for computing throughput in a lifelong environment.
However, in (4), information regarding all tasks, including
future ones, is required for value calculation. A practical
solution to this problem is to calculate the moving average
of CPT (mCPT) as:

mCPT (t) =

∑
w′∈Wn(t)

Pw′

n
(12)

where n is the length of the moving average defined by the
user and where Wn(t) denotes the set of n completed tasks
that start after time t . In RL, mCPT is minimized through the
maximization of its negative value. Therefore, the reward for
completion of task w is expressed as:

reward = −mCPT (τ endw ) (13)

where τ endw is the time required to complete task w.

D. DEEP Q-NETWORK
The algorithm proposed in this paper is based on a dueling
double DQN with prioritized replay that incorporates several

extensions [44]. To avoid overoptimistic value estimates,
a double DQN uses target weights to evaluate the Q-value
of an action while calculating the loss [43]. The target in a
double DQN can be expressed as:

Ti ≡ rt+1 + γQ(st+1, argmax
a

Q(st+1, a; θi); θi−1) (14)

where i represents the number of updates. The parameter
θi−1 represents the weights of the target network, which are
a periodic copy of the online weights θi. The actions are
determined according to the online weights as:

at = argmax
a′

Q(st , a′
; θi). (15)

In a dueling DQN, an advantage function is used to compute
Q-values [44]; the computed Q-values can then be divided
into two components: the state value and advantage values for
a specific action. This separation enables the dueling DQN
to learn more efficiently and conduct generalization across
multiple states. The shared convolutional layers and fully
connected layers of the DQN calculate advantage values,
whereas separated fully connected layers calculate the state
value. The advantage values A and state value V can be
combined as follows to acquire the Q-value:

Q(st , at ; ξ, α, β) = V (st ; ξ, β) + A(st , at ; ξ, α)

−

∑
a′ A(st , a′

; ξ, α)
|A|

(16)

where ξ, α and β represent the weights of the convolutional
layers, the fully connected layers used for calculating A,
and the fully connected layers used for calculating V ,
respectively.

Typically, all transitions stored in the replay buffer are
randomly selected with equal probability. However, some
transitions provide little information and thus might not be
helpful for learning. In practice, attempts should be made to
frequently sample transitions that can accelerate the learning
process. Accordingly, we adopted prioritized replay, which
uses the probability based on the transition priority for
sampling [45]. The priority of a transition is set as the
transition’s maximum value when its first enters the replay
buffer. During learning, the priority of the selected transitions
is updated simultaneously, and the priority of transition j is
calculated as:

ρj =

∣∣∣∣rj + γQ(s′j, argmax
a′

Q(s′j, a
′
; θi); θi−1) − Q(sj, aj; θi)

∣∣∣∣
(17)

where ρj denotes the priority of the jth transition. The term
ψ(j) denotes the probability of sampling transition j:

ψ(j) =
ρj∑
k ρj

. (18)

Finally, the loss Li(θi) is expressed as:

Li(θi) = Ej∼J

[(
Ti − Q

(
sj, aj; θi

) )2] (19)

VOLUME 12, 2024 58921



S.-C. Wu et al.: DRL for Task Assignment and Shelf Reallocation in Smart Warehouses

FIGURE 3. Diagram of the DDQN algorithm.

where J is the minibatch sampled from the replay buffer with
the probability calculated by (18).

Fig. 3 shows the diagram of the DDQN algorithm. After
the Q-network interacts with the environment, the reward is
given by (11)-(13) and the transitions are stored in the replay
buffer. During the training process, samples are selected
based on their priority calculated by (17), and the loss is cal-
culated by (14)-(16),(19) using the Q-network and the target
Q-network.

