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ABSTRACT Due to the sensitive and mission-critical nature of the data collected and transferred, security
in ToT-assisted UAV networks is of great significance. Intrusion detection in IoT-assisted UAV networks
includes the deployment of complex monitoring systems to identify and respond to cyberattacks, phys-
ical breaches, or unauthorized access. This system employs a combination of anomaly detection and
signature-based methods to find malicious or unusual activities within the network. A robust intrusion
detection mechanism is essential for protecting the security and integrity of the UAVs and the data collected,
ensuring that any possible vulnerabilities are promptly addressed and identified. Consequently, this study
introduces an adaptive mongoose optimizer algorithm with a deep learning-based intrusion detection
(AMOA-DLID) method in IoT-assisted UAV networks. The AMOA-DLID technique intends to ensure
security in the IoT-assisted UAV networks via an intrusion detection process. In the presented AMOA-DLID
technique, AMOA is initially applied for the feature selection process. The following sparse autoencoder
(SAE) model can be exploited for the recognition of the intrusions. Lastly, the recognition rate of the
SAE model can be improved by employing the Harris Hawks optimizer (HHO) technique. The detailed
experimental study of the AMOA-DLID model is performed on the benchmark dataset of IDS. The extensive
results portrayed that the AMOA-DLID technique reaches improved security over other models on the
IoT-assisted UAV networks.

INDEX TERMS Intrusion detection system, UAV, IoT, deep learning, Harris Hawks optimization, feature
selection.

I. INTRODUCTION

Currently, smart cities have expanded important power as
urban regions hold advanced applications to enhance sus-
tainability, efficiency, and excellence of life. Smart cities
integrate innovative technologies like the Internet of Things
(IoT), artificial intelligence (AI), and big data analytics to
integrate different urban methods and develop the quality of
services delivered to populations [1]. In smart city environ-
ments, UAVs provide novel benefits that make them vital for
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an extensive range of plans. It provides actual-time obser-
vation and checking abilities, allowing experts to gather
important data from some resources and places [2]. Whereas,
UAVs tested advantages in a variety of situations from the
visitor following to environmental estimation and tragedy
reaction for public safety. The capability to direct challenging
terrain and far-off regions with simplicity creates invaluable
effects for developing situational attention as well as fast
response time [3]. With great profile processes in aggressive
surroundings, effective attacks alongside UAVs have over-
whelming effects on the public as well as national safety.
UAVs are employed more and become greater targets and
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attacks beside them are known [4]. Jamming and Spoofing
attacks are two well-known and very simple to behavior
because they need only cheap software definite radio.

The incorporation of IoT devices with UAVs creates an
effective combination for several applications, from envi-
ronmental monitoring to package delivery. However, this
convergence introduces major security challenges that need
careful attention. Classical security techniques often lag
behind the ever-evolving threat landscape. However, IDS
analyzes the network traffic and device behavior in real-time,
detecting potential attacks and suspicious activity before they
cause damage [5]. This proactive method is crucial to ensure
the safety of UAV operation, safeguard sensitive informa-
tion, and prevent critical system disruption. IoT-assisted UAV
network is an intricate ecosystem, with vulnerabilities at
different levels — from transmission protocol to individual
sensors. IDS offers multi-layered protection by monitor-
ing different data sources, involving network traffic, device
logs, and sensor readings. This comprehensive technique
helps mitigate and expose threats across the overall network,
leaving no blind spots for the attackers to exploit [6].

Numerous present techniques concentrate on conventional
network security actions and directing details of UAV opera-
tions. Moreover, privacy-preserving models regularly do not
excuse for dynamic nature of UAV systems that lead to sub-
optimal defense. To struggle against threats against UAVs,
atrivial on-board IDS is required. Enhanced and highly robust
IDS are required for IoT systems [7]. Deep learning (DL)
quickly analyzes huge amounts of data as well as supports
spontaneous alterations of safety methods upon recognition
of malware or safety openings while employing low computa-
tional power [8]. Safety networks made on DL do not require
anetwork connection to threat recognition because they func-
tion across devices, primary operating methods, and files. The
selection of the DL model in IoT significantly aids in IDS.
Such selection can be executed by equating techniques to
define the most precise one and then executing a particular
method [9]. This study has numerous advantages enhanced
accuracy and decreased false alarm rate of IDS by employ-
ing DL techniques. By strengthening its security, it affects
human lives, budgets, technology, and the atmosphere of
IoT [10].

