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ABSTRACT Formation flight holds significant potential for various applications involving aerial robot
swarms. However, current methodologies lack the capability to autonomously execute large-scale for-
mation flights in densely populated environments. To bridge the gap, a decentralized and asynchronous
formation flight planner is proposed based on a graph-based formation metric and tight representations of
kino-dynamically feasible trajectories for collision avoidance. The planner handles formation path planning
along with dynamic obstacles and intervehicle collision avoidance using minimum volume convex hulls
for agent trajectories. The employed formation metric is invariant to rotation, translation, and scaling,
granting greater flexibility in formation coordination. A decoupled and distributed trajectory optimization
framework is proposed to enhance the computational feasibility of large-scale formation flights. Moreover,
to mitigate issues relating to communication delays between agents, asynchronous execution of a finite
horizon navigation framework with usage of sparse trajectory control points for trajectory segments is
employed. Simulations with multiple agents, static and dynamic obstacles support the robustness of the
planner to formation flights in real world. The planner demonstrates goal/waypoints achievement and
formation adherence capabilities that are assessed and compared using a popular quantifiable formation
similarity metric. Furthermore, the paper also serves as a guideline to build upon trajectory planning
frameworks for tight formation control in cluttered, dynamic environments.

INDEX TERMS Autonomous aerial vehicles, collision avoidance, decentralized control, formation control,
graph theory, path planning, swarm robotics, trajectory optimization.

I. INTRODUCTION
Formation flight has emerged as a pivotal capability
for autonomous swarms, enabling them to execute coor-
dinated aerial maneuvers. In intricate urban landscapes
formation-based navigation holds immense potential for
applications such as logistics of heavy loads, collaborative
mapping [1], search and rescue [2], [39], package deliv-
ery [3], and similarly in large scale farming and agriculture
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activities [4], and more. However, effectively incorporat-
ing real-world constraints into aerial formations remains an
unsolved challenge. This article seeks to investigate the pos-
sible solutions and empower aerial swarms by introducing
a formation flight scheme that enables them to maintain
cooperative formation behaviors in cluttered environments.

In the realm of aerial robot swarms, the primary focus
lies on factors such as ensuring kino-dynamic feasibility,
effective obstacle avoidance, swarm reciprocal avoidance
and formation integrity within densely populated environ-
ments. In terms of formation coordination, methods can
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be categorized into either those designed for formation
flight in open space or for constrained environments (con-
sidering obstacle avoidance). For the former numerous
techniques have been proposed for obstacle-free environ-
ments. These approaches encompass virtual structures [5],
leader-follower [6], [42], navigation functions [7], [43], reac-
tive behaviors [8], consensus-based control laws [9], and
barycentric coordinate-based control [10]. Recent develop-
ments include the presentation of a VIO-swarm system [11],
capable of executing collision-free formation flight in open
space without inter-robot collisions. The scheme in [12],
introduces a distributed formation control method, reducing
the dependency on a common reference frame.

In the context of constrained environments, extensive
research deals with formation navigation by formulating local
feedback laws. Han et al. [13] introduce a formation con-
troller based on a complex-valued graph Laplacian, where a
leader regulates formation scale for specific swarm maneu-
vers, such as navigating through narrow corridors. Zhao [14]
proposes a leader-follower control law allowing affine trans-
formation of the formation in response to environmental
changes. Zhou et al. [15] combine virtual structures with
feedback potential fields to generate collision-free trajec-
tories for formation flight, although their approach can be
susceptible to deadlocks and overlooks trajectory optimal-
ity. In contrast, predictive optimization-based methods offer
improved optimality for swarm movements [38]. Alonso-
Mora et al. [16] control a formation of drones to avoid
collisions by optimally rearranging the desired formation
and subsequently planning local trajectories. However, this
approach lacks inter-vehicle coordination within the dis-
tributed planners, thus overlooking formation maintenance
during local planning. Parys et al. [17] employ DMPC to
address formation preservation by enforcing relative position
constraints on the swarm. In their framework, coordination
among agents is disrupted passively when obstacles violate
positional constraints.

As swarm size expands, it becomes apparent that main-
taining formation solely through trajectory planning, espe-
cially in the presence of robot deadlocks, is challenging.
Turpin et al. [18] address the issue of concurrent assignment
and collision-free trajectory generation, offering both central-
ized and decentralized solutions, thus enabling large-scale
flight formations. Similarly, in [19] model predictive con-
trol is leveraged to simultaneously solve task assignment
and trajectory generation for achieving desired formation
shapes. The concept is extended in [20] to consider formation
alignment, optimizing parameters such as scale and loca-
tion, reducing formation costs, and expediting convergence.
However, these methods neglect the need for formations to
adapt flexibly in constrained environments. In [36] forma-
tion maneuvering is handled by converting the system to
an unconstrained optimization problem, using cost functions
based on the MINCO representation [37] of the trajectories
and a graph-based formation metric. However, for tightly

constrained scenarios the MINCO representation might fail
due to the underlying conservatism.

