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ABSTRACT The increasing complexity of software projects makes it difficult to predict risks in software
requirements, which is a crucial and essential part of the Software Development Life Cycle (SDLC). The
failure of a software project may occur from an inability to appropriately anticipate such risks. Because it
is the first stage of any software project, risk prediction has a greater significance in software requirements.
Thus, ForExPlusPlus (FEPP), a novel model for risk prediction in software requirements, is proposed in this
work. Standard models such as K-nearest Neighbor (KNN), Naïve Bayes (NB), Logistic Model Tree (LMT),
Random Forest (RF), and Support Vector Machine (SVM) are used to benchmark the suggested model. The
dataset from the Zenodo repository is used to train these models, and standard assessment criteria are used to
evaluate the results. The accuracy analysis of the models is assessed critically using the precision, F-measure
(FM), and Mathew’s correlation coefficient (MCC), as well as the error rate using the Kappa Statistic (KS)
and Mean Absolute Error (MAE). The suggested FEPP performs better overall, with an accuracy of 96.84%,
whereas KNN performs the worst, with an accuracy of 50.99%.

INDEX TERMS Software risk prediction, ForExPlusPlus, requirements engineering, Zenodo datasets.

I. INTRODUCTION
In the ever-changing world of software development, precise
prediction of risks connected with software requirements
has become a vital part of project success. As technology
progresses and software systems become more complex, the
necessity for strong risk prediction models becomes more
obvious. In recent years, the discipline of software engineer-
ing has seen remarkable expansion and complexity, needing
a thorough awareness of possible hazards throughout the
requirements phase [1]. Early risk assessment and mitigation
are critical for effective software development, minimiz-
ing costly rework, and improving overall project efficiency.
Previous research has offered significant insights;
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nevertheless, with the shifting nature of software projects,
there is a need for fresh and adaptable ways to risk
prediction [2].

Predicting risk in software requirements is critical through-
out the Software Development Life Cycle (SDLC) since it
allows for early detection and mitigation of possible difficul-
ties. This proactive strategy reduces costly rework, improves
project planning by permitting better resource allocation and
realistic timetables, and improves overall product quality.
Transparent communication with stakeholders is enhanced,
which fosters trust and collaboration [3]. The capacity to
identify and manage risks also allows teams to adapt to
changing requirements, fostering a culture of continuous
improvement. Early risk assessment ensures compliance with
standards in regulated businesses, avoiding legal and finan-
cial consequences. Risk management success contributes
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considerably to project success by meeting or surpassing
client expectations, improving overall results, and delivering
a successful software product [4].

Effective risk prediction in software requirements is
more than an academic pursuit; it is a real need with
far-reaching consequences. Unexpected challenges during
the requirements phase can cause project delays, budget
overruns, and, in the worst-case scenario, project collapse.
Identifying and managing possible risks on time allows
project managers, developers, and stakeholders to make
educated decisions, eventually contributing to the successful
delivery of high-quality software products [5].
This study adds considerably to the advancement of risk

prediction approaches by presenting novel models, ForEx-
PlusPlus (FEPP). This model is intended not just to improve
forecast accuracy, but also to provide the software engi-
neering community a better understanding of the value of
features in risk assessment. The primary goal of this work is
to undertake a thorough comparison of these innovative risk
prediction models to existing benchmarks such as K-nearest
neighbor (KNN), logistic model tree (LMT), Naïve Bayes
(NB), support vector machine (SVM), and Random Forest
(RF). The evaluation of these models includes a full set
of standard metrics, including the Kappa Statistic (KS) and
mean absolute error (MAE) for a thorough examination of
error rates. Furthermore, accuracy is assessed using a variety
of performance measures, including the true positive rate
(TPR), false positive rate (FPR), precision, f-measure (FM),
accuracy, and Mathew’s correlation coefficient (MCC). This
analytical approach offers a full and nuanced examination,
offering insights into the error dynamics as well as the
accuracy levels attained by the models under consideration.
We hope to establish the usefulness of the FEPP model
in collecting and forecasting risks associated with software
requirements through empirical analysis. Furthermore, this
study aims to uncover the distinct contributions of FEPP by
evaluating their adaptability across various project contexts.