This study introduces an adaptive mongoose optimizer
algorithm with a deep learning-based intrusion detection
(AMOA-DLID) method in IoT-assisted UAV networks. The
AMOA-DLID technique intends to ensure security in the
IoT-assisted UAV networks via an intrusion detection pro-
cess. In the presented AMOA-DLID technique, AMOA is
initially applied for the feature selection (FS) process. The
following sparse autoencoder (SAE) model can be exploited
for the recognition of the intrusions. Lastly, the recognition
rate of the SAE system can be improved by the usage of
the Harris Hawks optimizer (HHO) model. The detailed
experimental analysis of the AMOA-DLID algorithm was
implemented on the benchmark IDS database. In summary,
the key contributions of the study are given as follows.
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e The main purpose of the AMOA-DLID algorithm is to
ensure security in loT-assisted UAV networks by adap-
tive and effectual IDS. By integrating nature-inspired
optimizer methods (AMOA and HHO) with DL
approaches (SAE), the methodology proposes to
address the unique problems modelled by security
attacks in IoT environments with UAV networks.

e Introduction of the AMOA for the primary FS proce-
dure in the IDS. The AMOA, inspired by the behavior
of mongooses was executed to adaptively select the
most significant features, improving the efficacy and
effectiveness of the following intrusion detection steps.

e Use of the SAE approach for identifying intrusions
from the IoT-assisted UAV networks. SAE, a kind
of NN, can be deployed to learn and extract mean-
ingful representations from the selected features. Its
sparse nature permits for a concise and informative
encoding of intrusion patterns, contributing to correct
recognition.

e Integration of the HHO algorithm to improve the recog-
nition rate of the SAE methodology. HHO, inspired
by the hunting behavior of hawks, can executed to
modify the parameters of the SAE algorithm, enhanc-
ing its capability to discern subtle patterns connected
with intrusions. This contributes to overall performance
improvement in intrusion detection.

A. LITERATURE WORKS

Wu et al. [11] developed a Q-learning-based two-fold coop-
erative IDS (Q-TCID). In particular, this model uses an
intelligent dynamic voting technique. In addition, a clever
auditing method is also presented to execute system-level
examinations. Both methods use Q-learning optimizer plans
and cooperate with the exterior atmosphere in their particu-
lar Markov result procedures that lead to optimal ID plans.
In [12], a traditional deep neural network was proposed
as well as executed to categorize several dissimilar kinds
of system attacks in IoT. As a test bed for similar conse-
quences, an advanced dataset of CICIDS2017 is extreme
and employed. The attained outcomes are equated with the
current works. The research designed augmentation models
and compared all results to overcome the imbalanced data
problem.

In [13], dual distinct methods were designed. In st tech-
nique, a CNN has been created and integrated with the
LSTM deep network layer. The 2nd method created all full
connection layers (dense layers) to make an ANN. There-
fore, the second method is the tradition of ANN layers
with numerous sizes projected. Ullah et al. [14] developed a
transformer NN-based IDS (TNN-IDS) specially considered
for MQTT-assisted IoT systems. TNN-IDS influences the
parallel treating ability of the TNN, which rushes learning
procedures and outcomes in enhanced recognition of mis-
chievous attacks. For calculating the act of the developed
network, it was evaluated by numerous IDSs based on ML
and DL techniques.
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In [15], a DL-based ID model is presented by including
3 stages. Primary, FS segment is employed. Next, a DL
framework based on GAN is specially developed for ID
pointing at a single attack. Finally, a novel ID technique is
presented by uniting numerous ID techniques. ID aims at
many attacks and is understood over planned GAN-based
DL design. Maray et al. [16] developed a Harmony Search
algorithm-based FS with Optimum CAE (HSAFS-OCAE)
approach. HSAFS model employed for FS. Then, the CAE
technique influenced to identification as well as categoriza-
tion of intrusions from the SDN-enabled IoT atmosphere.

In [17], a privacy-preserving-based protected structure
was proposed. Initially, a blockchain module and smart
contract-based improved Proof of Work (ePoW) were pre-
sented. Next, an LSTM-AE approach was used. An encoded
data has been employed by projected Attention-based RNN
(A-RNN). The Truncated Backpropagation Through Time
(BPTT) model is employed for training. Binary openly
obtainable datasets such as ToN-IoT and CICIDS-2017 were
used for estimation. Shah et al. [18] developed an Al-based
scheme technique with a double objective. It foremost spots
malicious users tiresome of negotiation IoT atmosphere
utilizing a dual grouping issue. Besides, blockchain exper-
tise is employed to provide tamper-proof storage to hoard
non-malicious IoT information. This paper uses DL tech-
niques to categorize malicious as well as non-malicious smart
agreements.