A. CHALLENGES FOR FORMATION FLIGHTS
While extensive research has been conducted on aerial swarm
navigation in formation, achieving robust formation flights
in obstacle-rich environments has remained elusive. Several
fundamental challenges impede the practical application of
formation flight:

a) The conflict between maintaining the formation (close
proximity) and individual robots avoiding obstacles is inher-
ently challenging.

b) Imperfect communication channels in a close proxim-
ity formation impede ideal planning in dense environments,
requiring unconventional mitigation measures

c) The swarm system faces difficulties in rapidly recov-
ering from unfavorable formation states resulting from
unexpected obstacles or sudden changes in the desired for-
mation shape. Predefined formations often lack the flexibility
needed to adapt to unknown constrained environments.

B. RESEARCH AVENUES AND CONTRIBUTIONS
In light of the challenges, it can be concluded that an
ideal formation flight planner should possess the capability
to flexibly maintain formation shape while avoiding obsta-
cles, and successfully achieve goal/ waypoints. It should
continuously replan segments and minimize the planned
trajectory safe zones to avoid conservatism in cluttered sce-
narios/tight formations. Use sparse representations of the
planned trajectories/ safe zones instead of trajectory dis-
cretization to effectively utilize inter-agent communication
bandwidth. Employ an effective planning/ execution strategy
to handle communications delays/message dropouts. Never-
theless, at the same time generate kino-dynamically feasible
trajectories and support scalability. To bridge the gap, the
paper proposes the following contributions

a) A customized asynchronous flight planner based on
the general definition in [41] is proposed and a graph-based
formation metric is utilized as a heuristic that is invariant to
rotation, translation, and scaling, granting greater flexibility
in formation coordination.

b) For close proximity formations, path planning and
intervehicle collision/dynamic obstacles avoidance is accom-
plished using clamped B-splines and use of minimum volume
(MINVO basis) convex hulls is adapted from [28] for agent
trajectory flight zones; incorporated within the planner.

c) An asynchronous execution framework, usage of sparse
trajectory control points and time intervals-based trajectory
segment are employed to mitigate issues relating to commu-
nication delays between agents.

d) A decoupled and distributed trajectory optimization
framework is proposed to enhance the computational feasi-
bility of large-scale formation flights.

The following sections start-off with the multi-copter
system’s differential flatness properties, the conventional
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trajectory optimization problem and insights on the decou-
pling of the trajectory optimization with reference to forma-
tion flights. Then we present our choice of the trajectory
parametrization and the tight outer polyhedral representa-
tions. Section VI provides the mathematical foundation of
the formation metric followed by the trajectory planning
and execution framework. Finally, the formation trajectory
planner algorithm is discussed along with its implementation
in a realistic simulation scenario with insights on the results
that support the robustness of the planner to formation flights
in real world scenarios.

II. MULTICOPTER DYNAMICS & FLAT-OUTPUT SPACE
Multi-copter system’s differential flatness properties [21],
[22], [23] have shown that the overlapping of the flat-output
space and the concerned configuration space is physically
meaningful. Typical multi-copters with underlying underac-
tuated dynamics can be characterized with the 04 flat output
states: the 3-dminsional cartesian position vector of its Center
of Gravity (px , py, pz)T and the Euler-yaw angle ψ :

z = (px , py, pz, ψ)T (1)

This flat output z, has complex spatial constraints on
the translational part but offers the needed convenience
for a multi-copter’s motion planning in the Euclidean
space. For Kino-dynamically feasible motion, the trajectory
z(t) : [0, T ] −→ Rm is optimized such that maximum
spatial constraints are enforced directly in the flat output
space.