V. NUMERICAL RESULTS
This section details our numerical results for task assignment
and shelf reallocation in warehouses with sizes of 25 × 22,
37 × 34, and 48 × 46. Fig. 4 displays the warehouse with
a size of 25 × 22; in the figure, the blue squares represent
shelves, the orange squares represent picking stations, and
the red squares represent robots. In the 25 × 22 warehouse,
the number of robots was B ∈ {20, 25, . . . , 70}. In the
37 × 34 and 48 × 46 warehouses, the number of robots was
B ∈ {40, 50, . . . , 90}. The numbers of shelves in the 25×22,
37 × 34, and 48 × 46 warehouses were 224, 528, and 960,
respectively. Each warehouse contained U = 20 item types,
and the maximum quantity for each item type on a shelf
was randomly generated from the range {5, 6, . . . , 20}. In the
25 × 22 warehouse, we tested O = 50 orders, and in the
other warehouses, we testedO = 100 orders. The parameters
of the network of the task assignment agent are displayed in
Fig. 5. Because we considered the entire map as our state,
the output sizes of the convolutional layers changed with the
size of the warehouse. The shelf reallocation model had the
same network architecture as did the task allocation model;
however, in the shelf reallocation model, the number of input
channels was Nv + 5, and the size of the action space was Nv.
During training, we used a discount rate of γ = 0.95 and
adopted the Adam optimizer with a learning rate of 2×10−3.
The adopted networks were trained for 100 episodes for each
warehouse. The numbers of actions (Na,Nv) was set as 5.
We computed the moving average of CPT by setting n = 10.
For convenience in learning, we equalized the lengths of all
sides of each warehouse by padding the shorter sides with 0s.

In many one-shot task assignment and MAPF problems,
makespan, which represents the time taken to complete
all tasks, is commonly optimized. However, in lifelong

FIGURE 4. Example of a warehouse with a size of 25 × 22.

problems, in which tasks arrive continuously, this practice
might not be appropriate. Accordingly, we used CPT and
throughput to measure the efficiency of our model and com-
pared this efficiency with that of a mature task assignment
method, namely RMCA. CPT quantifies the average time
consumed in each task. Because our algorithm is designed
for lifelong systems, CPT is a more suitable optimization
objective than makespan, and a lower CPT indicates higher
efficiency. Furthermore, for relatively intuitive understanding
of the model performance, we considered throughput, which
is calculated as:

Throughput =
B

CPT
× 60. (20)

In (20), throughput represents the number of tasks completed
per minute. We selected RMCA as the comparative bench-
mark and modified it to suit our environment. To enable
the RMCA model to handle shelf returns, we modified its
path planning method to generate returning paths, and the
departing and returning paths cannot be separated during
the process. In addition, the end points were divided into
picking stations and shelves, and robots were prohibited from
moving under shelves while transporting a shelf. Each robot’s
capacity was set as 1, which enabled it to carry only one shelf
at a time. The value of k-robust was set as 0, which indicated
that no additional time had to be reserved for path planning.
In addition, we examined the efficiency of the original DQN
model to evaluate the benefits associated with the proposed
and RMCA models.
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FIGURE 5. Neural network architecture and parameters used in our
numerical analysis.

In the model comparison, we generated random initial
robot positions and order contents. To ensure fairness, we ran
all the models by using the same configuration. In the
simulation, we conducted 30 tests for each combination of
warehouse size and number of robots, and the obtained values
were then averaged. Fig. 6 displays the CPT values of the
compared models. The CPT increased with the number of
robots. A large number of robots led to traffic congestion
within a warehouse, which resulted in long path lengths.
Moreover, an increase in the warehouse size caused an
increase in the CPT because the distances that the robots
had to travel became longer. The proposed model had lower
average CPT values than did the other two models in multiple
scenarios, indicating the proposed model’s suitability for the
developed environment. The throughput values of the three
models are displayed in Fig. 7; the proposed model achieved
the highest throughput in all scenarios. And due to the poor
performance of the DQN method, we will exclude it from
further discussion.

To demonstrate the adaptability of the proposed method
to different environments, we tested the efficiency of each

FIGURE 6. CPT values of the proposed model, RMCA model, and original
DQN model.

FIGURE 7. Throughput values of the three compared models.

method in a longer size of 67×34 and a wider size of 37×64.
From Fig. 8 and Fig. 9, we observed that due to the longer
layout, increasing the distances traveled, the efficiency of
both methods decreased. However, because of the increased
number of picking stations, the efficiency associated with
the wider layout did not decrease significantly. The proposed
method exhibited higher efficiency in all these cases.

In Fig. 7, as the number of robots increases, the slope
of the throughput curve gradually flattens, indicating that
the contribution of each newly added robot to efficiency
diminishes. We can utilize this characteristic to determine
the capacity of robots in each environment. In this study,
we define the throughput of the first ten robots in each
scenario as the baseline efficiency. If the throughput provided
by the newly added ten robots is less than half of the baseline
efficiency, it is considered to have reached the capacity.
Fig. 10 illustrates the capacity of each model in different
warehouse sizes, where the proposed method achieves a
higher capacity than RMCA.
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FIGURE 8. CPT values of different sizes of warehouses.

