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ABSTRACT Estimating and analyzing traffic patterns become essential in managing Quality of Service
(QoS) metrics while assessing internet data traffic in cellular networks. Cellular network planners frequently
apply various approaches to predict network traffic. However, most existing studies focus on using the
available local data to jointly build prediction models, facing data security challenges and time complexity,
especially with multi-dimensional datasets. Therefore, this paper proposes a framework to handle traffic
prediction with the considerable potential of Machine Learning (ML) algorithms. An Adaptive Machine
Learning-based Cellular Traffic Prediction (AML-CTP) framework is presented to select a suitable ML
algorithm for multi-dimensional datasets. Its objective is to streamline and speed up the selection of
an appropriate model for predicting network traffic load. The framework employs two density-based
clustering algorithms to categorize similar nearby traffic into various clusters, considering data similarity and
convergence. Additionally, it assesses data quality and homogeneity by training models with data samples
from each cluster to accurately determine the most suitable machine learning model. The optimal model
is selected from four supervised predicting algorithms, reducing training time and hardware complexity.
Two case studies from a popular telecommunication equipment corporation in Egypt are implemented using
real-life cellular traffic with multi-dimensional features. The case studies show that the framework can help
reduce the computational cost of training the model and reduce the risk of overfitting. The experimental
results show that selecting the best prediction model training could save up to 85% of computational time
compared to two state-of-the-art techniques while achieving an accuracy of 98.8%.

INDEX TERMS 4G/LTE, KPIs, machine learning, traffic prediction.

I. INTRODUCTION
Nowadays, a rash growth of traffic data exists due to the rise
of smartphone subscriptions and streaming video services.
As a result, this influences the Quality of Service (QoS) of
network users. Therefore, many network-level optimizations
should be performed to maintain the best QoS for users.
However, an optimization problem is challenging for the best
QoS that adjusts the transmission power [1], [2], [3]. Steering
traffic from congested cells frees the physical resource blocks
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(PRBs) of congested cells and is considered a network that
optimizes resource allocation [4], [5]. Hence, predicting
4G and 5G LTE-A traffic became essential to significantly
enhance telecommunications QoS [6], [7]. Accurate monitor-
ing and prediction of mobile traffic help improve optimizer
goals; consequently, any overload or congestion in any band
can be detected [3], [8].
Over the past decades, Machine Learning (ML) has

become a crucial backbone of information technology. How-
ever, with the significant increase in data sizes, training
time for models can range from hours to weeks. Hence,
it poses intense pressures across computation, networking,
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and storage [5]. In turn, this affects the choice of the ML
model. Also, the nature of the data, which includes correla-
tion, distribution, and homogeneity, influences the selection
process of the final model. Since ML deals with the data
and behaves accordingly without being programmed, data
analysis is required to evaluate and estimate the benefits of
optimizer goals. Practical data analysis leads to the successful
choice of the most accurate prediction algorithm and saves
computational time and memory usage [9], [10], [11].

Therefore, analyzing the similarity, closeness, and homo-
geneity in traffic data is essential to selecting the appropriate
ML model. Moreover, clustering techniques are applied to
large datasets, so the data is partitioned into clusters contain-
ing similar elements. Then, an extraction rule is estimated
based on the pattern of occurrence of data tokens [12], [13].
In addition, for unknown traffic, dividing data into classes
requires more information on the nature of the traffic. Thus,
clustering methods are used to gain some perception of the
structure of the data. The optimal clustering algorithm col-
lects data in one cluster when the data is homogeneous and
similar. A smaller sample size may be present in the data
when the clusters are more heterogeneous. This sample size
can sufficiently capture the underlying patterns and relation-
ships in the data [14].

Therefore, this paper introduces the Adaptive Machine
Learning-based Cellular Traffic Prediction (AML-CTP)
framework. TheAML-CTP aims to facilitate and speed up the
selection of a suitable model for network traffic load predic-
tion. The framework considers the similarity and convergence
of the data by applying two density-based clustering algo-
rithms to categorize similar near traffic in various clusters.
In addition, it considers the data quality and homogeneity by
training these models with data samples from each cluster to
get the exact indication of the bestMLmodel. Finally, the best
model is chosen from four supervised predicting algorithms,
reducing the training time and hardware complexity.

An overall view of the proposed AML-CTP framework is
illustrated in Figure 1. It starts by preprocessing the collected
data from real-life key Performance Indicators (KPIs). The
prepossessing process includes analyzing the data, select-
ing uncorrelated traffic features, and data visualization [15],
[16]. Then, the framework applies the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) cluster-
ing algorithm [17], [18] and the Kernel Density Clustering
(KDC) algorithm [19], [20] to split the data into clusters.
Then, the output clusters are fed to the co-association matrix
to check data similarity [21], [22], [23], [24]. After that, the
AML-CTP extracts a data sample with the same probability
distribution as the original population. Finally, these data
samples are used to train the ML models and select the most
suitable one.