For smoothness of the trajectory, quadratic function for
control effort [24] is usually employed as a cost function
over z(t) with time regularization. The constraints on the
system consists of the spatial constraints (from the configu-
ration space) and the dynamics constraints, such as limits on
the actuators or task-specific restrictions. Generally, for the
collision-free motion

z(t) ∈ F, ∀t ∈ [0, T ] , (2)

where F is the chalked-out obstacle-free sectors in configu-
ration space. The dynamic and other user specific constraints
are usually given as an inequality

GD(x(t), u(t)) ≼ 0, ∀t ∈ [0, T ] (3)

Since the original states x(t) ∈ Rn and u(t) ∈ Rm can
be parameterized by finite derivatives of z, such that x =

9x(z(t), ż(t), . . . z(s−1)(t)) and u = 9u(z(t), ż(t), . . . z(s)(t)),
constraints on z(t) are given as

GD

(
9x

(
z[s−1](t)

)
, 9u

(
z[s](t)

))
≼ 0, (4)

Now due to the flatness property, the constraints on both x
and u can be substituted by the equivalent output states and
their finite derivatives

G
(
z(t), ż(t), . . . z(s)(t)

)
≼ 0, ∀t ∈ [0, T ], (5)

where G encompasses of ng corresponding constraints.

III. TRAJECTORY OPTIMIZATION PROBLEM
The flat output space along with the prescribed constraints
gives us the following mathematical problem:

min
z(t),T

∫ T

0
v(t)TWv(t)dt + ρ(T ),

s.t. v(t) = z(s)(t),

G
(
z(t), ż(t), . . . , z(s)(t)

)
≼ 0,

∀ t ∈ [0, T ] , z(t) ∈ F,

z[s−1](0) = z0,

z[s−1](T ) = zf , (6)

where the positive diagonal matrix W ∈ Rm×m, the time
regularization term ρ : [0,∞) 7→ [0,∞], the initial and
terminal conditions z0 ∈ Rms and zf ∈ Rms respectively.
In addition, the control problem is commonly implemented
in a finite number of discontinuous time instants. Moreover,
due to the nonlinear continuous-time constraints G and the
nonconvex (in-real) set constraints inF reasonable conditions
are applied to make the optimization problem well defined
and trivial.

The time regularization function ρ, makes it possible to
trades off between the expected total time and control effort,

ρs(T ) =

∑MT

i=0
biT i (7)

where biis is strictly positive. Some choices are ρs(T ) = kρT
and ρs(T ) = kρ(T − T6)2 with T6 as the expected time
and we can also define ρ to fix the total time ρs(T ) =

0, T = T6 and ρs(T ) = ∞, T ̸= T6 . Also, the nonlinear
constraints G, should be twice continuously differentiable and
are required to be C2. As for the free space F, we approxi-
mate it by the union of closed convex setsMP as

F ≃ F̃ =

⋃MP

i=1
Pi (8)

For completeness, the convex sets are assumed to be locally
sequential connected:{

Pi ∩ Pj = ∅, if |i− j| = 2,
Int

(
Pi ∩ Pj

)
̸= ∅, if |i− j| ≤ 1,

(9)

where Int (·) stands for the interior of a set with z0 inscribed
in P1 and zf in PMP and that each Pi is bounded within a
convex polytope defined by its H-representation [25]:

PHi = { x ∈ Rm
|Aix ≼ bi} (10)

Moreover, for formation adherence, additional formation
constraints need to be enforced. This can be applied using
undirected graph G = (V, E) of N robots, where the set of
vertices is specified byV := {1, 2, . . . ,N }, and the edges are
given by E ⊂ V × V. For the graph G, each vertex i denotes
the ith agent with position vector pi = [xi, yi, zi] ∈ R3. Here
eij ∈ E is the edge that links agent i ∈ V and agent j ∈ V.

This makes the optimization problem complex and com-
putationally challenging without special measures. The
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objective is to conceive an effective solver that can accom-
plish real time computing for trajectory solution at a high
frequency. However, considering the subproblem where
functional constraints G and spatial constraints F have
been eliminated/already addressed and the intermediate
points against a knot (time) vector are prior computed,
we are left with a simpler M-stage minimization prob-
lem for the control effort for a chain of s-integrators as
follows,

min
z(t)

∫ tM

t0
v(t)TWv(t)dt

s.t. v(t) = z(s)(t), t ∈ [t0, tM ] ,

z[s−1] (t0) = z0,

z[s−1] (tM ) = zf ,

z[di−1] (ti, ) = zi,

1 ≤ i < M , ti−1 < ti, (11)

Here, the interval [t0, tM ] is fragmented intoM stages, cor-
responding M + 1 fixed time stamps, and specified boundary
conditions. Also, (di− 1) < s is the highest order of assumed
derivatives of the flat output, with some derivatives fixed at
end of each stage ti, as zi ∈ Rmdi .

IV. AGENT AND OBSTACLE TRAJECTORIES
Our environment consists of agents and obstacles. We define
the agent as an element within the environment capable of
exchanging information and making decisions accordingly.
In other words, an agent can modify its trajectory based on
the information received from the environment. Contrary the
obstacle is an element within the environment that moves
independently without considering the trajectories of other
elements in the environment. Obstacles can either be static
or dynamic.

