
Received 22 January 2024, accepted 27 March 2024, date of publication 22 April 2024, date of current version 6 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3391021

Three Challenges to Secure AI Systems
in the Context of AI Regulations
RONAN HAMON 1, HENRIK JUNKLEWITZ 1, JOSEP SOLER GARRIDO 2,
AND IGNACIO SANCHEZ 1
1European Commission, Joint Research Centre, 21027 Ispra, Italy
2European Commission, Joint Research Centre, 41092 Seville, Spain

Corresponding author: Ignacio Sanchez (ignacio.sanchez@ec.europa.eu)

ABSTRACT This article examines the interplay between artificial intelligence (AI) and cybersecurity
in light of future regulatory requirements on the security of AI systems, specifically focusing on the
robustness of high-risk AI systems against cyberattacks in the context of the European Union’s AI Act. The
paper identifies and analyses three challenges to achieve compliance of AI systems with the cybersecurity
requirement: accounting for the diversity and the complexity of AI technologies, assessing AI-specific
risks, and developing secure-by-design AI systems. The contribution of the article consists in providing
an overview of AI cybersecurity practices and identifying gaps in current approaches to security conformity
assessment for AI systems. Our analysis highlights the unique vulnerabilities present in AI systems and
the absence of established cybersecurity practices tailored to these systems, and emphasises the need
for continuous alignment between legal requirements and technological capabilities, acknowledging the
necessity for further research and development to address the challenges. It concludes that comprehensive
cybersecurity practices must evolve to accommodate the unique aspects of AI, with a collaborative effort
from various sectors to ensure effective implementation and standardisation.

INDEX TERMS Adversarial machine learning, artificial intelligence, conformity assessment, cybersecurity,
lifecycle management, regulation, risk management, trustworthy AI.

I. INTRODUCTION
Artificial Intelligence (AI) is a pivotal element of digital
transformation [1], [2], [3], emerging from decades of
advancements across scientific fields, in particular computer
science and statistics, and propelled by an increase in the
availability of data and computational resources. AI technolo-
gies are being more and more democratised and integrated in
products and services, impacting businesses, organisations,
and individuals in many sectors such as transport, healthcare,
or education [3].

AI, sometimes referred to as software 2.0 [4], represents
a paradigm shift in programming. Unlike traditional pro-
gramming, which requires explicit instructions to perform
a task, AI infers logical steps from large corpora of data
and/or abstract concepts [5], only leveraging programming
to support data management or algorithm development. With
the deployment of AI in critical applications, making AI
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systems trustworthy [6] is of prime importance to ensure that
they are safe and remain aligned with respect to fundamental
rights and societal values. At the core of the proposed
European Union’s AI Act [7], for which a political agreement
has been reached at the end of 2023 [8], lies the idea
that it is necessary to take into account the purpose and
the context of use of AI systems in order to fulfil the
essential trustworthiness requirements in an effective and
proportionate manner and establish harmonised rules for AI
products. The AI Act exemplifies growing governmental
efforts around the world to establish regulatory guardrails for
AI [9], [10], [11], [12].

This paper focuses on the cybersecurity requirement as laid
out in Article 15(4) of the AI Act, which also connects to
other international policy initiatives that emphasise AI safety
and security [9], [11] and requires high-risk AI systems to
be resilient as regards attempts by unauthorised third parties
to alter their use or performance. The recital 51 elaborates
further the rationale of the requirement, clarifying that
providers of AI systems have to carry out a security
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risk assessment and implement suitable organisational and
technical solutions to mitigate the security risks. Given that
many cybersecurity processes are not fully developed for
AI systems, adapting them to take into account the unique
features of AI systems poses several challenges to achieve
compliance [13], [14], [15].

The contribution of this article is twofold. First, it provides
in Section II a brief overview of the so-called field of
AI cybersecurity at the interplay between AI and classical
cybersecurity. Then, it delineates three challenges related to
AI cybersecurity in the context of AI regulation: accounting
for the diversity and the complexity of AI technologies
(Section III), assessing AI-specific risks (Section IV), and
developing secure-by-design AI systems (Section V). For
each challenge, the integration of AI into known and
proven cybersecurity practices and approaches is exam-
ined. An illustration of these challenges is provided in
Section VI, presenting an example of evasion attacks against
an automated application screening system powered by a
language model. This analysis emphasises the importance of
the development of an integrated and system-level approach
to securing AI models relying on established practices in
software security engineering [16], until more generally
effective techniques for securing state-of-the-art AI models
become available.