Four ML prediction models are used to attain the best per-
formance and aggregate predictions. These models are Linear
Regression (LR), Support Vector Regression (SVR), Deci-
sion Tree (DT), and Light Gradient Boosting Machine Model
(LGBM). Then, a separate validation dataset is evaluated to

FIGURE 1. An overall view of the proposed framework.

ensure the models can generalize well to new, unseen data to
avoid the risk of overfitting and improve the overall accuracy
and robustness of the model. Two case studies are examined
using real-life KPIs collected through one of Egypt’s most
popular telecommunication equipment corporations. Both
case studies utilize large, high-dimensional LTE-A key per-
formance indicators datasets.

The rest of this paper is organized as follows: Section II
represents related work of cellular mobile traffic predic-
tion models. Section III describes the proposed framework’s
details. Section IV introduces two real case studies and dis-
cusses the experimental results. Finally, the main conclusion
and future work are presented in Section V.

II. RELATED WORK
Machine learning can play a valuable role in various aspects
of telecommunication technologies, including enhancing ser-
vices for end-users on the network. With the ongoing rise in
the number of users and the corresponding increase in data
size, it becomes necessary to analyze data using statistical
processing methods to reduce the expenses associated with
manual analysis. These methods are also effective in identi-
fying errors and data noise. Therefore, incorporating machine
learning techniques can optimize network operations and
contribute to the early prediction of network failures, pre-
venting significant degradation of the network’s Quality of
Service.

Initially, network operators gather available datasets from
the cellular network operator for monitoring purposes [25].
A detailed examination of mobile datasets can be found
in [26]. However, constructing predictive models with mobile
datasets poses numerous challenges. The primary issue stems
from the diversity of mobile traffic datasets. Additionally,
varying data collection approaches can produce datasets of
differing precision, adding complexity to the machine learn-
ing training process. Furthermore, the substantial growth in
5G and 6G introduces several challenges in handling big data
and selecting the optimal prediction model. Consequently,
identifying the most suitable prediction model is not always
straightforward, particularly when dealing with extensive and
high-dimensional datasets.

58928 VOLUME 12, 2024



H. Nashaat et al.: ML-Based Cellular Traffic Prediction Using Data Reduction Techniques

Existing research has explored the use ofML in optimizing
the performance of wireless networks. For example, in [27],
an experimental study assesses popular supervised and unsu-
pervised learning methods. The experimental analysis in [27]
identifies SVM, LR, and DT as the most accurate algo-
rithms among the supervised learning approaches. Another
study [28] examines existing techniques for traffic prediction
that leverage machine learning, offering concise descriptions
of traditional machine learning models and methods in this
survey. This rationalizes utilizing these machine learning
algorithms in the proposed framework for traffic prediction.

Moreover, another study [29] utilized the Radio Environ-
ment Map as the data source, which depicts a coordinate
plane with X and Y axes, representing the spatial distribu-
tion and intensity of a specific feature using a thermal strip.
Then, the authors augmented the dataset with information
on the mobile drive test unit’s speed to forecast the network
performance. Chaudhary and Johari [30] introduced a novel
ML-based algorithm for routing in wireless networks. They
gathered a small and imbalanced dataset, employing random
oversampling to augment sample numbers and balance the
dataset. The proposed algorithm utilized supervised machine
learning methods to predict the network type of the source
and destination nodes. Also, Sliwa et al. [31] employed ML
algorithms to predict data rates, focusing on the concept of
utilizing cars as mobile sensors. The authors suggested a
method that considers the current channel situation to deter-
mine the optimal time for the transaction.

In general, existing network traffic load prediction solu-
tions [32], [33], [34], [35], [36], [37] mainly depend on Deep
Learning (DL) [38] to build the prediction model. A deep
learning model can handle high-dimensional traffic datasets.
Also, they can usually obtain high accuracy for long-term
prediction. During the last few years, different types of DL
techniques have been applied to network traffic load pre-
diction; those techniques mainly depend on deep learning,
neural networks, or a combination of both techniques. Long
short-term memory (LSTM) based solution is introduced
in [32]. Also, LSTM and Convolutional Neural Networks
(CNN) collaborative solutions are in [33]. In [34], Gated
Recurrent Units (GRU) and CNN combined solutions are
employed. Deep Belief Networks (DBN) based solutions in
which estimation solutions based on DBN are introduced
in [35] and [36]. A stacked Auto-Encoder (SAE) based
solution that proposed a Downlink-based traffic prediction
method that uses a Stacked Demising Auto-encoder (SDA)
model to learn generic traffic features is in [37].

Moreover, the direct advantages of clustering to improve
prediction accuracy through data quality enhancement are
explored in [39]. However, these investigations focus on
distinct, non-uniformly distributed data. The widely used
K-means clustering algorithm is applied, generating multiple
clusters for a finite dataset. There is no definitive optimal
clustering of the data; specific clusters may be unnecessary,
some might signify sampling noise, and specific information
could be exclusive to a particular grouping. Nonetheless, the

emergence of novel information from these clusters provides
an opportunity to employ a different clustering algorithm in
prediction tasks, mainly when dealing with homogeneous
data.