Perumalla et al. [19] an oppositional Aquila
Optimizer-based FS with ML-assisted IDS (OAOFS-MLIDS)
in the IoD platform is introduced. The suggested technique’s
main aim is to achieve safe access control through the intru-
sion detection that exists in it. Fatani et al. [20] present a
novel IDS architecture based on the combination of DL and
optimizer techniques. First, a feature extractor model based
on CNN has been introduced. Next, a novel FS technique is
employed based on the adapted type of Growth Optimizer
(GO), named MGO. Then, the Whale Optimizer Algorithm
(WOA) is used to improve the search procedure of the GO.
In [21], proposes a search-resampling-optimization (SRO)
algorithm. A hybrid Ax mechanism is used for generat-
ing a coarse path as per the boundary state in the search
phase. Next, a resampling procedure is employed to cover a
sequence of safe dispatch corridors (SDCs) beside the coarse
pathway. In [22], we concentrate on cooperative mission
assignments for varied UAVs. We design a multi-objective
optimizer algorithm to discover a balance amid UAV losses
and mission success. The main objective function is for-
mulated by conditional probability theory by presenting the
probabilities of UAV loss and task gains.

Chulerttiyawong and Jamalipour [23] present an intel-
ligent Sybil attack recognition method for FANETs-based
IoFT utilizing physical layer features of the radio signals
produced from the UAVs as identified by 2 ground nodes.
A supervised ML method can be deployed and experimented
with many distinct classifiers existing in the Weka workbench
platform. Pu and Zhu [24] examine a lightweight distributed
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recognition method, discussed as Lids, to defend against
flooding attacks from the IoD platform. The fundamental idea
of Lids is that all the drones count the amount of packets
that it has sent from an existing time interval and share the
self-counting report with other drones under the contacts.
Al-Sarawi et al. [25] examine the Passive Rule-based
Approach (PRBA) to identify sinkhole nodes from
RPL-based IoT networks. The PRBA algorithm depends on
3 presented behavioral indicators: (i) Bidirectional behav-
ior, (ii) Bidirectional frequency behavior, and (iii) Power
Consumption behavior.

Il. THE PROPOSED MODEL

In this research, we present an AMOA-DLID technique in
IoT-assisted UAV networks. The AMOA-DLID technique
intends to ensure security in the IoT-assisted UAV networks
via an IDS procedure. It has 3 major procedures such as
AMOA-based FS, SAE-based classification, and HHO-based
parameter tuning. Fig. 1 depicts the entire procedure of the
AMOA-DLID technique.

A. FEATURE SELECTION USING AMOA MODEL

Initially, the AMOA model is applied to the FS process.
AMOA is a nature-inspired optimizer method that relies on
the behaviors of mongooses in their search for food and their
interactions with their environment [26]. It is introduced as
a metaheuristic algorithm to resolve optimization problems.
The algorithm is stimulated through the foraging behavior of
mongooses, particularly their ability to hunt and find food by
searching, avoiding predators, and utilizing communication
among group members. Here, the individuals in the popula-
tion are randomly produced with upper and lower boundaries,
as follows:

X1 X1,2 - Xlyd—1 Xlid
X X c X — X
X — 2,1 X2.2 2,d—1 X2.d (1)
Xa,b
Xm,1 Xm,2 © Xmvd—1 Xmyd

Now set of candidates generated randomly in the present
population is denoted as X, x, 5 specifies the location of b
dimension of ¢’ population, m indicates size of populations,
and d implies dimensional of problems. At last, the optimum
solution at all iterations is assessed by using the subsequent
formula:

Xq,p = unifrnd (VMin/ VMax’ Vsize) 2)

In Eq. (2), unifrnd indicates a uniformly distributed ran-
dom number, the low and up bounds of the searching space
Vmin and Vmax are, correspondingly, and the problem dimen-
sion is denoted as V.. Now, the alpha female (af ) can be
regarded as a family unit controller:

__F
2}11F J

3

In the alpha group , m—b* match the amount of mongooses,
the number of babysitters is b°, and the sound of female alpha
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Enhancing Security in loT-Assisted UAV Networks