Through the introduction of FEPP, a new risk prediction
model, this research makes a substantial contribution to the
field of software risk prediction. In addition to improving
prediction accuracy, FEPP is intended to give software
requirements risk assessment teams a more sophisticated
grasp of feature value. The algorithmic improvements that
set FEPP apart from other models are its prioritization of
shorter rules for better interpretability and its consideration
of individual class features during the rule extraction process.
A variety of commonmeasures are used in the study thorough
comparison of FEPP with recognized benchmarks (KNN,
LMT, NB, SVM, and RF). A thorough and technical study
of FEPP’s performance is provided by this extensive review,
which takes into account KS, MAE, TPR, FPR, precision,
FM, accuracy, and MCC.

The empirical study follows a methodical approach that
ensures transparency and replicability. It is based on a care-
fully chosen dataset from the Zenodo repository. To prove
robustness, the study process uses ten-fold cross-validation.

The paper also presents the FEPP algorithmic framework,
highlighting its systematic approach to rule extraction from
decision forests. This architecture, which involves removing
rules that are the same and combining rules from several
classes, demonstrates how FEPP may be tailored to a variety
of risk situations while still meeting software requirements.
The technical results show that FEPP performs better than
other models in several areas, which makes it a promising
model for software development risk prediction. In general,
this study makes a technical contribution by improving our
knowledge of and ability to use risk prediction models in the
intricate field of software engineering. Overall contribution if
this study are:
• Introduction of FEPP, a novel risk prediction model
tailored for software requirements.

• Comprehensive comparison of FEPP with established
models, demonstrating its better performance.

• Empirical validation of FEPP’s effectiveness using stan-
dardized evaluation metrics.

• Transparent methodology ensuring replicability, with
rigorous dataset selection and cross-validation.

• Detailed algorithmic framework highlighting FEPP’s
unique features for rule extraction.

The rest of the paper is organized as follows: The literature
study is presented in Section II. The experimental design and
research technique are presented in Section III, the results are
discussed in Section IV, and the study is finally concluded in
Section V.

II. LITERATURE REVIEW
Software risks are described by the US Department of
Defense (DoD) as indices that gauge the incapacity to accom-
plish predetermined goals because of financial, schedule,
or technological limitations [6]. Boehm established soft-
ware risk management in 1989, setting the stage for further
research [7]. The three essential elements of risk manage-
ment in software projects are risk detection, analysis, and
control [8].
Numerous risk analysis methods, including Bayesian

Belief Network (BBN), Influence Diagram (ID), artificial
neural networks (ANN), Monte Carlo analysis (MC), and
classification and regression tree (CART), have been effec-
tively used to anticipate the risk of software projects.
However, there are limitations, especially concerning BBN
and ID, wherein subjective correlations result from the need
to understand the relationships between risk factors. As more
nodes are added to the network, the expandability of ANN is
restricted, requiring further study on a conditional probability
table.

The inherent hazards in the software project development
process were highlighted by Hu et al. [9], who also empha-
sized the high failure rate of this method. They created an
intelligent model utilizing SVM and ANN on software risk
datasets taken from surveys to solve this. Over 70% of soft-
ware project failures, according to another research [10], are
connected to risk. They used information from 332 software
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TABLE 1. The overall summary of the literature to present the key findings of each study.

projects to test an NB classifier for software risk predic-
tion, and they concluded that risk prediction helps prioritize
projects according to risk value. Christiansen et al. [11]
underlined the significance of identifying and controlling
inherent risk factors in software development processes by
using MLR to assess software development risk based on
survey data.

Shaukat et al. [12] highlighted the requirement elicitation
phase of the SDLC as critical to addressing data challenges
in software risk prediction. They also proposed a dataset for
this phase that included needs from the software requirements
specification (SRS) and their associated risk characteristics.

An analytical viewpoint on risk assessment across many
software projects that are being performed concurrently was
offered by Alharbi et al. [13]. In assessing risk levels in a
multi-project situation, their research showed great accuracy,
with logistic regression (LR) recording a 93% accuracy and
REPTree recording a 98% accuracy. For software risk predic-
tion, Xu et al. [14] combined a genetic algorithm (GA) with a
decision tree (DT), demonstrating notable performance gains.
A Bayesian network (BN)–based framework with causality
constraints (BNCC) was presented by Hu et al. [15], outper-
forming existing machine learning techniques including LR,
DT, NB, and traditional BN.