However, the primary limitations of these systems involve
substantial computational load and complex parameter setup.
Ensemble learning approaches have also been incorporated,
utilizing an integrated LGBM model through bagging and
LGBM [41]. Nonetheless, ensuring the accuracy of predic-
tions in ensemble learning-based solutions poses a challenge
due to the requirement for genuine training data derived
from the target environment [36]. Hence, further research is
required to explore the significance of implementingmachine
learning in innovative architectural systems to gather per-
formance data in wireless networks. It involves creating
preprocessing methodologies to eliminate data with notable
violations and developing machine learning models.

III. PROPOSED AML-CTP FRAMEWORK
This section presents the phases of the proposed AML-CTP
framework. These phases mainly aim to investigate network
performance, retrieve management information, and predict
network traffic load through a fast and accurate model with
less computational time and storage space. AML-CTP frame-
work phases are illustrated in Figure 2. These phases are
discussed in detail in the following subsections.

A. PHASE 1: DATA PREPROCESSING
As in Figure 2, the phase starts with data collection. After
collecting data, it contains various underlying properties and
information saved in a local database. First, the AML-CTP
framework starts the cleaning phase by dealing with missing
values. In many analyses, missing values can be a problem.
Therefore, all missing values are replaced with the median.
As a result, different cells vary significantly in their traffic
loads. Feature selection effectively solves the problem of
high-dimensional data analysis by removing irrelevant and
redundant data. Hence, this can reduce computation time,
improve learning accuracy, and better understand the learn-
ing model or data. Sklearn’s SelectKBest chooses the most
important features to include in the learning process [42].
It also analyzes the correlation between features as in [7]
and [43]. The proposed AML-CTP framework normalizes the
traffic load using Min-Max scaling to avoid significant data
variance.

Finally, the proposed framework utilizes the Principal
Component Analysis (PCA) [44] algorithm to reduce data
dimensionality. PCA is a linear dimensionality reduction
technique that extracts information from a high-dimensional
space by projecting the data into a lower-dimensional sub-
space. It tries to keep the essential parts with more data
variation and remove the non-essential parts with fewer vari-
ations. A vital part of using PCA is estimating how many
components are needed to describe the data. Therefore, the
cumulative explained variance ratio can exhibit the compo-
nents needed [45]. PCA can help visualize the data in a 2D or
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FIGURE 2. Proposed adaptive machine learning-based cellular.

3D space. Thus, data can be plotted to understand the underly-
ing pattern better. Also, it removes noise by condensing many
features into a few principal components. So, PCA speeds
up ML algorithms, especially with high-dimensional data.
By that, the most critical part of preparing data is finished.
The next phase aims to decide which data sample can be used
for training the ML models.

B. PHASE 2: DATA REDUCTION BASED ON
HOMOGENEITY
Recently, ML-based approaches have been investigated to
detect the dataset pattern and organize similar data types.
The concept of similarity is closely related in the context
of clustering algorithms. Therefore, the proposed AML-CTP
framework groups together data points that are similar based
on some measure of similarity or distance. It also utilizes a
Co-Association technique, like a voting mechanism used to
combine the clustering results.

Traffic Prediction (AML-CTP) framework The main idea
for using more than one clustering algorithm is that the more
often two packets fall into the same cluster when several
clustering algorithms are applied, the more similar they are.
The considered clustering algorithms use density functions.
The algorithms used are Density-Based Spatial Clustering
of Applications with Noise and Kernel density clustering.
The first algorithm, DBSCAN, is used to identify the outliers
(noise) as the points in low-density regions. The AML-CTP
framework applies this algorithm and configures the main
parameters. The first one is the EpsilonValue (eps); Epsilon is
the circle’s radius around a data point, and all other data points
that fall inside the circle are considered neighborhood points.
In other words, two points are neighbors if their distance
is less than or equal to eps. Second, a minimum minPoints
can be derived from several dimensions (D) in the dataset,

as minPoints ≥ D + 1. Larger values are usually better for
noisy data sets and will form more significant clusters [7].

The second one, the KDC algorithm, uses a kernel density
estimator to identify clusters in a dataset. KDC also requires
the specification of a bandwidth parameter, which deter-
mines the amount of softness applied to the density estimate.
A bandwidth that is too small can result in overfitting and
the identification of small, noisy clusters, while a bandwidth
that is too large can result in underfitting and merging distinct
clusters. One of the ways to determine bandwidth is Silver-
man bandwidth.

After considering cluster algorithms, the framework han-
dles datasets with irregularly shaped clusters and noise in the
data. Considered clustering algorithms: The Co-Association
matrix compares the results of two clustering algorithms
(BDSCAN and KDC). A N×N matrix (Co) is created to
construct the co-association matrix, where the (r,s) position
is either one if observations r and s belong to the same cluster
and 0 otherwise. The average of all these matrices constitutes
the co-association matrix. All elements of matrix Co are
initialized to 0. then iterate over all pairs of data points and
increment the corresponding; if both algorithms assign data
points r and s to the same cluster, Co (r, s) is updated.