Feature Selection Process: Adaptive Mongoose Optimization Algorithm
Intrusion Detection Process: Sparse Autoencoder Model
Hyperparameter Tuning Process: Harris Hawks Optimization Algorithm

Performance Measures: Accuracy, Precision, Recall, F-Score, AUC Score

FIGURE 1. The overall process of the AMOA-DLID algorithm.

towards the direction of other members is denoted by peep*.
Next, the sleeping mound can be defined using abundant
food, as follows:

Xiy1 = Xj + 8 xpeep” 4

In Eq. (4), a uniformly distributed random number [-1, 1]
is §:

Fi 1 —F;
sl = — I T (5)
T min {[F Fl)

Once the sleeping mound is found, the following formula
is used for calculating the average value:
st
o= =170 (6)
m
After the condition of the babysitter exchange is met, the
scouting measures the sleeping mound defined by additional
food sources. Usually, the mongooses are known to forage
and scout together.

Xj — c" x §xrand x |X; —A_}Imij‘pj+1 > pj]

Xjr1 = ) N
X; +c" x dxrand x | X; — Mmelse]
(7
i\ (4377
V=1{1- 8
‘ ( Mir) ®)

Now, a random integer within [0, 1] is represented as rand,
and the parameter ¢” is used to control the group’s volatile,
collective movement and linearly reduces over iteration.

" Xixsl!
- J
M, = !
j=1

©))

X;
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In Eq. (9), the force that drives mongooses towards a
new sleeping mound is indicated as M. In this AMOA, the
objective is integrated into a single objective thereby a present
weight recognizes the objective significance [27]. The study
adopts a fitness function (FF) that fuses the above two objec-
tives of FS as given below.

Fitness(X):ot-E(X)—i—,B*(l—%) (10)
where the fitness value of subset X is Fitness(X), the classifier
rate of errors through features selected in X subset is E(X),
the amount of selected and original features in the datasets are
|R| and |N| correspondingly, the weighted of classifier error
and the reduction ratio are « and 8, € [0, 1]and 8 = (1—«).

B. CLASSIFICATION USING SAE

In this work, the SAE model can be exploited for the recog-
nition of the intrusions. As an unsupervised three-layer NN,
AE consists of three layers namely, an input, a hidden layer
(HL), and a reconstruction layer (also known as an output
layer) [28]. AE could slowly transform the feature vector
into an abstract feature vector that will realize the nonlinear
conversion from higher to lower dimension data space. Fig. 2
illustrates the SAE architecture. The proposed structure of AE
is divided into two phases: the encoder and decoder process
and are explained in the following:

The encoder procedure from the input layer to the HL:

H =gp (X) =0 (WX +¢1) Y
The decoder process from HL to the output layer:
Y = go, (H) = o (WiH + ¢2) (12)

In the above formulas, the input and reconstruction vec-
tors are X = (x1,x2,...,x,) and ¥ = (y1,¥2,...,Yn)
and the low-dimensional vector output from the HL is
H=(hy, hy, ... ,h;), XeR", YeR", HeR™( the amount of
hidden units is m and the dimension of the input vector is n).
The connecting weight matrices between HL and input layers
are W;;eR™"*. The connecting weight matrices between HL
and output layers is Wiy eR™". To recreate the input dataset
as closely as possible while decreasing resource usage in the
training process, Wy, = Wi]r . The bias vector of the input
layer and HL are ¢; € R™! and ¢, € R"™*! correspondingly.
The sigmoid function is utilized as an activation function. The
activation function of HL and output neurons are gq, and g,
correspondingly:

1

TFer (13

86, (1) = g6, () =

Consider that the output data by the HL unit is the opti-
mum low-dimension representative of the original dataset
and integrates any data existing in the original information.
The Jg (W, @) reconstructed error function between H and Y
exploits the MSE function, where N denotes the number of
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input samples.