For our agents, we use clamped uniform B-Splines [26],
which are defined by n + 1 control points {q0, . . . qn} and
m+1 knots {t0, t1, . . . tm}, satisfying the following conditions
for the degree of polynomial p:

t0= . . .= tp
clamped p+1 knots

< tp+1 < . . . < tm−p−1
internal knots

< tm−p= . . .= tm
clamped p+1 knots

In the context of clamped uniform B-Splines, the internal
knots are evenly spaced by 1t(i.e., 1t = tk+1 − tk ∀k =

{p, . . .m− p− 1}). The relationship m = n + p + 1 holds,
resulting in a total of m − 2p = n + p + 1 intervals
denoted by j ∈ J defined in the range t ∈ [tp+j , tp+j+1].
For the purposes of this paper, we adopt p = 3, meaning
cubic B-Splines are employed. Consequently, each interval
represents a polynomial of degree 3, and it is guaranteed
to lie within the convex hull of its four control points{
qj, qj+1, qj+2, qj+3

}
. Moreover, clamped B-Splines are

ensured to pass through the first and last control points (q0
and qn). The velocity and acceleration of a B-Spline are also
B-Splines of degrees p− 1 and p− 2, respectively, with their

control points determined as specified in [27].

vl =
p(ql+1 − ql)
tl+p+1 − tl+1

∀l ∈ L\{n}

al =
(p− 1)(vl+1 − vl)
tl+p+1 − tl+2

∀l ∈ L\{n− 1, n} (12)

We define State vector: x := [ pT , vT , aT ]T ∈ R3, where
p, v, a, j ∈ R3 are Position, Velocity, Acceleration and Jerk.
Also u := Number of agents + Number of obstacles. The
set that contains the indexes of all the intervals of a B-Spline
J := {0, 1, . . .m− 2p− 1} . L = {0, 1, . . . , n} and index of
the control point l ∈ L for position, l ∈ L\{n} for velocity and
l ∈ L \ {n− 1, n} for acceleration. We assume s as the index
of the planning agent and predictable obstacle trajectories for
dynamic obstacles. The set I = {0, 1, . . . u}\s contains the
indexes all the obstacles/agents, except the agent s.
For an obstacle i ∈ I , (where i is index of the obstacle/

agent I ) with actual future trajectory preali (t), we let pi(t)
be predicted trajectory using some tracking and estimation
algorithm. For safe operations we represent the obstacle as an
outer polyhedral approximation, such that it is theMinkowski
sum of an axis-aligned bounding box Dij and the trajectory
of the obstacle. Then 2

(
αij + βij

)
∈ R3 represents minimum

safe dimensions of the box for which

preali (t) ∈ conv
(
Dij⊕pi

(
τj
))
, ∀t ∈ [tp+j, tp+j+1], (13)

where αij and βij represents the prediction and trajectory dis-
cretization errors respectively and are assumed to be known.
Also pi

(
τj
)

=
{
pi(t)|t ∈ τj

}
with τj Uniform discretization

of [tp+j , tp+j+1](timespan of interval j of the trajectory of
agent s) with step size γj and such that tp+j , tp+j+1 ∈ τj.
Also ⊕ depicts the Minkowski sum and conv(·) the convex
hull.

V. POLYHEDRAL REPRESENTATIONS
In order to circumvent the computational complexity asso-
ciated with imposing an infinite number of constraints to
distinguish between two trajectories, it becomes essential to
calculate a precise polyhedral outer depiction for each inter-
val within the optimized trajectory, specifically the trajectory
being pursued by agent s as well as the trajectories of other
agents and obstacles. For this we first define Di as a 3D
axis-aligned bounding box of the agent/obstacle i and the
length of each side of the planning agent (i.e. agent whose
index is s), each entry ηs ∈ R3. Also C ij is set of vertexes
of the polyhedron that completely encloses the trajectory of
the obstacle/agent i during the initial and final times of the
interval j of the agent s and c ∈ R3 thevertex of a polyhedron.