FIGURE 9. Throughput values of different sizes of warehouses.

FIGURE 10. Capacities of the compared models in different warehouse
sizes.

Another metric utilized for model comparison was run-
time, which represents the time required to run the simulation.

FIGURE 11. Runtime of the proposed and RMCA models.

Because the proposed and RMCA models must operate in
real time, they must be able to compute subsequent actions
within a specified time limit; failure to do so might lead to
prolonged robot downtime, which would render the planned
paths ineffective. Thus, runtime can indicate the feasibility
of the aforementioned models. Fig. 11 displays the runtime
of the aforementioned models. The proposed model had a
shorter runtime than did the RMCA model. Moreover, the
runtime of the proposed model did not increase with the
number of robots. By contrast, the RMCA model had to
perform extensive computations in each time slot, and its
runtime increased with the map size and number of robots.
In summary, the proposed model is capable of operating in
real time in scenarios involving a relatively large number of
robots.

VI. CONCLUSION
In this study, we introduced the task assignment problem in
warehouses and formulated warehouse environments. It is
desired to continuously assign incoming tasks to a group of
robots in a warehouse to maximize efficiency. We proposed
a DQN-based task assignment model and a DQN-based shelf
reallocation model that included shelf inventory in the state.
These models were combined to develop the final model of
this study. In addition, we performed simulations to compare
the throughput and runtime of the final proposed model
with those of the RMCA model. The proposed model had a
higher throughput and shorter runtime than did the RMCA
model. The simulation results indicated that the proposed
model is suitable for application in warehouses with a large
number of robots. In the future, several improvements could
be made to the warehouse system developed in this study.
First, a replenishment strategy could be incorporated into
this system. Because of inventory constraints, the developed
system cannot operate indefinitely unless the inventory on
the shelves is replenished. Our preliminary idea was to set
up replenishment stations across from the picking stations
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to facilitate replenishment. Second, the quality of the order
decomposition in the developed system could be enhanced
by considering the warehouse state in this process. Last but
not least, the practical application of the algorithms is crucial,
and we will conduct real-world testing.

REFERENCES
[1] J. F. Rayport and B. J. Jaworski, Introduction to E-Commerce. New York,

NY, USA: McGraw-Hill, 2003.
[2] S. L. Golicic, D. F. Davis, T. M. McCarthy, and J. T. Mentzer, ‘‘The

impact of e-commerce on supply chain relationships,’’ Int. J. Phys. Distrib.
Logistics Managemen, vol. 32, no. 10, pp. 851–871, Dec. 2002.

[3] Y. Yu, X. Wang, R. Y. Zhong, and G. Q. Huang, ‘‘E-commerce logistics
in supply chain management: Practice perspective,’’ Proc. CIRP, vol. 52,
pp. 179–185, Sep. 2016.

[4] N. Boysen, R. de Koster, and F. Weidinger, ‘‘Warehousing in the
e-commerce era: A survey,’’Eur. J. Oper. Res., vol. 277, no. 2, pp. 396–411,
Sep. 2019.

[5] J. Gu, M. Goetschalckx, and L. F. McGinnis, ‘‘Research on warehouse
design and performance evaluation: A comprehensive review,’’ Eur.
J. Oper. Res., vol. 203, no. 3, pp. 539–549, Jun. 2010.

[6] E. Žunić, S. Delalić, K. Hodžić, A. Beširević, and H. Hindija, ‘‘Smart
warehouse management system concept with implementation,’’ in Proc.
14th Symp. Neural Netw. Appl., Belgrade, Serbia, Nov. 2018, pp. 1–5.

[7] L. Zhen and H. Li, ‘‘A literature review of smart warehouse operations
management,’’ Frontiers Eng. Manage., vol. 9, no. 1, pp. 31–55, Jan. 2022.

[8] X. Liu, J. Cao, Y. Yang, and S. Jiang, ‘‘CPS-based smart warehouse for
Industry 4.0: A survey of the underlying technologies,’’ Computers, vol. 7,
no. 1, p. 13, Feb. 2018.

[9] N. Seenu, R.M.K. Chetty,M.M.Ramya, andM.N. Janardhanan, ‘‘Review
on state-of-the-art dynamic task allocation strategies for multiple-robot
systems,’’ Ind. Robot. Int. J. Robot. Res. Appl., vol. 47, no. 6, pp. 929–942,
Sep. 2020.