II. THE EMERGING FIELD OF AI CYBERSECURITY
AI cybersecurity refers to the field uniting classical cyber-
security and AI, which can be described according to four
dimensions:

1) AI to enhance cybersecurity (opportunities for
stronger resilience): AI empowers cybersecurity by
enabling a range of tasks such as the prediction
and detection of threats in real-time, the anticipation
of future attacks, or the automation of mitigation
measures and incident response processes [17], [18].

2) Robustness and vulnerabilities of AI (challenges
for resilience): The integration of AI into widespread
digital systems introduces new types of vulnerabilities
that can be exploited by malicious actors, with possibly
greater attack surface and impact [19].

3) AI to deter and fight cyberattackers (opportunities
for deterrence): AI-powered capabilities are at the
disposal of law enforcement agencies, defence services
and military bodies to actively deter and fight cyber-
crime and adversaries [20], [21].

4) Malicious use of AI (challenges for deterrence): AI
systems can be abused by malicious actors to improve
the scope and strength of cyberattacks or used in an
unforeseen way to conduct criminal activities [22].

The focus of cybersecurity requirements of current AI
regulation is on the security of AI systems (point 2). In the
rest of this section, we describe this aspect in greater detail,
and dive into the question of the standardisation process
that will take place to facilitate conformity for providers of
AI systems.

A. SECURING AI
Securing AI consists in collecting and combining knowledge,
approaches, technologies, practices, and policies that are
designed to safeguard AI systems and their data from
cyberthreats. These threats may result in unauthorised access,
information disclosure, theft of material, damage, or more
generally any form of disruption of the service provided by
the AI system.

On the one hand, it is clear that AI, as a type of software,
can benefit from the experience of classical cybersecurity,
allowing AI cybersecurity to rely on already established
information security practices whenever possible. Well-
tested approaches in cybersecurity such as risk modelling,
organisational aspects of information security, and system-
level security controls, can apply to some degree as much
to AI systems as to any other software systems. On the
other hand, AI exhibits intrinsic features that disrupt the
traditional approach of securing software. Recent years have
already seen initiatives from the software and cybersecurity
communities to advance AI cybersecurity by adapting
and enlarging existing frameworks, such as the MITRE
ATLAS [23], taxonomies [24], [25] or AI threat landscape
analyses [19], [26], [27].

From a scientific standpoint, the analysis of security
properties of AI systems have been regrouped under the
topic of adversarial machine learning that focuses on research
into intentionally attacking, breaking or misusing features
of machine learning models and measuring robustness
against these malicious actions [14]. The field built upon
early theoretical work on learning against adversaries [28],
[29] and went closer to cybersecurity applications such as
spam filters [30], [31], before evolving more concretely
into security principles for machine learning systems [5],
[32], [33]. These topics are all relevant in the task of
practically securing AI systems since, by now, a range of new
vulnerabilities for AI models have been identified [27].

B. STANDARDISING AI CYBERSECURITY FOR
CONFORMITY ASSESSMENT
Studying AI-specific vulnerabilities and connecting them
with cybersecurity concepts is crucial in the establishment
of standards that will support the implementation of future
regulatory rules on AI, a question that has now become
central with the expected adoption of the AI Act [8].
Harmonised standards [34] will play a key role in defining
technical requirements and guidance to ensure the security
of AI systems. This helps both providers to fulfil regulatory
requirements (with a presumption of conformity if standards
are applied), and assessment bodies to check conformity,
providing methodologies for verification, validation, auditing
or certification of systems [35].