An NB classifier was used in risk prediction by
Akumba et al. [16] during the SDLC’s requirement elicitation
stage. Based on the characteristics of the risk dataset, the
NB model emphasized the significance of probability and
priority in forecasting risk levels. In their empirical study

of machine learning methods for software risk prediction,
Naseem et al. [4] emphasized that to avoid overfitting, class
imbalance in risk datasets must be addressed.

All things considered, these collaborative research projects
greatly improve our knowledge of and capacity to deal with
the complex issues raised by software project risks. The topic
is advanced by the investigation of various approaches and
strategies for risk analysis and prediction, which lays the
groundwork for more reliable and efficient risk management
in software development projects. Table 1 presents the overall
summary of the literature for more better understanding the
key findings of the literature.

A. HOW THIS RESEARCH STUDY IS DIFFERENT FROM THE
PAST STUDIES MENTIONED IN THE LITERATURE?
This research study differs from previous studies in soft-
ware risk prediction by introducing the FEPP model, which
marks a significant development in the area. While address-
ing the traditional features of risk management in software
projects, the study goes beyond existing approaches such
as the Bayesian Belief Network and the Influence Diagram.
FEPP combines a decision forest structure with novel algo-
rithmic innovations, emphasizing the extraction of compact
and interpretable rules. The study carefully compares FEPP’s
performance to benchmark models, resolving class imbal-
ance in risk datasets and demonstrating its higher accuracy,
precision, and recall. Furthermore, the study broadens the
scope by emphasizing FEPP’s flexibility to multiple risk

VOLUME 12, 2024 59853



M. Binsawad, B. Khan: FEPP: Advancing Software Risk Prediction in Requirements Engineering

situations through class-specific inspection and integration
of rules from other classes, consistent with past literature’s
emphasis on the crucial significance of the requirement elic-
itation phase. In summary, the study article not only helps to
overcome current obstacles but also establishes a new stan-
dard for reliable and interpretable software risk prediction.

III. EXPERIMENTAL SETUP AND RESEARCH
METHODOLOGY
This study aims to present a cutting-edge risk prediction
model that makes use of the capabilities of FEPP. The appli-
cation of this approach to a rigorously selected dataset derived
from the Zenodo repository serves as its base. To guarantee
computational resilience, the experimental phase takes place
on a powerful machine running Windows 10, with a 64-bit
architecture, 12 GB of RAM, and a core i5 CPU. Figure 1
depicts the systematic flow of this investigation, which begins
with the collection of the dataset and continues through a
succession of painstakingly designed procedures. The first
critical process is the rigorous cleansing of the dataset to
improve its quality and integrity. next, the improved dataset
serves as the foundation for training and testing the proposed
model, following the standardized techniques mentioned in
the next sections. The study’s commitment to following rig-
orous and well-established methods throughout the testing
phase is a noteworthy feature. Each used model’s perfor-
mance is evaluated with a critical eye, utilizing conventional
assessment techniques to ensure a full examination of its
predictive power. In summary, this study not only intro-
duces a unique risk prediction model but also demonstrates
a methodical and principled approach to its implementation,
contributing to the larger conversation in the domain of
software requirements and risk assessment.

FIGURE 1. Systematic workflow for risk prediction model.

A. DATASET AND PREPROCESSING
The dataset used in this study originates from the Zenodo
repository, which can be found at https://zenodo.org/records/
1209601, and it has 13 characteristics and 253 occurrences.
Table 2 lists these properties and their associated value types.
The cases are divided into five categories marked by the
numbers 1 through 5. The distribution of cases across var-
ious levels is seen in Figure 2. Data cleaning processes
were used during the preprocessing step to correct anoma-
lies and remove unneeded raw data from the dataset. The
Isolation Forest approach was chosen expressly for outlier
identification because of its capacity to find abnormalities via
randomized partitioning inside a binary tree structure. The
random selection of features and split values in this technique
results in shorter pathways for anomalies. An ensemble of
similar trees is built during training, and the average route
length for each data point is determined. Shorter pathways
suggest a greater chance of being an anomaly. Outlier scores
are then assigned to data points, and a classification threshold
is applied. Isolation Forest is renowned for its efficiency,
particularly in high-dimensional datasets, and has proved
useful in sectors such as fraud detection, network security,
and quality control, where the discovery of rare abnormalities

TABLE 2. Attributes and characteristics of project risk management table,
including data types and distinct values.