After that, a sample selection criterion is applied to extract
the training samples from each cluster. The selection crite-
ria are dependent on the Silhouette Score and homogeneity
measures. Those techniques are used in clustering analysis to
evaluate the quality of extracted samples from clusters.

Also, the Rand Index (RI) is measured to check similarity.
The RI is calculated by comparing the number of pairs of
data points that are either in the same cluster or different
clusters. That can be done by selecting a random small sample
of data points from each cluster with a high RI. Extracted
samples withM number of sample rows of the training dataset
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(Z= {v1, v2,. . . , vN}) withN rows of the dataset for ci clusters
are presented as:

Z ′
= {v1, v2, . . . , vM } ,where M < N (1)

A sample is density maintained as follows:∑
δ∈cj

pr
(
v ∈ Z ′

| v ∈ cj
)

= δj | cj) (2)

where δj is a constant for any cluster cj , j = {1, . . . ,k}s
A sample is uniform, as in the following equation:

pr
(
v ∈ Z ′

| v ∈ ci
)

= pr v′
(
∈ Z | v′ ∈ cj

)
if any v ∈ ci, v′ ∈ cj where, i, j ∈ {1, 2, . . .}

(3)

Therefore, uniform sampling can be formulated as follows:

pr(v ∈ Z ′
|v ∈ Z ) =

M
N

(4)

The proposed framework uses the homogeneity measure to
assess the degree to which clusters contain only samples of a
single class. That score can be calculated as:

Homogeneity score = 1−H (Z ′,C)/H (C) (5)

where Z ′ is the true labels of the samples, C is the cluster
labels assigned by the clustering algorithm, and The homo-
geneity measure ranges from 0 to 1, where a higher score
indicates better clustering. A score of 1 indicates perfect
homogeneity, meaning each cluster contains only samples of
a single class. In contrast, 0 indicates the opposite. A large
homogeneous population typically requires a smaller sample
size for accurate results, while a more heterogeneous popula-
tion may require a larger sample size [46].

Likewise, the Silhouette score can measure how similar an
object is to its cluster compared to others.

Silhouette score = (µ2 − µ1)/max(µ1, µ2) (6)

where µ1 is the mean distance between the sample and all
other samples in the same cluster. µ2 is the mean distance
between the sample and all other samples in the nearest
neighboring cluster. It ranges from −1 to 1, where a higher
score indicates better clustering. A score of 1 indicates that
the object is well-matched to its cluster and poorly matched
to neighboring clusters, while a score of −1 indicates the
opposite [46].
After the homogeneity tests, the proposed AML-CTP

framework understands the dataset and extracts the most
suitable samples that can be used for training. Now, it is ready
to apply different ML algorithms, further explained next.

C. PHASE 3: TRAINING ML MODELS FOR TRAFFIC
PREDICTION
The main goal of the AML-CTP framework is network traf-
fic load prediction. Therefore, the problem is considered a
regression situation. The considered regression algorithms
can substantially reduce the computational complexity of

searching when dealing with big data. However, good accu-
racy is maintained, and model overfitting is avoided. Hence,
the proposed framework utilizes different ML models from
which the best model is chosen. These models are selected
since they can handle high-dimensional data while retaining
fast training time and high efficiency [47], [48]. Conse-
quently, the AML-CTP framework conducts experiments
with several machine learning algorithms, including Lin-
ear Regression with polynomial features, Support Vector
Regression, Decision Tree algorithm, and LGBM. A brief
explanation of each ML algorithm is given as follows:

The first assessed algorithm is a linear regression with
polynomial features. It finds the relationship between a given
dataset and predicted network traffic load. Therefore, it cap-
tures nonlinear correlations between variables By fitting a
nonlinear regression line. A standard regression model takes
the form as follows:

L =θ0 +θ1v1 +θ2v2+ . . . . . .θMvM (7)

where L is the predicted network traffic load value of the
dependent variable, θ0 is the intercept, and θ1, θ2. . ., θM are
the predicted regression coefficients representing the contri-
bution of the independent predictor variables v1, v2, . . . , vd ,
respectively.