From a conformity assessment perspective, a clear dis-
tinction should be made between an AI model and an
AI system [16]. A model describes a mathematical and
algorithmic construction, aiming at processing inputs using
a given set of advanced techniques. Conversely, an AI system
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— as a term from systems engineering — is usually meant to
describe the integration of one or several AI models alongside
additional non-AI components, for instance computing units,
communication modules, interfaces, databases or sensors,
with a clear intended purpose set up by a manufacturer.
Although AI models are the essential components of AI
systems, they do not constitute AI systems on their own,
as they will always require other software components to be
able to function and interact with users and the virtual or
physical environment. Thus, ensuring the conformity of AI
systems with future regulatory rules on cybersecurity does
not necessarily require making single models secure. Even
if limitations due to technical gaps and lack of scientific
maturity of AI technology may limit compliance [35], [36],
[37], alternative approaches at system level may exist.

Many activities have been initiated to standardise various
technical, ethical and organisational aspects of AI systems
on topics ranging from risk modelling to AI hardware
security [25], [35], [36], [38], [39], [40]. The analysis of
the efforts required to standardise AI cybersecurity [16],
[37], [41], [42] suggests an approach in line with traditional
cybersecurity practice, where challenges to secure AI are
acknowledged, and limits in AI technology at the model
level are addressed by traditional cybersecurity practices
taking into account additional costs and/or impacts on
system performance. While many non-AI-specific security
measures such as procedures on organisational principles,
risk management and security controls, can largely be
taken from the ISO/IEC 27000 series, current standards are,
however, not yet adapted to be used for AI software. At the
European level, this adaptation is just beginning and plans to
cover AI cybersecurity, either in dedicated AI cybersecurity
standards, or as part of more transversal standards on AI risk
management and trustworthiness.

III. CHALLENGE: ACCOUNTING FOR THE COMPLEXITY
AND DIVERSITY OF AI TECHNOLOGY
The definition of AI varies according to the context [5] and
intersects with definitions coming from different fields such
as machine learning [43], natural language processing [44],
robotics [45], or computer vision [46]. AI-based software
typically exhibits a range of features that sets them apart
from traditional software: reasoning and learning [47],
encompassing actions and capabilities usually reserved to
human intervention, such as perception and understanding
(e.g., recognising objects, reading texts, evaluating scenes,
etc.) and planning (e.g., taking action, answering questions,
elaborating strategies, etc.); data-driven [48], highlighting
the capacity of AI systems based on machine learning
techniques to process, analyse, learn, and extract patterns
from data sets, potentially very large; opacity [49], describing
the absence of explicit mechanisms and rules that limits
the understanding of the functioning of the system; unpre-
dictability [50], referring to the presence of stochasticity in
the development and/or exploitation process that, coupled

with the high non-linearity of many AI systems and the
opacity, makes the outcomes largely unpredictable.

A. TERMINOLOGY OF AI AND CYBERSECURITY
Legislation needs to rely on technical concepts and terms
to describe requirements, either implicitly or explicitly.
However, the terminology of AI originates from technical
works in computer science and statistics, with blurred limits
in the meaning of terms and concepts, depending on the
context of applications or fields. The AI Act for example
makes use of the term accuracy in a broader meaning than
usually implied by the widely used statistical metric of the
same name, referring instead to the capability of the AI
system to perform the task the system has been designed
to [34]. Regarding cybersecurity, it both mentions terms
from AI such as adversarial examples and data poisoning
and from cybersecurity such as security risk assessment,
without defining their exact scopes. This approach relies
on subsequent works to clear ambiguities of interpretation,
but will require a harmonisation of the terminology between
cybersecurity practices, AI research, and law.

Harmonising the terminology of AI and AI cybersecurity
has been acknowledged as a challenge by European standard-
isation bodies [36] and led to the development of terminolo-
gies [19], [24], [26] and a proposal of making standards on AI
concepts and terminology (ISO/IEC 22989, ISO/IEC 23053).
Partial coverage of AI-specific cybersecurity terminology
is included in ISO/IEC 24028 on trustworthiness in AI,
ETSI/SAI 002 and in the forthcoming ISO/IEC 27090.
Further inconsistencies and gaps remain to be addressed. For
instance, the notion of robustness is not uniquely defined,
but generally revolves around the capacity for a system to
maintain its level of performance under any expected and
unexpected circumstances. Broader definitions of robustness
usually encompass both problems of general robustness
and robustness in a cybersecurity context [51], with the
latter explicitly including the resilience towards malicious
attacks against the integrity or purpose of the system.
This is because the generalisation behaviour of AI models
governing their performance at the edge or outside their
trained data representation plays a key role in the evaluation
of their robustness, regardless of whether perturbations
and edge cases occur intentionally (adversarial robustness,
or cybersecurity) or not (general robustness) [52]. The
differentiation between general robustness and adversarial
robustness is of prime importance to understand whether
some types of attacks affecting the integrity of systems, such
as evasion attacks, should be treated as an issue of general
robustness or of cybersecurity.