A. POLYHEDRAL REPRESENTATION OF TRAJECTORY OF
THE PLANNING AGENT
When B-Splines or Bernstein basis are employed, a common
approach to establish an outer polyhedral representation for
each interval involves utilizing the polyhedron defined by the
control points of that interval. This choice ensures that the
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interval is entirely encompassed by this polyhedron. How-
ever, it is important to note that this approximation introduces
a significant level of conservatism both in terms of position
and velocity dimensions. In contrast, we adopt the MINVO
basis [28], both in position and velocity spaces. This basis,
constructed as a polynomial basis, is designed to minimize
the volume of the simplex that encloses a given polynomial
curve. The MINVO basis achieves a significantly reduced
volume, being 2.36 and 254.9 times smaller (in position
space) and 1.29 and 5.19 times smaller (in velocity space)
compared to the Bernstein and B-Spline bases [28], respec-
tively. For each interval denoted as j, the relationships among
the vertexes of the MINVO control points (QMV

j and VMV
j for

position and velocity, respectively) and the B-Spline control
points (QBS

j , VBS
j ) are as follows:

QMV
j = QBS

j ABS
pos(A

MV
pos )

−1

VMV
j = VBS

j ABS
vel(A

MV
vel )

−1 (14)

where the matrices A are available in (for the MINVO basis)
and in [26] (for the Bernstein and B-Spline bases). Also
Qb
j := [qj, . . . , qj+3]

b is set of control points for position
of the trajectory of the agent s for the interval j using the
basis b and equivalently for velocity control points: Vb

j :=

[vj, . . . , vj+2]b. Where Notation for the basis used: Bernstein
(b = Be), B-Spline (b = BS) or MINVO (b = MV ).

B. POLYHEDRAL OF OTHER AGENTS’ TRAJECTORIES
For the agent i ̸= s the trajectory is similarly a B-Spline,
however the initial and terminal times are different from agent
s trajectory optimization times i.e tin and tf . Therefore to
obtain the outer polyhedral representation in the intervals
[tin, tin + 1t], [tin + 1t, tin + 21t], . . . , [tf − 1t, tf ]
of the agent i, the MINVO control points are computed for
each interval of agent i′s trajectory in these intervals. Next
the inflated bounding box B′

i obtained by adding a safety ηs
to the dimensions of Bi, is placed each of the control points
to obtain an outer polyhedral representation of the agent i
trajectory for the interval j. The vertexes of the combined
polyhedral is taken as Cij.

C. POLYHEDRAL OF OBSTACLES TRAJECTORIES
For dynamic obstacles, if for the said times τj, pi

(
τj
)
repre-

sents the set of locations of the obstacle i we compute the
outer approximation of the 3D space the obstacle occupies.
The obstacle size Bi is enlarged by the size of the agent s
(ηs) and the obstacle prediction and trajectory discretization
errors αij, βij for each interval j respectively to obtain the
inflated box B′

i. B
′
i is then placed at every pi

(
τj
)
to obtain

the convex hull of the entire set. For static obstacles the same
method is adopted with no obstacle prediction and trajectory
discretization errors and pi(t) = constant.

VI. FORMATION SIMILARITY METRIC
In order to specify the fixed formation model, an undirected
graph G = (V, E) of N robots is employed, where the set

FIGURE 1. For the desired square formation in a 2D plane, the formation
similarity metric is calculated for the blue agent, if it desires to move in
any direction. The metric is minimum at the desired square formation
position, increases as the agent moves out of this position and maximizes
as it moves closer to other agents.

of vertices is specified by V := {1, 2, . . . ,N }, and the edges
is given by E ⊂ V × V.
For the graph G, each vertex i denotes the ith agent with

position vector pi = [xi, yi, zi] ∈ R3 defined in their local
formation frame. Here eij ∈ E is the edge that links agent
i ∈ V and agent j ∈ V means the agents i and j can
measure the Euclidean distance between them. We take on
with the assumption, that each agent can communicate with
other agents, hence we have a complete formation graph G.
Also, the weight of the edges of the formation graph G are
calculated from the geometric distance, are all non-negative,
and for edge eij can be given as

=
∥∥pi − pj

∥∥2, (i, j) ∈ V (15)

where ∥·∥ is the Euclidean norm. Now for the formationG, the
degree matrix D ∈ RN×N and adjacency matrix A ∈ RN×N

is determined, for which, the equivalent Laplacian matrix is
specified by

L = D − A (16)

Thus, for the graph G, we can determine the symmetric
normalized Laplacian matrix as

L̂ = D−1/2LD−1/2
= I − D−1/2AD−1/2 (17)

where I ∈ RN×N represents the identity matrix. The Lapla-
cian matrix is a representation of the formation graph and
contains information about the formation structure [32]. This
can be employed to obtain a formation similarity distance as

fs =

∥∥∥L̂ − L̂des
∥∥∥2
F

= tr
{(

L̂ − L̂des
)T (

L̂ − L̂des
)}

(18)

This distance metric can be used to attain the swarm
formation we desire and is based on the Frobenius norm
∥·∥F . Here tr{·} represents the trace of a matrix, L̂des is
the symmetric normalized Laplacian of desired formation
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FIGURE 2. Here gfinal is the goal, and the current position,
represents current executing trajectory, whereas the trajectory
under planning (starts at t = tin and ends at t = tf ) with d (O)is used as
the initial position, S is a sphere of radius r around d containing the
planned trajectory and g ( ) is the planned intermediate goal and is a
projection of gfinal on S.

and L̂ is counterpart of the current swarm formation. Since
the formation graph is based on the distance between agent
positions, the distance metric fs is inherently invariant to
rotation and translation of the agent’s formation. Moreover,
by normalizing the graph Laplacian with the degree matrix
in (3), invariance to scaling is also achieved.