N
1
JeW.9) =22 > 1Y — x| (14)
r=1

Based on computation learning of the receptive field of
cells in the mammalian main visual cortex, Olshausen orig-
inally proposed the concept of sparse coding. Owing to the
inevitable problems of AE, for instance, the input dataset
is transferred to the output layer. Even though the original
input dataset is perfectly recovered, the AE doesn’t extract
any meaningful feature. Assume that the average activation of
neurons in the HL is §;, p; = ]iv Zivz 1 [ (x;)]. We expect the
average activation p; to approach the constant p that is closer
to 0. Thus, we added Kullback-Leibler (KL) divergence as
a regularization term to the error function for achieving the
abovementioned purpose:

. P
KL(pllpj) = plOg; + (1 —p)log (15)
J

1— ,Oj
Now, the error function of SAE comprises two different
parts: MSE, and a regularization term. as given below:

m
Tsparse (W.b) =J (W.b)+ 1 > KL(pllgp)  (16)

j=1
In Eq. (16), the amount of hidden units is m and the weight
factor which controls the strength of sparse item is . Also,
the weight attenuation item is added to the error function to
prevent over-fitting, the attenuation coefficient of weight is

represented as A.

m

Tsparse (W, b) = Jg (W, b) + 11 > KL(p||$))

j=1
A 3 m m+l1
2
+3 Z}: ZI: le(w;) (17)
r=1i=1 j=

C. PARAMETER TUNING USING HHO

Lastly, the recognition rate of the SAE technique can be
enhanced by the usage of the HHO technique. HHO is a
new swarm intelligence (SI) optimization method whose
main motivation comes from the hunting processes of Harris
hawks [29]. The global search and local development stages
are two different hunting processes of HHO:

X@+1)
Xrana (1) — 11 | Xpana (8) — 2r2X (1) g=> 0.5
= 1 Kyavpir (t) — X (1)) — r3 (LB + r4 (UB — LB))
g< 0.5
(18)
Here location vector of hawks at ¢ iteration is X(¢+1),
the location of the rabbit is X,4ppir (1), the upper and lower
boundaries of variables are LB and UB, the existing location

vector of hawks is X(#), random integers within (0, 1) that
are updated in all iterations are represented as ry, 12, 13, 14,
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and g, an arbitrarily elected hawk from current population is
Xrana (1), and the average location of the existing populace of
hawks is indicated by X;,,.

The soft and hard besiege with quick progressive dive has
four different parts of local development. If escape energy
|E| < 1, then local progress takes place. The equation for
local development is given below:

(1) Soft besiege

X+ 1) =X ) = E |[JXpappir (1) = X (1)

X (t) = Xrabbir (1) — X (1) (19)
(2) Hard besiege
X (@t + 1) = Xyabpir (1) — E 1X (1)] (20)

(3) Soft besiege with quick progressive dive
Y = Xrabwir (1) — E [T Xrappir (1) — X (1) (2D
(4) Hard besiege with quick progressive dive

Y = Xiabbir (t) —F |-]Xrabbit (t) — X (t)|

1 N
X (1) = 5 2 Xi (1) (22)
i=1

Now the hawk position at #%¢/" iteration is X;(r) and the
overall amount of hawks is represented by N.

The HHO method develops an FF to achieve improved
effectiveness of detection. It describes an optimistic integer
to distinguish the best performance of the solution candidate.
The reduction of classifier error rate can be viewed as an FF,

fitness (x;) = Classifier Error Rate (x;)

No.of misclassified instances
= %100  (23)

Totalno.of instances

Ill. PERFORMANCE VALIDATION

The proposed model is simulated using Python 3.6.5. In this
part, IDS outcomes of the AMOA-DLID system are tested by
employing the NSL-KDD database including 125973 sam-
ples with 42 features as described in Table 1. It is accessible
at https://www.unb.ca/cic/datasets/nsl.html. The NSL-KDD
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TABLE 1. Details on database.

Classes No. of Instances
Dos 45927

R21 995

Probe 11656

U2r 52

Normal 67343

Total No. of Instances 125973

dataset is a group of network traffic datasets applied for intru-
sion detection study. It is a modified version of the KDD’99
datasets. The NSL-KDD database was formed to address the
limitations of the KDD’99 datasets, such as the imbalance of
attack and normal traffic and the high number of redundant
records. The AMOA-DLID technique has designated a set of
22 features.

A series of measures employed for observing the classifi-
cation results are accuracy (accuy), precision (prec,), recall
(recay), and F-score (Fcore)-

- TP
Precision = —— (24)
TP 4 FP

Precision is employed in order to measure the ratio of cor-
rectly forecast positive instances among all the instances that
were predicted as positive.

TP
Recall = —— (25)
TP + FN

Recall is utilized to measure the ratio of positive samples
correctly categorized.