Likewise, definitions given in various taxonomies for
evasion attacks vary in their scope. Evasion attacks were
introduced in the context of machine learning-based security
controls such as network intrusion detection systems or spam
filtering [30], [31], [32], [33] and were extended to deep
neural networks [53], [54], [55], [56], [57] later. They are
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defined in [24] as ‘‘[. . . ] manipulat[ing] input samples to
evade (cause a misclassification) a trained classifier at test
time.’’, in [23] as ‘‘[. . . ] craft[ing] adversarial data that
prevent a machine learning model from correctly identifying
the contents of the data.’’, and in [58] as ‘‘[. . . ] creat[ing]
an input to an operating ML [Machine Learning] system
that reliably produces a different output than its creators
intend.’’. While these definitions convey the main idea behind
evasion attacks, they fall short of providing tight boundaries
or consistency.

More generally, clear definitions of technical notions need
to be established, to ensure that they are compatible with their
meaning in legal texts, in particular for new terminology that
is introduced with novel developments.

B. BEYOND SUPERVISED MACHINE LEARNING
Regarding the security of AI, the emphasis in research
has been over the past years given to supervised machine
learning, i.e., a type of machine learning where the objective
is to learn a mapping between input and output variables
from labelled training data andwhich is widespread in current
applications. Other important techniques will nonetheless
be subject to security assessments in the context of reg-
ulations. Definitions of AI at policy level, such as the
OECD definition [59], include, besides supervised machine
learning, other techniques such as generative AI, logic-
and knowledge-based approaches or search and optimisation
methods. This broadens the scope of AI cybersecurity in two
ways: 1) security risks posed by advanced machine learning
techniques should be studied and their consequences in terms
of conformity assessment anticipated, even if mitigation
techniques may not be readily available; 2) methodologies for
security assessment of other techniques should be developed,
taking into account their lower susceptibility to security
vulnerabilities. Even if the research frontier has shifted to
encompass these approaches, these works are not yet mature
enough to be integrated in standards.

Three representative examples of advanced machine learn-
ing techniques that may pose additional security risks are:
reinforcement learning [60], where an agent learns through
negative and positive rewards to make decisions by taking
actions in an environment to achieve a goal, and which
can be tricked into taking harmful actions [61]; federated
learning [62], a distributed approach to train models on
devices, and that can be compromised by exploiting the
decentralised nature of the training [63], [64]; foundation
models and general purpose AI models [65], self-supervised
models trained on massive amounts of data, and that have
been particularly notable for text [66], [67], [68] and text-
to-image generation [69], [70], but also pose for additional
security risks [71], [72] in terms of supply chain.

C. SECURITY, SAFETY, AND GENERALISABILITY
Safety and generalisability are two concepts that overlap with
security but have also their own specificities. While security

is concerned with the protection of the system, preventing
adversaries or adverse conditions to impact negatively its
functioning, safety aims to prevent a system to impact its
environment in an undesirable or harmful way, ranging
from physical and mental safety of individuals to damage
to the environment, whether induced intentionally or not.
As for generalisability, it is more about the capacity of
machine learning systems to operate reliably on unknown
data, going beyond the robustness against attacks. Clarity in
the distinction between all aspects is essential to ensure that
each aspect is well-covered.

The field of AI safety that emerged over the past years [73]
illustrates this possible confusion, covering the prevention
of accidents or unintentional misuses, caused either by
an external threat or because of a malfunction of the
system. It also touches upon more controversial discussions
about artificial general intelligence (AGI) and the adequate
measures to ensure that advanced AI systems will remain
aligned with human values, a topic which is usually out of
scope of AI regulation. This makes AI safety a component
of cybersecurity, promoting a resilience against malicious
attacks, but without encompassing all aspects related to the
confidentiality, integrity, and availability of systems.