The second algorithm (SVR) guarantees the flexibility to
define the acceptable error in our model and find an appro-
priate line to fit the data. The objective function of SVR is to
minimize the coefficients. Instead, the error term is handled
in the constraints; the absolute error is assumed to be less than
or equal to a specified margin, called the maximum error,
ϵ (epsilon). Therefore, epsilon is tuned to gain the desired
accuracy. The proposed framework state’s objective function
and constraints for Minimize (Error) are as follows:

Min
1
2

[
||θ ||

2
]

where|L i − θivi| ≤ ε

for i = {1, 2, . . . . . . . . . .,M

(8)

where Li is the target network traffic load value, θi is the
coefficient, and vi is the predictor (feature) [49].
The decision tree algorithm is also considered one of the

embedded ML algorithms of the proposed framework. That
algorithm is reasonably simple to understand and is effective.
The primary goal of a decision tree is to split a data popula-
tion into smaller segments. Then, binary trees are structured,
where each node represents a test on a feature, and each
leaf node holds an output. DT is induced in a top-down
order to construct the tree. Building a decision tree is about
locating the attribute that provides the maximum information
gain. The information gain is calculated using the decrease
in entropy after splitting a data set on an attribute and can be
calculated as:

Max(Gain (v,L) ≡ Max(Entropy (v)

−

∑
s∈DL

|vs|
|v|

Entropy (vs) (9)
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where vs is the sum of every node value, v is the sum of the
sample value, and Entropy(vs) is the entropy of the current
node.

As formulated in Equation (9), the key hypothesis of the
mathematical model of the DT model is entropy, which
takes a lot of information to describe a sample adequately.
Therefore, the DT algorithm can be considered a regres-
sion algorithm with less computational time and good
accuracy [50].

The proposed framework also considers the LGBM as
one of the embedded MLs in the system. LGBM is a high-
performance gradient-boosting machine learning algorithm.
Uses histogram-based algorithms to speed up training and
reduce memory usage. LGBM is highly efficient and accu-
rate, supports parallel learning, and is suitable for large
datasets. Additionally, LGBM contains two techniques that
work together: Gradient-based One Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB), which overcome the
inadequacies of the histogram-based algorithm used in all
GBDT (Gradient Boosting Decision Tree) frameworks [50],
[51], [52]. Hence, these models are trained using the data
samples output from Phase 2. Then, the obtained quality
metrics are examined by the AML-CTP framework to choose
the best model.

D. PHASE 4: MODEL SELECTION
After training ML models, the considered ML models are
evaluated using the accuracy and execution time metrics.
The first metric is R2, a common measure of how well the
curve fits the data. A value of one indicates a perfect fit
between actual and predicted values, which value has the
same propensity. The mathematical formula for computing
R2 is [50] and [53]:

R2 = 1 −

∑M
i=1 (vi − Li)2∑M

i=1 (vi − Lmeani )2
(10)

where vi is the actual value for data samples, Li is the pre-
dicted network traffic load.
Lmeani is the mean of the observed data given by:

Lmeani =
1
M

∑M

i=1
vi (11)

Also, RMSE is used to measure how well the model fits
predicted variables. Which is the average distance of a data
point from the fitted line measured along a vertical line. The
RMSE is calculated through the following equation:

RMSE =

√∑M
i=1 (vi − Li)2

M
(12)

Finally, The MAPE is calculated as a percentage used to
measure how close predictions are to the eventual outcomes.
A smaller value of MAPE represents better prediction accu-
racy. The MAPE is determined by:

MAPE = 100 ×

M∑
i=1

vi − Li
vi

(13)

Another metric evaluated is execution, which is related to
data preprocessing. Therefore, the complexity analysis for
LR, SVR, DT, and LGBM is demonstrated.

Assume that there are a p number of features. So, the com-
plexity of the LR algorithm is calculated as (O

(
Mp2 + p3

)
)

However, SVR computational time differs from that of LR.
Hence, it has a complexity of (O

(
M3

+M2p
)
. Furthermore,

the overhead complexity for the Decision Tree algorithm
is based on splitting the dataset. It can be formulated as
(O(

(
M2p

)
). The LGBMhas time complexity, like the gradient

boosting method. It depends on the t number of trees, and
the tree may have d as the depth. So, it can be calculated as
(O (mptd)).
We introduce the criteria that adaptively accommodate the

minimal computational delay and the maximum accuracy to
select the best ML model. That can be a higher accuracy
indication if bothMAPE and RMSEmust be close to 0, while
R2 should be close to 1. A smaller time complicity value
denotes a lower computational time. Based on insights from
our industrial partner, a telecommunication carrier in Egypt,
the framework outputs the model score with the following
formulation:

ScoreModel =
ωAc × AccuracyModel

ωComp × ComplicityModel
where ωAc + ωComp = 1 (14)

In Equation (14), theModel symbol presents the embedded
ML models {LR, SVR, DT, LGBM}. The ωAc and ωComp
are weights that depend on the relative value of the accuracy
indicator and complicity value, respectively.

Also, the AML-CTP framework adaptively sets the
weights based on the network load and required predic-
tion time. The network load is quantified using the number
of active users registered. For instance, in light-load times
when the traffic is expected to be low, the AML-CTP
framework sets the accuracy weight as dominant. Alterna-
tively, the framework favors computational complexity over
model accuracy during beak time and sets the complicity
weight as foremost. Finally, the ML model with the high-
est score should be selected as the best model. Then, the
AML-CTP framework is ready to apply the selected ML
model to the complete dataset. A full, detailed description
of the AML-CTP framework flow chart is illustrated in
Figure 3.