This distance metric is differentiable analytically, with
respect to the position of the agents. For agent i, we form
the weight vector wi = [wi1,wi1, . . . ,win]T of n adjacent
edges {ei1, ei1, . . . , ein}. Then the gradient of f with respect
to position pi can be obtained by the chain rule as

∂f
∂pi

=
∂wi
∂pi

∂f
∂wi

(19)

Resulting from the choice of the distance metric, its gradi-
ent respective of weight wij can be calculated as below:

∂f
∂wij

= tr

{(
∂f

∂L̂

)T (
∂L̂
∂wij

)}
, (20)

where,

∂f

∂L̂
=

∂

∥∥∥L̂ − L̂des
∥∥∥2
F

∂L̂
= 2

(
L̂ − L̂des

)
∂L̂
∂wij

= −
∂(D−1

2LD−
1
2 )

∂wij
(21)

Then the for each agent i, ∂f /∂wi can be given as
[∂f /∂wi1, ∂f /∂wi2 . . . , ∂f /∂win]T . Also ∂wi/∂pi, is the Jaco-
bian of the weight function (15) which is easily differentiable.
Fig.1 shows the metric profile for a formation of four agents
in a square formation in view from one agent, while others
are stationary on desired positions.

VII. TRAJECTORY COMMITMENT AND EXECUTION
Establishment of reliable and safe communication channels
between agents and their operators for effective operations
is continuously evolving [40]. It is assumed that all agents
possess the capability to establish communication directly
with their counterparts, and to guarantee safety at least over a
safety distance of 4 times than their planning horizon distance

FIGURE 3. Each trajectory planning segment is divided into Formation
Trajectory Search, Trajectory Optimization, collision Check and new
trajectories available Re-check.

r . Moreover, despite sharing a common reference time, these
agents initiate planning iterations in an asynchronousmanner.

Due to asynchronous planning, it is required that two
agents never simultaneously execute a new trajectory, for
which a deconfliction strategy for check and re-check is
proposed as in [33] and [35]. Each planning iteration is
divided into 03 parts. The trajectory is planned in the inter-
val t ∈ (t1, t2] followed by check in the interval t ∈ (t2, t3]
where collision check is performed and a simple re-check
at t ∈ (t3, t4) which accounts for if any new trajectory has
been committed during the check interval. This assumption is
rooted in the objective of ensuring the safety of a UAV when
it commits to a trajectory at t = t4, subsequent to assessing
all previously committed trajectories of other agents at times
preceding t4.

The agents keep on the computed trajectory previously
found unless either the trajectory computed at the end of the
optimization has collision indication with any agent trajec-
tories conveyed during the optimization or during the Check
period. Moreover, for real-time implementation the same tra-
jectory is also executed if no feasible solution has been found
in the optimization or the current iteration takes longer than
δt seconds.

VIII. FORMATION TRAJECTORY PLANNER
To ensure collision-free constraints when static obstacles
are present, a widely-used method involves initially identi-
fying convex decompositions of free space. Subsequently,
in the optimization problem, the outer polyhedral represen-
tation of each interval is constrained to remain within these
identified convex decompositions [29], [30], [31]. However,
this approach may become overly conservative, particularly
in cluttered environments where the convex decomposition
algorithm might not accurately capture the tight representa-
tion of the free space. When dealing with dynamic obstacles,
these convex decompositions become even more challeng-
ing and potentially intractable due to the additional time
dimension.

To ensure collision-free constraints in the presence of
dynamic obstacles or agents, we utilize planes to separate the
polyhedral representations of each trajectory. To achieve this,
we employ a search-based algorithm specifically designed
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to handle dynamic environments. This algorithm effectively
determines the control points of the trajectory and identifies
the planes that facilitate its separation from other obstacles or
agents. Where the planes π ij

(
nij,d ij

)
:= nTij x+ d ij = 0 that

separates C ij from Qb
j .