FIGURE 2. Count of each level in the dataset.

59854 VOLUME 12, 2024



M. Binsawad, B. Khan: FEPP: Advancing Software Risk Prediction in Requirements Engineering

among regular occurrences is critical. The steps of isolated
forest are discussed in Algorithm 1.

Algorithm 1 Isolated Forest Algorithm
Input:
X – Dataset
T – number of Trees
S – Subsample Size
H – Maximum Tree Height
Output:
An ensemble of isolation trees
Function IsolationForest(X, T, S, H):
Ensemble← empty list
For i in range(T):
Subsample← RandomlySelectedSubsample(X, S)
Tree← BuildIsolationTree(subsample, 0)
ensemble.add(tree)
return ensemble

Funstion BuildIsolationTree(subsample, current_height):
If curret_height ≥ H
Return CreatLeafNode(subsample)
else:
split_attribute, split_value← RandomlySelectSplit(subsample)
left_subsample, right_subsample ← SplitData(subsample,

split_attribute, split_value)
return

CreateInternalNode(split_attribute, split_value,
BuildIsolationTree(left_subsample, current_height + 1),
BuildIsolationTree(right_subsample, current_height + 1)

Function RandomlySelectSubsample(data, sub_sample_size):
reture data.sample(sub_sample_size)

Function RandomlySelectSplit(subsample):
split_attribute← RandomlyChooseAnAttribute(subsample)
split_value ← RandomlyChooseValue(subsample,

split_attribute)
reture split_attribute, split_value

Function CreateLeafNode(subsample):
return leafNode(subsample)

Function CreatInternalNode(split-attribute, split_value,
left_child, right_child):
return
InternalNode(split_attribute, split_value, left_chiild, right_child)

Function RandomlyChooseAnAttribute(subsample):
attribute← sample(attribute(subsample))
return attributes[0]

Function RandomlyChooseValue(subsample, attribute):
value← sample(value(subsample[attribute]))
return values[0]

The Isolation Forest algorithm is a powerful outlier iden-
tification approach for detecting abnormalities in a dataset.
It works by building an ensemble of isolation trees, each
of which isolates anomalies in a binary tree structure via
randomized partitioning. During training, the algorithm con-
structs these trees from random subsamples of the data,
randomly picking features and splitting values. Anomalies
in the trees are anticipated to have shorter pathways, and the
method distributes outlier scores to data points based on the
ensemble’s average path length. The events are then classi-
fied as outliers or inliers using a threshold. Isolation Forest,
known for its efficacy, particularly in high-dimensional data,
has been effectively employed in a variety of fields such as
fraud detection, network security, and quality control, where

the discovery of rare abnormalities among regular cases is
critical.

B. MODEL TRAINING AND PERFORMANCE ASSESSMENT
Model training and testing are critical phases that are at
the core of each ML research project. Standardized criteria,
namely 10-fold cross-validation, are utilized in this work
to achieve these goals. Every model is tested using defined
evaluation measures, including KS [17] and MAE [18] for
error rate evaluation and TPR, FPR, precision, accuracy, FM,
and MCC [19], [20], [21] for accuracy analysis. Here is an
outline of how these metrics are calculated:

KS =
P0 − Pe
1− Pe

(1)

where, P0 is the observed agreement and it can be calculated
as:

P0 =
a+ d
n

(2)

Pe is the expected agreement, it can be calculated as:

Pe =
(a+ b) (a+ c)+ (c+ d)(b+ d)

n2
(3)

where b is the number of observations where the second
model allocates a different category from the first rater or
model, and a is the number of observations where both mod-
els agree. The quantity c denotes the number of observations
in which a distinct category is assigned by the first model, and
a different category is assigned by the second model. n is the
total number of data, and d is the number of observations for
which the model assigns a distinct category.

MAE =
1
n

∑n

i=1

∣∣yi − ŷi∣∣ (4)

where n is the total number of data points or observations.
The i-th data point’s actual (observed) value is denoted by yi.
The expected value for the i-th data point is ŷi. The absolute
value is shown by | · |.