IV. EXPERIMENTAL EVALUATION
This section evaluates the AML-CTP framework when
applied to real datasets of two case studies. The section is
divided into three subsections. The first subsection explains
the dataset used in the evaluation and the experimental setup.
The results obtained from the empirical evaluation are pre-
sented and analyzed in the second subsection. Finally, the
third subsection compares the proposed framework against
two state-of-the-art techniques [48], [54].
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FIGURE 3. A flow process for the proposed AML-CTP framework.

A. DATASETS CHARACTERISTICS AND EVALUATION SETUP
The first case study dataset is KPI from an LTE mobile net-
work. It is collected from the traffic data from one of Egypt’s
most popular telecommunication equipment corporations.
Our previous work thoroughly analyzes the used dataset [7].
Traditionally, Key Performance Indicators are divided into
radio network KPIs and service. In our analysis, we focus on
three types of KPIs to observe the throughput of cell edge
users and its correlation with traffic load across different
frequency bands. These categories include Integrity KPIs,
Utilization KPIs, and Traffic KPIs. Integrity KPIs measure
the impact of eNBs on service quality, such as throughput for
cells and users, as well as latency for served users. Utilization
KPIs measure network utilization and resource distribution
based on demands, encompassing uplink resource block uti-
lization and downlink resource block usage rates. Traffic
KPIs assess traffic volumes on LTE Radio Access Network,
categorized by the type of traffic, including radio bearers,
downlink traffic volume, and uplink traffic volume. The final
dataset used in the first case study consists of 77 features and
259.223 rows [7].
Moreover, over four weeks, another dataset is collected for

the second case study from 6,000 cells in 200 telecommuni-
cation network sites. It has 80 features and 443,136 rows.

Furthermore, we investigate applying the proposed frame-
work to different geographic locations and telecommunica-
tion providers. That is because data collected from different
geographic locations exhibit the same behavior, as discussed
in [7]. Therefore, the provided data is considered a suitable
representative sample. Moreover, the dataset is split into
training and testing sets to prevent overfitting. Then, the

FIGURE 4. Figure Number of components according to the cumulative
explained variance.

experiments apply a double cross-validation process in which
the selectedmodels are tested and evaluated using a validation
set to assess whether the model is overfitting to a particular
set of training examples [7].

B. EMPIRICAL EVALUATION OF THE AML-CTP
FRAMEWORK
As a start, the first phase of the framework is applied to
analyze the data. The analysis eliminates 24 features from the
data since these columns are not numerical and are used to
identify the frequencies and the ID of each eNB.

Also, some of these columns describe information regard-
ing user handover [11], [45], [55], which is outside of the
scope of the analysis. A deeper investigation and further
analyses of the collected dataset can be found in our pre-
vious work [7], [43]. Also, regarding missing values, all
null values are compensated with the median value of the
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FIGURE 5. Two components of PCA of datasets.

entire row. After calculating the feature score using Sklearn’s
SelectKBest [7], [43], the high-scored features are utilized
to choose the final feature set. Therefore, the method that
extracts a final set of 50 features will have the highest
score. This final set is then used as the network traffic
load prediction target. Each feature is further explained in
detail in [7] and [43]. Finally, normalization is applied to
the selected dataset to avoid significant data variance. As for
large-scale multi-dimensional datasets like the collected data,
visualization is an essential task. Hence, PCA is applied
to diminish the data into a lower dimension. PCA esti-
mates how many components are needed to describe the
data.

The curve in Figure 4 quantifies the number of dimension
variances that can be containedwithin the first N components.
The first ten components represent approximately 95% of the
data variance. Also, to fully describe the variance, a total of
50 components are needed.

Consequently, the analysis considered a two- or three-
dimensional projection (with two or three principal com-
ponents), representing 87.17% of the data variance for two
components, a more than acceptable percentage to represent
the data [11].
Moreover, the plots in Figure 5 represent the complete

datasets with two components using PCA. Figure 5(a), two-
dimensional representations are sufficient to show that a
hyperplane’s fit to the data points distribution is excel-
lent. Figure 5(b) shows the distribution of classes on a
two-dimensional vector space.

FIGURE 6. The output of the KDC algorithm for two case studies.

The considered clustering algorithms are applied to
datasets. The detection method calculates the average dis-
tance between each point and its k nearest neighbors. Then,
the average k-distances are plotted in ascending order on a
k-distance graph. The optimal value for epsilon is the point
with maximum curvature or bend (i.e., at the most signifi-
cant slope). The calculated Epsilon value for our dataset in
the first case study is 3596.999. Alternatively, the clustering
minPoints is considered 15 since it represents a suitable value
for the collected dataset.