[10] Z. Tan, H. Li, and X. He, ‘‘Optimizing parcel sorting process of vertical
sorting system in e-commerce warehouse,’’ Adv. Eng. Informat., vol. 48,
Apr. 2021, Art. no. 101279.

[11] A. Bolu and Ö. Korçak, ‘‘Adaptive task planning for multi-robot smart
warehouse,’’ IEEE Access, vol. 9, pp. 27346–27358, 2021.

[12] D. G. Cattrysse and L. N. Van Wassenhove, ‘‘A survey of algorithms for
the generalized assignment problem,’’ Eur. J. Oper. Res., vol. 60, no. 3,
pp. 260–272, Aug. 1992.

[13] R. de Koster, T. Le-Duc, and K. J. Roodbergen, ‘‘Design and control of
warehouse order picking: A literature review,’’ Eur. J. Oper. Res., vol. 182,
no. 2, pp. 481–501, Oct. 2007.

[14] J. Zhang, X. Wang, and K. Huang, ‘‘On-line scheduling of order picking
and delivery with multiple zones and limited vehicle capacity,’’ Omega,
vol. 79, pp. 104–115, Sep. 2018.

[15] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, ‘‘Lifelong multi-agent path
finding for online pickup and delivery tasks,’’ 2017, arXiv:1705.10868.

[16] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
‘‘Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,’’ IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 5816–5823, Jul. 2021.

[17] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement
learning: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285,
Jan. 1996.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, U.K.: MIT Press, 2018.

[19] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ‘‘The arcade
learning environment: An evaluation platform for general agents,’’ J. Artif.
Intell. Res., vol. 47, pp. 253–279, Jun. 2013.

[20] B.-C. Lai, W.-Y. Chiu, and Y.-P. Tsai, ‘‘Multiagent reinforcement learning
for community energy management to mitigate peak rebounds under
renewable energy uncertainty,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 6, no. 3, pp. 568–579, Jun. 2022.

[21] Y. Du, J.-Q. Li, X.-L. Chen, P.-Y. Duan, and Q.-K. Pan, ‘‘Knowledge-based
reinforcement learning and estimation of distribution algorithm for flexible
job shop scheduling problem,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 7, no. 4, pp. 1036–1050, Aug. 2022.

[22] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, ‘‘A deep learning approach to
network intrusion detection,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 41–50, Feb. 2018.

[23] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig, and
H. Choset, ‘‘PRIMAL: Pathfinding via reinforcement and imitation multi-
agent learning,’’ IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2378–2385,
Jul. 2019.

[24] M. P. Li, P. Sankaran, M. E. Kuhl, R. Ptucha, A. Ganguly, and
A. Kwasinski, ‘‘Task selection by autonomous mobile robots in a
warehouse using deep reinforcement learning,’’ in Proc. Winter Simul.
Conf., Dec. 2019, pp. 680–689.

[25] Y. Li, ‘‘Deep reinforcement learning: An overview,’’ 2017,
arXiv:1701.07274.

[26] Q. Hou and J. Dong, ‘‘Distributed dynamic event-triggered consensus
control for multiagent systems with guaranteed L2 performance and
positive inter-event times,’’ IEEE Trans. Autom. Sci. Eng., vol. 21, no. 1,
pp. 746–757, Dec. 2004.

[27] Q. Hou and J. Dong, ‘‘Robust adaptive event-triggered fault-tolerant
consensus control of multiagent systems with a positive minimum
interevent time,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 7,
pp. 4003–4014, Feb. 2023.

[28] R. Stern, ‘‘Multi-agent path finding—An overview,’’ in Proc. 5th RAAI
Summer School Artif. Intell., 2019, pp. 96–115.

[29] D. Kornhauser, G. Miller, and P. Spirakis, ‘‘Coordinating pebble motion
on graphs, the diameter of permutation groups, and applications,’’ in Proc.
25th Annu. Symp. Found. Comput. Sci., Oct. 1984, pp. 241–250.

[30] D. Silver, ‘‘Cooperative pathfinding,’’ in Proc. 1st AAAI Conf.
Artif. Intell. Interact. Digit. Entertainment, vol. 1, no. 1, 2005,
pp. 117–122.