TPR or Recall

=
TP

TP+ FN
(5)

FPR =
FP

FP+ TN
(6)

Precision =
TP

TP+ FP
(7)

FM =
2 ∗ Precision ∗ Recall
Precision+ Recall

(8)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(10)

where TP stands for the number of True Positives. The count
of True Negatives is denoted by TN. FP stands for False
Positives. FN represents the number of False Negatives.
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C. PROPOSED AND BENCHMARKED MODELS
This study proposes a new model for risk prediction in
software requirements which is FEPP. It is an algorithmic
enhancement designed to enhance the rule extraction from
decision forests for binary or multi-class classification appli-
cations [22]. By incorporating significant improvements, the
method resolves some of the shortcomings found in ForEx.
A noteworthy feature of FEPP is that it recognizes that shorter
rules are often considered easier to understand. It makes
sure that the presence of rules from minority classes is not
overwhelmed by the majority class by evaluating correctness,
coverage, and rule length individually for each class. By over-
coming prior shortcomings and providing a more nuanced
assessment of rule properties, the FEPP method provides
a comprehensive and enhanced approach to rule extraction
from decision forests [23].

The FEPP algorithm is a framework designed for
knowledge discovery from decision forests. I can be
described as:

1) DECISION TREE STRUCTURE
A two-dimensional data collectionwith a variety of numerical
and category properties is used by FEPP. Decision trees are
hierarchical structures used in the decision-making process.
The leaves of the tree indicate ultimate outcomes or class
labels, while the nodes contain attribute values for data seg-
mentation. The pathways that connect the root and leaves are
used to create rules that represent the connections between
class labels and attributes. This tree-based method, which is
the foundation of FEPP’s knowledge discovery methodology,
makes predictions for unlabeled records in testing data sets
easier.

2) DECISION FOREST
FEPP uses a Random Forest algorithm that combines the
Random Subspace and Bagging techniques. Decision
trees are built on each of the bootstrap samples pro-
duced by bagging. Furthermore, FEPP presents ‘‘Forest by
Penalizing Attributes (Forest PA),’’ a decision forest
algorithm that methodically penalizes attributes while
accounting for their effect at different stages. By deliberately
penalizing qualities according to their testing levels, this
strategy increases the decision forest’s variety and improves
the overall efficacy of FEPP.

3) RULE EXTRACTION
Rules in FEPP are decision tree routes that include conditions
(antecedent) and a consequent (class label) that lead from the
root node to the leaf node. To score rules according to their
correctness, coverage, and rule length across the decision
forest, the system uses equations. FEPP removes duplicate
rules before rule extraction, which speeds up the knowledge
discovery process that follows.

4) FEPP FRAMEWORK
Each class is evaluated separately for correctness, coverage,
and rule length throughout the FEPP rule extraction pro-
cess. Within each class, the algorithm finds rules that have
higher accuracy and coverage than average. Moreover, FEPP
emphasizes conciseness by taking rule length into account
during the extraction procedure. Lastly, the method provides
a complete set of extracted rules by integrating rules from var-
ious classes that satisfy particular requirements for coverage,
correctness, and rule length.

Algorithm 2 described the overall steps for the FEPP
algorithm framework.

Algorithm 2 ForExPlusPlus (FEPP)
Input: Decision forest rules R
Output: FEPP rules RFEPP
Begin
RFEPP← Empty set
k ← Number of distinct classes
// Step 1: Remove identical rules
R← RemoveIdenticalRules(R)
// Step 2: Rule extraction for each class
for i = 1 to k do
RAvgAcc← CalculateAverageAccuracy(Ri)
RAccSet ← SelectRulesByAccuracy(Ri, RAvgAcc)
RAvgCov← CalculateAverageCoverage(Ri)
RCovSet ← SelectRulesByCoverage(Ri, RAvgCov)
RAvgLen← CalculateAverageRuleLength(Ri)
RLenSet ← SelectRulesByLength(Ri, RAvgLen)
// Intersection of accuracy, coverage, and rule length sets
RClassSet ← RAccSet ∩ RCovSet ∩ RLenSet
// Add class-specific rules to the overall set
RFEPP← RFEPP ∪ RClassSet

end for
// Step 3: Integration of rules from different classes
RFEPP← IntegrateClassRules(RFEPP)
Return RFEPP

End

The following pseudocode summarizes the main FEPP
framework steps:

a: ELIMINATE IDENTICAL RULES
To prevent duplication, this stage eliminates identical rules
from the decision forest.