In the first case study, the DBSCAN clustering algorithm’s
output is one cluster of 250,648 data rows shown in
Figure 6(a) with dark blue color and represents 96.7% of data
and noise of 8,575 data rows with red color. According to
data density in the second case, the output of the DBSCAN
clustering algorithm is two clusters of 198,565 data rows and
244,423 data rows represented in Figure 6(b) with green and
blue color and noise of 1148 data rows with brown color.
The KDC clustering algorithm is applied after applying the
Silverman bandwidth formula in the first case study.

The output of the KDC clustering algorithm in first case
study is 12 clusters with one main of 249,346 data rows that
are represented in Figure 7(a) with blue color a and represent
96.3% of data. The rest of the 11 clusters contain the rest
of the data with different colors, each centered with an ‘o’
character and a limited number of data rows.
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FIGURE 7. Output of DBSCAN clustering for two case studies.

After applying the Silverman bandwidth for the second
case study, the Gaussian kernel is also used as a kernel
function, and the output of the KDC clustering algorithm
is 4 clusters with 205,136 data rows, 237,401, 1006, and
593 data rows. The main two clusters are represented in
Figure 7(b), with blue and green colors representing 99.6%
of data; the other two clusters contain the rest of the data with
brown and yellow colors.

Figure 8 illustrates the density distribution of similarity
measure scores for two case studies. The co-associatedmatrix
of these scores is empirically determined using DBSCAN and
KDC clustering algorithms for the respective case studies.
Agreement and similarity between the labels assigned by the
two clustering algorithms. Conversely, the remaining clusters
exhibit significantly lower values of RI.

As anticipated, the co-associated matrix for the dataset
in the first case study is generated for a single cluster and
noise, as output by DBSCAN, and eleven clusters, the out-
put of KDC. Notably, the data in the first cluster of both
clustering algorithms predominantly overlap, as depicted in
Figure 8 (a). The Rand Index is recorded at 0.99 in this first
cluster, indicating a high level of In Figure 8 (b), nearly the
entire dataset in the second case study can be categorized into
two primary clusters, and the data within these clusters are
identical. The DBSCAN algorithm divides the dataset into
two clusters and identifies one noise cluster. Meanwhile, the

FIGURE 8. The CO-Associated matrix between the output clusters of
DBSCAN and KDC clustering algorithms for two data sets.

TABLE 1. Homogeneity and silhouette.

TABLE 2. LR R2 results using different polynomials with different
degrees.

KDCmodel reveals four clusters, with respective Rand Index
values of 0.982 and 0.991 for the two main clusters. These
high RI values indicate strong similarity results between the
clusters.

In Table 1, Homogeneity and Silhouette Score measures
for clusters with high RI in both case studies are computed,
verifying the data similarity in each cluster with high scores
near one value. The AML-CTP framework, as presented,
selects optimal samples from a dataset for training purposes.
These samples should be manageable to ensure efficient pro-
cessing, enabling statistical measures of a selected subset to
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TABLE 3. LGBM’S optimized parameters.

FIGURE 9. Difference between original traffic and predicted traffic during
peak hours in the first case study.

approximate a response from the entire dataset in instances
where similar clusters exhibit a high RI, such as one cluster
in the first case and two clusters in the second case, random
samples of 1500 data rows are drawn from each cluster,
maintaining the same distribution probability as the entire
cluster.

LR with polynomial features, Support Vector Regression,
DT algorithm, and LGBM models are trained using the data
samples. The optimal parameters are obtained to maximize
the performance of LR and LGBM. As for LR, the frame-
work experimented with different degrees (first to fourth
degrees) to determine the best quality metric degree [56]. The
R2% values are calculated with each model and presented in
Table 2. The LRwith polynomial features of the fourth degree
achieved the highest accuracy in both cases.

Regarding LGBM, the hyperparameter values are deter-
mined using Bayesian optimization hyperparameter tun-
ing [57], [58]. Table 3 illustrates the final values of LGBM’s
hyperparameters.

Next, the quality metrics are evaluated for the embedded
ML models (LGBM, LR with fourth-degree polynomial fea-
tures, SVR, and DT) to identify the most suitable model.
As Table 4 illustrates, the quality metrics include R2, MAPE,
RMSE, and time complexity (comp). In the results of the
initial case study, it is evident that the LGBM algorithm
exhibits higher accuracy, accompanied by an acceptable
computational time, aligning with the expectations of our
industrial partner. Since LGBM is efficient for large datasets,
it achieved the best performance in the first scenario.

Analyzing a selected sample from the two clusters in the
second case study reveals that the LGBM algorithm achieves
the most favorable accuracy indication among all other algo-
rithms in the first cluster. As the first cluster does not contain
noise (as explained in Section IV-B), LGBM sustained its

FIGURE 10. Difference between original traffic and predicted traffic
during peak hours in the second case study.

TABLE 4. Performance evaluation ordered by the accuracy
indication (R2%).

superior performance. The DT algorithm is the second-best
performer. Also, as LR fundamentally assumes a linear rela-
tionship between features and the log odds of the target
variable, the LR model performs the least favorably in both
clusters since this assumption does not hold in the second
scenario.