To obtain the trajectory we compute the control points
{q0, . . . qn}BS and the separation planes πij, for the forma-
tion using a variant of the Octopus Search algorithm [33]
that takes inspiration from A* [34] algorithm. The Octopus
search computes trajectory using B-Splines and for collision
avoidance uses the MINVO basis to handle dynamic obsta-
cles/agents. As in A* the nodes are defined by the computed
control point in the search. A priority queueQ, is initiated will
all the available nodes. These nodes are ordered in ascending
order of f = g + ϵhh + ϵf fs, which comprises of the
accumulative distance g between consecutive control points
to the current node from the starting node q0, the distance
from the goal to the current node, the formation similarity
metric and the bias terms ϵh and ϵf .

The trajectory is initialized by determining the control
points q0, q1, q2 , from pin, vin and ain. We than insert q2 in
the queue Q (line 3). The loop is run until as follows unless
the queue Q is empty:

a) An empty set of control points ql is initialized by inserting
the first element of Q, and the same is removed from Q
(lines 5-6).

b) Then the velocity samples for vl satisfying both vmax and
amax are computed and stored in the setM .

c) We than check for the fitness of the current ql and discard
if either of the following conditions are true (l.s. in this
text means linearly separable):
i. QMVl−3 is not l.s. from Ci, l−3 for some i ∈ I .
ii. l = (n − 2) and QMVn−4 is not l.s. from Ci, n−4 for

some i ∈ I .
iii. l = (n − 2) and QMVn−3 is not l.s. from Ci, n−3 for

some i ∈ I .
iv.

∥∥ql − d
∥∥
2 > r .

v.
∥∥ql − qk

∥∥
∞

≤ ε′ for some qk already added to Q.
vi. No feasible velocity samples inM .

In condition 1 it is made sure that no collision occurs
between the (convex) hull of QMVl−3 and any other agent/
obstacle interval at l−3. The linear separability is confirmed
for interval j = l−3 of every agent/obstacle i ∈ I by solving
the linear problem and checking its feasibility:

nTij c+ dij > 0, ∀c ∈ Cij

nTij q+ dij < 0, ∀q ∈ QMVj (22)

where the nij and dij define the decision variables planes πij.
Equivalent MINVO control points are employed.

Due to the clamped B-spline, choice of qn−1 and qn is
restricted as qn−2 = qn−1 = qn hence conditions 2 and
3 need to be checked.

Due to the restricted planning horizon, we confine the
trajectory to be within a radius r , therefore we discard any

TABLE 1. Initial and final conditions.

ql not satisfying condition 4. Moreover, any ql is discard if
it is very close to any already added qk to Q (condition 5)
which is realized by assuming a voxel grid of 2ε′ voxel size,
and searching if the new control point has un-occupied voxel.
Finally, any ql is also discard if M is an empty set such that
no feasible vl samples exist (condition 6).

At each iteration of the loop, we check if qn−2 has reached
at less than ε

′′

of the goal g. Otherwise, velocity samples M
are used and ql+1 is generated and added to Q. If goal is
reached and all control points are determined, qn−1 and qn
are added satisfying clamped b-spline. In case all samples
in Q are exhausted before reaching the goal, the nearest
trajectory control points are returned. All separating planes
are accompanied as well i.e. πij∀i ∈ I , ∀j ∈ J .

IX. SIMULATION RESULTS
A simulation framework has been developed and simula-
tions for 04 flying agents in a dynamic environment were
performed. The initial and final conditions are specified for
a square based formation, with enroute static and dynamic
obstacles. The input and goal positions and conditions are
specified as in Table 1, with vmax = 7 m/s in all axis and
amax = [40, 40, 9.8] m/s2. The bounding box considered
for the agent ηs = 0.4m all 03 sides. Two static obstacles and
one dynamic obstacle with predictable trefoil knot trajectory
are considered, with dimensions same as ηs. Static obstacles
are centered at [−0.3, −1.7,0.3] and [−0.3, −3.3,0.3] and
the initial position for dynamic obstacle is [0,0,0.2] and para-
metric equations as in [44]. The goal reaching time is tasked
as tmax = tmin +

∥∥pin − pg
∥∥
2/(tmargin · max (vmax)) where

tmin = 0 and tmargin = 0.65 is assumed. The arena size is
constrained from −10m to +10m in all axis, with r = 10m
and ε′ = 0.01m. The priority queue bias is set at ϵh = 6 and
ϵf = 3.