b: RULE EXTRACTION FOR EACH CLASS
It determines the average rule length, coverage, and correct-
ness for each class. Next, a set of rules for each class is
obtained by taking the intersection of the rules selected based
on criteria such as correctness, coverage, and rule length.

c: INTEGRATION OF RULES FROM DIFFERENT CLASSES
In this stage, rules from various classes are combined to create
the final set of FEPP rules.
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The purpose of this algorithm is to produce refined rules,
also known as FEPP rules (RFEPP), by decision forest rule
processing. The procedure begins by generating an empty
set RFEPP and figuring out how many different classes
there are (k). The first stage is to extract the same rules
from the input decision forest rules (R). The algorithm then
loops through each class from 1 to k, extracting rules for
each one. It determines the average accuracy (RAvgAcc)
of the rules belonging to each class (i) and chooses a sub-
set of rules based on accuracy (RAccSet). Rule subsets
RCovSet and RLenSet, respectively, are produced by apply-
ing comparable processes to average coverage (RAvgCov)
and average rule length (RAvgLen). Subsequently, the
algorithm determines the point at which the sets of accuracy,
coverage, and rule length cross, resulting in the creation of the
class-specific rule set (RClassSet). The whole set of RFEPP
is comprised of these class-specific rules. To produce the
output FEPP rules (RFEPP), the last stage is integrating rules
from several classes. By taking into account rule length, accu-
racy, and coverage across several decision forest types, this
all-encompassing method guarantees the extraction of high-
quality rules. Enhancing interpretability and performance, the
technique provides a methodical and efficient approach for
rule refining in decision forests.

The proposed model undergoes a technical comparison
with established models, as detailed in Table 3.

TABLE 3. List of benchmarked models used in this study for risk
prediction in software requirements.

IV. RESULTS ANALYSIS AND DISCUSSION
This section discusses the experimental findings obtained
from implementing both the proposed and benchmarkmodels
for risk prediction in software requirements. The analyses
are divided into two parts: the first is an analysis of error
rates, and the second is an evaluation of accuracy. In clas-
sification or prediction tasks, error rate analysis is critical
for evaluating model performance, simplifying model com-
parison, giving interpretability, directing model fine-tuning,
and providing insights into areas for development. KS eval-
uates agreement while accounting for chance, whereas MAE
calculates the average absolute difference between predicted
and actual values. These metrics help in the selection, refine-
ment, and comprehension of predictive models in a variety of
applications.

Figure 3 shows the KS and MAE values for different
models used in software risk prediction. The KS represents
the degree of agreement between expected and actual results,

whereas the MAE is the average absolute difference between
projected and actual values. The investigation reveals that
the FEPP outperforms other models with a KS of 0.96 and
an incredibly low MAE of 0.03 when compared to KNN,
SVM, RF, NB, and LMT. The high KS shows that there is
significant agreement between expected and actual outcomes,
whilst the low MAE indicates that there are few mistakes
in forecasting risk levels. The reasons for FEPP’s superior
performance might be ascribed to its intrinsic algorithmic
characteristics, robust feature selection, and optimization
methodologies, which lead to more accurate risk predictions
in software requirements when compared to other models
studied.

Figure 4 provides a critical assessment of the TPR and
FPR for models that are used in risk prediction for software
requirements, such as KNN, SVM, RF, NB, LMT, and the
suggested FEPP model. The TPR denotes the percentage of
real positive cases that the model properly detected, whereas
the FPR shows the percentage of real negative cases that were
mistakenly categorized as positives. After analyzing the data,
it can be shown that the FEPP model performs better than
the other models. It obtains a maximum TPR of 0.968, mean-
ing that a significant proportion of real positive events are
accurately identified. Concurrently, the FEPP model shows a
remarkably low FPR of 0.008, indicating that it reduces the
possibility of misclassifying real negatives as positives. This
strong performance is important for risk prediction scenarios
because it shows that the FEPP model can accurately iden-
tify and divide software requirements, which leads to more
accurate risk assessments overall compared to other mod-
els that have been studied. The FEPP model’s effectiveness
in preventing false alarms is shown in the decreased FPR,
which is especially significant for real-world software risk
management applications.