[31] R. Luna and K. E. Bekris, ‘‘Efficient and complete centralized multi-
robot path planning,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep. 2011, pp. 3268–3275.

[32] B. D. Wilde, A. W. Ter Mors, and C. Witteveen, ‘‘Push and rotate:
A complete multi-agent pathfinding algorithm,’’ J. Artif. Intell. Res.,
vol. 51, pp. 443–492, Oct. 2014.

[33] T. S. Standley, ‘‘Finding optimal solutions to cooperative pathfinding
problems,’’ in Proc. 24th AAAI Conf. Artif. Intell., vol. 24, no. 1, 2010,
pp. 173–178.

[34] G.Wagner and H. Choset, ‘‘Subdimensional expansion for multirobot path
planning,’’ Artif. Intell., vol. 219, pp. 1–24, Feb. 2015.

[35] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, ‘‘The increasing cost
tree search for optimal multi-agent pathfinding,’’ Artif. Intell., vol. 195,
pp. 470–495, Feb. 2013.

[36] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, ‘‘Conflict-based
search for optimal multi-agent pathfinding,’’ Artif. Intell., vol. 219,
pp. 40–66, Feb. 2015.

[37] A. Felner, R. Stern, S. Shimony, E. Boyarski, M. Goldenberg, G. Sharon,
N. Sturtevant, G. Wagner, and P. Surynek, ‘‘Search-based optimal
solvers for the multi-agent pathfinding problem: Summary and chal-
lenges,’’ in Proc. Int. Symp. Combinat. Search, vol. 8, no. 1, 2017,
pp. 29–37.

[38] M. Barer, G. Sharon, R. Stern, and A. Felner, ‘‘Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,’’ in Proc. Int. Symp. Combinat. Search, vol. 5, no. 1, 2014,
pp. 19–27.

[39] T. T. Walker, N. R. Sturtevant, and A. Felner, ‘‘Extended increasing cost
tree search for non-unit cost domains,’’ in Proc. 27th Int. Joint Conf. Artif.
Intell., Jul. 2018, pp. 534–540.

[40] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
pp. 279–292, May 1992.

[41] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
‘‘Deep reinforcement learning: A brief survey,’’ IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[43] H. V. Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. 13th Conf. Artif. Intell., Mar. 2016,
pp. 2094–2100.

[44] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
33rd Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

VOLUME 12, 2024 58925



S.-C. Wu et al.: DRL for Task Assignment and Shelf Reallocation in Smart Warehouses

[45] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[46] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[48] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[49] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, ‘‘High-
dimensional continuous control using generalized advantage estimation,’’
2015, arXiv:1506.02438.

SHAO-CI WU was born in Taipei, Taiwan,
in 1997. He received the B.S. and M.S. degrees
in electrical engineering from National Tsing Hua
University, Hsinchu, Taiwan, in 2019 and 2023,
respectively.

WEI-YU CHIU (Senior Member, IEEE) received
the Ph.D. degree in communications engineering
from National Tsing Hua University, Hsinchu,
Taiwan. He is currently an Associate Professor
with the School of Information and Technology,
Deakin University, Melbourne, VIC, Australia.
His research interests include multiobjective opti-
mization and reinforcement learning, and their
applications to control systems, robotics, and
smart energy systems. He was a recipient of

the Youth Automatic Control Engineering Award bestowed by Chinese
Automatic Control Society, theOutstandingYoung Scholar AcademicAward
bestowed by Taiwan Association of Systems Science and Engineering,
the Erasmus+Programme Fellowship funded by European Union (staff
mobility for teaching), and the Outstanding Youth Electrical Engineer Award
bestowed by Chinese Institute of Electrical Engineering. He was an Orga-
nizer/Chair of the International Workshop on Integrating Communications,
Control, and Computing Technologies for Smart Grid (ICT4SG). He is a
Subject Editor of IET Smart Grid.

CHIEN-FENG WU received the Ph.D. degree
in electrical engineering from National Tsing
Hua University, Hsinchu, Taiwan, in 2017.
From 2020 to 2023, he was an Assistant Professor
with the Department of Electrical Engineering
and Computer Science, Tamkang University.
He is currently an Assistant Professor with the
Department of Electrical Engineering, National
Taipei University, New Taipei City, Taiwan. His
current research interests include robust control,

fuzzy control, multiobjective optimization, automated driving systems, and
nonlinear stochastic systems.

58926 VOLUME 12, 2024