In Fig. 4, the trajectory for 1st agent is shown with the goal
marker shown behind the dynamic obstacle. In the top figure,
the convex hull traced by the dynamic obstacle is shown
for first-three segments, along with the agent’s trajectory on
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FIGURE 4. Trajectory for single agent, with 02 static and 01 dynamic
obstacle. Colors showing convex hulls and trajectory segments in
different time segments (Blue, Green, Cyan, Red, Purple and Yellow in
chronological order). Top figure shows approach at the end of 3rd time
segment, towards goal with dynamic obstacle in path. In bottom figure,
the red and purple segments depict the 4th and 5th time segments
respectively and are planned in a way that dynamic obstacle is avoided.

approach towards the goal. In the bottom figure the 1st agent
plans its time segments in a manner that the trajectory is
avoided with the corresponding convex hulls traced by the
dynamic obstacle in the respective time segments.

In Fig. 5, the trajectory for 04 agents are shown with the
goal markers shown behind the static and dynamic obstacles
from different viewpoints, that depicts that the goal is reached
by the agents and formation is minimum disturbed in all time
segments. In the bottom figure, agent 4 trajectory planning
is zoomed-in to reveal the iterations taken by the planner to
overcome the static obstacle.

A popular formation similarity transformation Sim(3) [12],
[36], can be used as a benchmark to assess the deviation
between the desired formation Fd and current formation Fc,
in terms of the overall position error edist . If pdi and p

c
i denote

the position of ith robot in formation Fd and Fc, respectively,
related by a translation t ∈ R3, rotation R ∈ SO(3), and
a scaling factor s ∈ R+, then overall position error can be
given as

edist = min
R, t, s

∑N

i=1

∥∥∥pdi − (sRpci + t)
∥∥∥2 (23)

By finding the optimal solutions to the transformations
R, t and s in (23), the influence to these can be alleviated

FIGURE 5. The trajectories for the 04 agents are given. The results show
that the formation is maintained by the planner while avoiding obstacles
and maintaining smooth kino-dynamic trajectories. In the last figure the
planner finds the alternative route for the 4th agent while avoiding the
static obstacle and generates control points satisfying 3rd order clamped
Beizier curves.

and the formation positions can be fairly compared by calcu-
lating the position error with respect to Fd . The more the two
formations deviate the greater is the value of edist .

For our scenario the maximum value for edist = 0.795.
This value is comparable to the methods compared in [36],
for a sparse scenario. The scenario for a cluttered environ-
ment with 05 agents in a pyramidal configuration is given
in Fig. 6, with ‘‘Agent 05’’ in lead of 0.5m at the center of
formation. All agents are now extended to travel a further 6m
in x-direction with another set of dynamic and static obstacles
in the path. The scenario depicts trajectory corrections for
agents 01, 04 and 05. The agent 05 replans the trajectory
for the first dynamic obstacle moving downward to avoid
it in the red interval instance. In the same interval agent
04 also replans to avoid the static obstacle. The color patterns
repeat again after the yellow interval. The agent 01 avoids
the static obstacle in the second set of obstacles. Here again
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FIGURE 6. The trajectories for 05 agents in a pyramidal configuration. Top and middle figures depict the side and top views respectively. The bottom
figures labeled a-e depict the formation shape at the marked intervals.

TABLE 2. Formation navigation schemes comparison.

the configuration is only marginally deviated and edist < 1.0
throughout.

However, our method additionally considers dynamic
obstacles and demonstrates collision avoidance maneuvers
in R3. The following table summarizes the comparison with
recent methods reported in [36].

X. CONCLUSION
The Formation Planning of Multirotor Aerial Vehicles in
Dynamic Environments is a challenging problem that has
been addressed by a Decentralized and Asynchronous For-
mation Planner. We have tried to incorporate the frontiers of
research in UAV cooperative control and formation planning
in a Kino-dynamic trajectory (path) planning framework.
The robustness of the planner lies within the Tight Tra-
jectory Hulls representations, that avoids conservatism and
preserve safety; when dealing with sparse control points
information for planned trajectories, shared over limited com-
munication bandwidths. These are essential to handle close
proximity maneuvering, required by formation flying in clut-
tered dynamic environments. Moreover, using a Formation
Graph Metric that is invariant to rotation, translation and
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scaling provides the additional flexibility. The planner also
intrinsically computes Kino-dynamically feasible trajectory
control points, minimizing the convergence challenges in the
conventional trajectory optimization problem. Finally, issues
due to communication delays/constraints can be managed
by adopting to the proposed/similar trajectory commitment
and execution framework. The simulation results reveal the
efficacy of the proposed planner and are benchmarked against
recent published works. However, the planner may still
be prone to deadlocks in a more constrained environment.
In future work, we propose to extend the framework to incor-
porate strategies to timely identify and replan for potential
deadlocks and add navigation and tracking components for
real-world deployment.
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