Accuracy = TP+ TN (26)
Y= TP+ TN+ FP + FN

Accuracy is applied to measure the ratio of correctly cate-
gorized samples (positives and negatives) beside complete
samples (amount of samples that have been classified).

2TP
F—scoe= —————— 27
2TP + FP + FN

F-score is a measure uniting the harmonic mean of precision
and recall.

The confusion matrices attained by the AMOA-DLID
algorithm with 80:20 and 70:30 of the TRA phase/TES phase
are shown in Fig. 3. The achieved findings refer to the effi-
cient detection and classification with all five classes.

In Table 2 and Fig. 4, complete intrusion classification
outcomes of the AMOA-DLID technique are portrayed at
80:20 of the TRA phase/TES phase. The outcomes infer
that the AMOA-DLID technique reaches effectual identifi-
cation of the intrusions. With 80% of the TRA phase, the
AMOA-DLID technique offers an average accuy, of 99.56%,
prec, of 92.58%, reca; of 86.36%, Fscore of 88.03%, and
AUCgcore of 93.01%. Additionally, with 20% of the TES
phase, the AMOA-DLID system gains an average accuy of
99.56%, prec;, of 92.58%, reca; of 86.36%, Fcore of 88.03%,
and AUCg¢pre 0f 93.01%.

An overall intrusion classifier outcome of the
AMOA-DLID method is depicted at 70:30 of the TRA

VOLUME 12, 2024

Training Phase (80%) - Confusion Matrix

:]5 36498 7] 142 0 141

26 718 8 0 24

Testing Phase (20%) - Confusion Matrix

9004 T 32 0 34

Do

8 203 1 0 7

R2I
R2I

145 24 9015 [ 137 42 2 2270 0 21

Actual
Probe
Actual
Probe

g 7 3 6 19 8 g 3 0 2 1 3
® K]
E| 172 78 129 K 53413 E| 32 21 k14 0
2 2
Dos R2l Probe U2r Normal Dos R2l  Probe U2r Normal
Predicted Predicted
(b)
Training Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix
é’ 31915 L] 67 0 a7 é 14 32 1 34
gon 681 2 0 2 g 5 290 2 0 2
52 R
g8 B 7 8198 o 27 g 8] 12 3 3387 0 9
< 8 < o
8 2 0 0 38 1 8 0 0 0 " 0
T ®
El 17 21 82 LI 46877 E| 49 15 36 2
2 1 | | 2| : ;
Dos R2I Probe U2r Normal Des R2l  Probe U2r Normal

Predicted Predicted
(c) (d)
FIGURE 3. Confusion matrices of (a-c) TRA phase of 80% and 70% and
(b-d) TES phase of 20% and 30%.

TABLE 2. Intrusion classifier analysis of AMOA-DLID technique at 80:20
of TRA phase/TES phase.

Classes ‘ Accu, ‘ Prec, | Reca, ‘ Fscore | AUCscore
TRA Phase (80%)

Dos 99.31 99.05 99.06 | 99.06 | 99.26
R2I 99.78 81.13 92.53 | 86.45 | 96.18
Probe 99.41 96.94 | 96.72 | 96.83 | 98.20
U2r 99.97 86.36 | 44.19 | 58.46 | 72.09

Normal | 99.31 99.42 99.29 | 99.36 | 99.32
Average | 99.56 92.58 86.36 | 88.03 | 93.01

TES Phase (20%)
Dos 99.35 99.06 99.12 | 99.09 | 99.30
R21 99.79 84.58 92.69 | 88.45 | 96.27

Probe 99.46 96.93 97.22 | 97.07 | 98.45
U2r 99.97 100.00 | 11.11 20.00 | 55.56
Normal | 99.38 99.52 99.34 | 99.43 | 99.39
Average | 99.59 96.02 79.90 | 80.81 | 89.79

phase/TES phase as shown in Table 3 and Fig. 5. The exper-
imental outcomes conclude that the AMOA-DLID system
attains effective detection of intrusions.

With 70% of the TRA phase, the AMOA-DLID system
reaches an average accity of 99.79%, prec,, of 95.90%, reca;
0f 97.78%, Fcore 0f 96.82%, and AUCcore 0f 98.81%. More-
over, with 30% of the TES phase, the AMOA-DLID method
attain an average accuy of 99.77%, prec, of 93.18%, reca; of
99.04%, Fcore 0f 95.83%, and AUCjsore of 99.44%.