Interestingly, the DT algorithm yields the best quality
metrics in the second cluster. Since the data in this cluster
contains noise, and with LGBM being sensitive to noisy data
and outliers, DT is considered the most suitable algorithm.
Decision trees are relatively robust to outliers, making them
more suitable for this cluster. Finally, SVR is an effective
algorithm, especially with nonlinear data. Hence, it per-
formed well in both clusters. It performs slightly better in
the first cluster since it is less sensitive to outliers than
other regression algorithms. In general, the results exhibit
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TABLE 5. Performance evaluation of the proposed framework compared to other state-of-the-art techniques.

the strengths and weaknesses of each algorithm given the
underlying data in each cluster and show that the suitability
of each model may vary depending on various factors, such
as the data’s linearity and the noise’s exitance.

Hence, the discrepancy between actual and predicted traf-
fic volumes is assessed for each ML model during peak
hours. As illustrated in Figure 9, LGBM demonstrates supe-
rior prediction accuracy compared to other algorithms, with
DT ranking as the second-best performer. Negative values
indicate instances. The results show that when the predicted
value surpasses the original value, the variance between the
original and predicted values falls within 1 to −0.2 MB. This
approach significantly reduces the time required to identify
the most accurate prediction module by carefully selecting
relevant data samples, resulting in a 53.3%-time reduction in
the first case study. The framework highlights the efficacy of
LGBM in traffic quality prediction.

Similarly, Figure 10 illustrates the disparities between the
actual and predicted traffic within each pair of clusters. The
variations range from −0.01 to 0.16 MB in the first cluster
and from −0.1 to 0.5 MB in the second cluster. These find-
ings empirically validate the effectiveness of the proposed
AML-CTP framework in adapting to changes in network
load. In both case studies, the framework demonstrated a
time-saving of over 85% when utilizing a sample of 1,500
data rows from similar clusters in the first case study and over
90% time reduction in the second case study. It is anticipated
that even more significant time savings can be achieved with
a more representative sample size relative to the total number
of rows in the utilized samples.

C. COMPARISON WITH THE STATE-OF-THE-ART
TECHNIQUES
This section compares the proposed framework with two
state-of-the-art techniques [48], [54]. The first approach
(ML) [48] applies traditional learning algorithms with LR
with polynomial features to predict the network traffic load.
Alternatively, the second approach (LSTM) [54] is a predic-
tive model that aims to enhance and sustain network capacity
using the LSTM algorithm and regression methods.

To compare the proposed framework with these
approaches, we employed our datasets used in the experi-
ments (first and second case studies) to evaluate the overall
performance. Table 5 shows the results obtained from the
experiments. During the evaluation, we report the quality

metrics, including R2, MAPE, RMSE, FI score, precision,
recall, and execution time for training (T. time) and prediction
(P. time).

As the table shows, the proposed model produced the
best prediction in the quality metrics during the experi-
ments compared to the other methods. As for the prediction
performance, the framework achieved the best traffic load
prediction with the highest Precision, Recall, and F1-score
without indication for overfitting, as shown from R2 results
in training (R2% Train.) and testing (R2% Test) shown in the
table.

Also, since the proposed framework only considers rel-
evant data samples to select the most suitable learning
algorithm, it significantly reduces training and prediction
time. The table shows that the AM-CTP could reduce predic-
tion time by up to 91% in the first case study compared with
the two other techniques. Similarly, the proposed framework
could save more than 90% of training and prediction time in
the second case study. For instance, the proposedmodel could
achieve better results with less training time. It reduces the
training time by up to 84.4% and 77.44% compared to the
ML and LSTM frameworks, respectively.

V. CONCLUSION AND FUTURE WORK
The paper discusses the challenge of accurately predicting
network traffic loads in cellular networks, especially when
dealing with complex, multi-dimensional datasets. There-
fore, it is advisable to explore multiple algorithms before
selecting the most suitable one. Also, it introduces clustering
methods to understand the data structure. So, applying a
single algorithm with identical hyperparameter tuning across
different datasets is challenging. This paper emphasizes the
importance of understanding the data and its characteristics
to select appropriate algorithms, with visualization aiding
in this process. It presents a proposed AML-CTP frame-
work to minimize runtime overhead by analyzing the data’s
nature in traffic prediction. The AML-CTP framework pro-
posed combines two-density clustering techniques (KDC
and DBSCAN) with a co-associated matrix to categorize
unknown traffic into clusters. High-quality clusters are identi-
fied using metrics like RI, silhouette score, and homogeneity.
Four high-speed, low-complexity algorithms are then fitted
to these clusters for prediction. Two case studies using real
KPI data from LTE-A networks demonstrate the framework’s
effectiveness, with one showing the superiority of the LGBM
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model. The framework saves significant computational time
in selecting suitable data samples and demonstrates the effec-
tiveness of different models for different clusters. It suggests
steering predicted traffic to cells or carriers with low traffic
during peak hours to enhance the Quality of Service for users
at cell edges.
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