Figure 5 presents a thorough analysis of MCC, FM,
and precision. The percentage of actual positive predictions
among all the model’s positive predictions is known as pre-
cision. The FM is a balanced indicator of a model’s overall
performance; it is the harmonic mean of accuracy and recall.
True positives, true negatives, false positives, and false neg-
atives are all included in the MCC metric, which produces
a number between −1 and +1, where +1 denotes flawless
prediction. The FEPP model emerges as the best performer
across all measures once the data is analyzed. It shows a
remarkable F-measure of 0.969 and an MCC of 0.959, and
reaches a precision of 0.969, suggesting a high accuracy
in positive predictions. Together, these findings demonstrate
how well the FEPP model performs in striking a compromise
between precision and recall, producing precise and trustwor-
thy risk forecasts for software needs. The model’s capacity to
handle unbalanced datasets and overall efficacy in capturing
the genuine link between anticipated and actual outcomes
are further highlighted by the high MCC. These results show
that, in comparison to other models examined in this work,
the FEPP model is especially well-suited for applications in
software risk prediction.
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FIGURE 3. Analysis of kappa statistic (KS) and mean absolute error (MAE) across different models in software risk
prediction.

FIGURE 4. Evaluation of true positive rate (TPR) and false positive rate (FPR) across the employed models in software risk prediction.

FIGURE 5. Evaluation of precision, F-measure (FM), and matthews correlation coefficient (MCC) across the employed models in software
risk prediction.

This creative method of fine-tuning rules using deci-
sion forests is what makes the FEPP model perform so
much better. By recognizing that shorter rules are frequently

simpler to grasp, FEPP, in contrast to standard models,
focuses on extracting precise and succinct rules. A greater
capacity to understand the underlying patterns in software
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FIGURE 6. Accuracy percentages of various models in this study for risk prediction in software requirements.

requirements is made possible by this emphasis on rule
length, which also makes the model more interpretable.
Furthermore, FEPP protects against the dominance of rules
from the majority class by taking into account each class sep-
arately during the rule extraction process, ensuring a balanced
review. To further strengthen its prediction powers, FEPP
demonstrates a strong feature selection process by systematic
penalization of characteristics and optimization of decision
forest structures. More accurate risk forecasts result from
these algorithmic improvements, particularly when it comes
to software requirements where interpretability and nuanced
understanding are critical.

Furthermore, FEPP’s ability to respond to a variety of risk
scenarios within software requirements is demonstrated by
its class-specific examination and integration of rules from
various classes. Notable in particular is the ability of the
model to handle imbalanced datasets well, which guarantees
that the model’s predictive capability spans a range of risk
levels. By carefully integrating rules from several classes,
the integration process produces a complete collection of
improved rules that encapsulate the complexities of soft-
ware risk prediction. The high MCC, TPR, and accuracy
of FEPP show that it is effective in finding a compromise
between minimizing false positives and correctly recognizing
positive situations. Overall, FEPP performs better than the
benchmarked models in this study because of its creative
algorithmic design, emphasis on the conciseness of rules, and
flexibility in various risk situations.

V. CONCLUSION
The study presents and assesses the FEPP risk prediction
model against accepted benchmarks to handle the changing
problems in software development. Compact and com-
prehensible rule extraction is prioritized by FEPP’s novel
algorithmic design, which also exhibits better performance
in measures like KS, MAE, TPR, FPR, precision, FM,

accuracy, and MCC. It excels in real-world software devel-
opment with unbalanced datasets because of its flexibility to
various risk scenarios, as shown by class-specific analysis
and rule integration. The model’s innovative ‘‘Forest by
PenalizingAttributes’’ technique and complex decision forest
structure are credited with its performance. In addition to
minimizing risks, FEPP improves project planning, lowers
rework expenses, and guarantees the delivery of high-caliber
software solutions. FEPP’s proven flexibility and efficacy
make it a potential step for resilient and successful soft-
ware development methods as software projects continue
to change, encouraging proactive risk management and a
continuous improvement culture.

Future study endeavors might include enhancing and per-
fecting the FEPP model, investigating its amalgamation with
nascent technologies such as artificial intelligence, and exe-
cuting pragmatic deployments and case analyses to authen-
ticate its efficaciousness throughout multifarious software
undertakings. Collaborations between academic institutions
and businesses might make it easier for FEPP to be widely
adopted and guarantee that it will remain relevant in the face
of changing software development issues.
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