Fig. 6 establishes classifier performances of the
AMOA-DLID system at 80:20 and 70:30. Figs. 6a-6¢
illustrates accuy, curve of the AMOA-DLID system. The
outcome states that the AMOA-DLID approach gains higher
accuy outcomes over the highest epochs. Furthermore, the
maximum validation accuy, over TRA accu, depicts that the
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100 -
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FIGURE 4. Average of AMOA-DLID model at 80:20 of TRA phase/TES
phase.

TABLE 3. Intrusion classifier outcome of AMOA-DLID technique at 70:30
of TRA phase/TES phase.

100 -

Avg.Values (%)

Accuracy

Precision

Recall

EEm Training Phase (70%)
El Testing Phase (30%)

F-Score AUC Score

FIGURE 5. Average of AMOA-DLID technique at 70:30 of TRA phase/TES

phase.

Training and Validation Accuracy (80:20)

Training and Validation Loss (80:20)

Classes ‘ Accu, ‘ Prec, ‘ Recaq, ‘ Fscore | AUCscore
TRA Phase (70%)

Dos 99.63 | 99.55 | 99.43 | 99.49 | 99.59
R21 99.93 | 93.67 | 97.84 | 9571 | 98.90
Probe 99.78 | 98.19 | 99.43 | 98.81 | 99.62
U2r 99.99 | 88.37 | 92.68 | 90.48 | 96.34
Normal | 99.60 | 99.73 | 99.52 | 99.63 | 99.61
Average | 99.79 | 9590 | 97.78 | 96.82 | 98.81
TES Phase (30%)

Dos 99.61 99.52 | 99.41 | 99.47 | 99.57
R2I 99.89 | 90.06 | 96.99 | 93.40 | 98.45
Probe 99.75 | 97.98 | 99.30 | 98.63 | 99.55
U2r 99.99 | 78.57 100.00 | 88.00 | 100.00
Normal | 99.61 99.78 | 99.50 | 99.64 | 99.62
Average | 99.77 | 93.18 | 99.04 | 95.83 | 99.44

pres o

te) (@)

FIGURE 6. (a-c) Accuy curve of 80:20 and 70:30 and (b-d) Loss curve of
80:20 and 70:30.

Precision-Recall Curve (80:20) ROC-Curve (80:20)

AMOA-DLID algorithm reaches ably on the test database.
However, Figs. 6b-6d represents the loss outcome of the
AMOA-DLID technique. The simulation value shows that
the AMOA-DLID technique reaches nearby outcomes of
TRA and validation losses. This can be identified that the
AMOA-DLID method gains proficiency on the test database.

Fig. 7 defines the classifier outcome of the AMOA-DLID
algorithm at 80:20 and 70:30. Figs. 7a-7c depicts the PR curve
of AMOA-DLID methodology. The outcomes implied that
the AMOA-DLID algorithm outcomes in the maximum out-
come of PR. Besides, it can be obvious that the AMOA-DLID
system gains superior values of PR in every class. However,
Figs. 7b-7d establishes the ROC curve of the AMOA-DLID
approach. The outcome is definite that the AMOA-DLID sys-
tem resulted in better values of ROC. Furthermore, it becomes
clear that the AMOA-DLID system extends superior values
of ROC on each class.

In Table 4, a brief comparison research of the
AMOA-DLID model takes place with recent approaches [30].
In Fig. 8, a comparative accu, and prec, results of the
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FIGURE 7. (a-c) PR curve on 80:20 and 70:30 and (b-d) ROC curve on

80:20 and 70:30.

AMOA-DLID technique is provided. The results stated
that the AMOA-DLID method achieves enhanced results
over other techniques. Based on accuy, the AMOA-DLID
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TABLE 4. Comparison analysis of the AMOA-DLID technique with other

approaches [30].

. M AMOA-DLID
‘Il DRL-BWO Model
. I IDEN Model

: I T-SID Model
100 4 .

95

90

Values (%)

85

80 -

75

70 -

Recall

== DL Model
=3 DPC-DBN Model
3 AK-NN Model

F Score

FIGURE 9. Reca; and Fscore outcome of AMOA-DLID technique with other

Methods Accu, Prec,, | Reca, Fscore
AMOA-DLID 99.79 95.90 97.78 96.82
DRL-BWO Model 98.70 94.95 75.00 74.20
IDBN Model 95.32 91.06 74.03 72.11
T-SID Model 94.38 94.22 79.50 72.89
DL Model 91.80 93.83 75.47 73.56
DPC-DBN Model 94.39 94.70 78.12 73.59
AK-NN Model 91.78 92.64 79.77 74.25
' AMOA-DLID = DL Model
3 DRL-BWO Model EEE DPC-DBN Model
100+ . 3 IDBN Model EEE AK-NN Model
@@ T-SID Model
98 ¢
;.'g
9 96 po——
3
s
94 |
92 4
o []

Accuracy Precision

FIGURE 8. Accuy and precy outcome of AMOA-DLID technique with other
methods.

TABLE 5. CT analysis of AMOA-DLID technique with other approaches.

Methods Computational Time (sec)
AMOA-DLID 0.69
DRL-BWO Model 1.46
IDBN Model 2.12
T-SID Model 391
DL Model 3.06
DPC-DBN Model 2.65
AK-NN Model 2.93

model offers a higher accuy of 99.79% however, the DRL-
BWO model, IDBN method, T-SID system, DL technique,
DPC-DBN approach, and AK-NN technique provide lower
accuy values of 98.70%, 95.32%, 94.38%, 91.80%, 94.39%,
and 91.78%, correspondingly. Also, based on precy, the
AMOA-DLID approach provides a superior prec, of 95.90%
whereas the DRL-BWO model, IDBN method, T-SID sys-
tem, DL technique, DPC-DBN approach, and AK-NN
technique offer minimal prec, values of 94.95%, 91.06%,
94.22%, 93.83%, 94.70%, and 92.64%, correspondingly.

In Fig. 9, a comparative reca; and Fy, outcomes
of the AMOA-DLID algorithm are provided. The out-
come implied that the AMOA-DLID system attains better
performances with other approaches. Based on reca;, the
AMOA-DLID system reaches a superior reca; of 97.78%
while the DRL-BWO model, IDBN method, T-SID system,
DL technique, DPC-DBN approach, and AK-NN technique
attains minimal reca; values of 75%, 74.03%, 79.50%,
75.47%, 78.12%, and 79.77%, correspondingly. Followed
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FIGURE 10. CT outcome of AMOA-DLID technique with other methods.

by, based on Fyyre, the AMOA-DLID method provides a
superior Fgore Of 96.82% whereas the DRL-BWO model,
IDBN method, T-SID system, DL technique, DPC-DBN
approach, and AK-NN technique gain decreased Fi. values
of 74.20%, 72.11%, 72.89%, 73.56%, 73.59%, and 74.25%,
correspondingly.

In Table 5 and Fig. 10, a comparative computational time
(CT) analysis of the AMOA-DLID algorithm with other
existing methodologies. The simulation values inferred that
the T-SID system has achieved inefficient performances with
an enhanced CT value of 3.91s. Besides, the DL and AK-NN
models have exhibited somewhat better results with CT val-
ues of 3.06s and 2.93s. In addition, the DPC-DBN, IDBN,
and DRL-BWO approaches have demonstrated reasonable
and closer CT values of 2.665s, 2.12s, and 1.46s respectively.
However, the AMOA-DLID algorithm has outperformed the
better solution with a lesser CT value of 0.69s.

Thus, the AMOA-DLID technique can be employed for an
accurate intrusion detection process.

IV. CONCLUSION

In this article, we present an AMOA-DLID technique in
IoT-assisted UAV networks. The AMOA-DLID technique
intends to ensure security in the loT-assisted UAV networks
via an intrusion detection procedure. It has 3 main procedures
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such as AMOA-based FS, SAE-based classification, and
HHO-based parameter tuning. Initially, the AMOA model
is applied to the FS process. Followed by, the SAE model
can be exploited for the recognition of the intrusions. Lastly,
the recognition rate of the SAE technique can be enriched
by the use of the HHO method. The detailed experimental
analysis of the AMOA-DLID method is performed on a
benchmark IDS database. The extensive results portrayed that
the AMOA-DLID technique reaches improved security over
other models on the IoT-assisted UAV networks.

The combined use of AMOA and SAE is computationally
expensive, particularly for real-time processing and large
datasets. This poses a challenge for the resource-constraint
UAV. While AMOA provides FS, the DL nature of SAE
makes it intrinsically less interpretable. Understanding why
a certain feature is considered relevant for intrusion detection
can be challenging. Future work could integrate Explainable
AI (XAI) methods with the SAE model could improve inter-
pretability, which allows for potentially identifying potential
biases and a better understanding of the decision-making
process.
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