Additionally, many research works on adversarial machine
learning, albeit motivated by security problems, tend to
be concerned with fundamental questions of generalis-
ability [53], [74] that are not necessarily relevant for
cybersecurity problems [14], [31], [75]. For example, many
works on adversarial examples rely on restricted threat
models based on constrained optimisation (e.g., Lp-norm
based adversarial attacks aiming enforcing low-intensity
perturbations) that may provide valuable insights about the
functioning, accuracy and reliability of models, but is of
limited use when connected to real-world problems [76].
The technical challenges considered as core components
to any cybersecurity conformity testing with regulatory
requirements remain open scientific questions, such as the
feasibility of measuring robustness against cyberattacks on
machine learning models [75], [77], or properly assessing the
strength of defences [78].

D. INTERDEPENDENCY BETWEEN REQUIREMENTS
Trustworthiness of AI systems, as implied by regulatory
approaches such as the proposed AI Act, does not result from
conformity to isolated requirements. Instead, trustworthiness-
by-design principles promote an interdependence of a range
of requirements and obligations [6], [49], [79], only one of
which is cybersecurity. Other important requirements include
transparency, human oversight, documentation, data gover-
nance and quality, logging, risk management, robustness and
accuracy. While it should be desirable to simultaneously
adhere to all requirements in the best possible way,
addressing cybersecurity inevitably involves managing
trade-offs between security and other desired features,
in particular accuracy and robustness. In cybersecurity, this
is a well established practice that is as part of security risk
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assessments of software systems [80], [81], and it stands
to reason that this practice will become standard for AI
cybersecurity as well. In the context of the proposed AI Act,
it will be crucial in the management of the risks to safety,
health, or fundamental rights of individuals that may arise
from security issues. However, practical implementations
have to be established in order to understand the specific
effects of these interdependencies for AI systems.

Increasing the coverage in a single requirement may come
at the expense of others, and the optimal balance will depend
on the specific requirements and constraints of the AI sys-
tem [49], [79]. The trade-off between accuracy, robustness,
and cybersecurity is a critical challenge facing providers
of AI systems. Achieving high accuracy on complex tasks
requires large amounts of data and complex models, which
has an impact on the robustness of the system and its
cybersecurity. Conversely, increasing security often impairs
accuracy [82], [83], and comes with additional development
costs. In other cases, requirements may complement each
other and/or addressed jointly, which is for example the case
between cybersecurity and data governance requirements.

Finding the right balance in the context of each specific
AI system use case to ensure optimal functioning and
mitigate risks will be fundamental to achieve compliance.
For example, in a critical application that could operate
offline such asmedical diagnosis, the trade-off may leanmore
towards accuracy and robustness, with less stringent cyber-
security measures. On the other hand, in a financial fraud
detection system, the trade-off may require a higher level
of security and robustness, with somewhat lower accuracy.
While standards may need to ensure the interdependencies
and trade-offs between requirements are addressed in their
technical specifications, it will be the responsibility of the
providers to properly justify their design choices related to
these trade-offs, taking into account the risks and context
of use.

IV. CHALLENGE: ASSESSING AI-SPECIFIC RISKS
The proposed AI Act advocates a risk-based approach for
the regulation of AI on the basis of risks to European
fundamental and human rights, designating the provider as
responsible to ensuring the compliance of systems depending
on their level of risks. Cybersecurity has a long history
of securing new technologies under new risks and many
proven risk assessment practices are applicable in the context
of AI systems. Nonetheless, there is need to adapt risk
management strategies to cover new vulnerabilities and novel
cyberthreats [24], [25], [84].

Risk modelling in cybersecurity is a proactive approach to
identifying, managing, and mitigating potential threats to a
system. It involves identifying valuable assets, understanding
how they might be compromised, and implementing effective
controls to prevent or minimise potential damage. This
helps organisations to understand security risks in the
context of their activities, and prioritise their security efforts
accordingly. In principle, cybersecurity considerations in

FIGURE 1. Conceptual model depicting the logical links between the
different components of the cybersecurity risk (adapted from [85]).

the context of an AI risk assessment process could follow
an approach similar to that of other software systems,
by focusing on the estimation of cybersecurity risk [25],
[84], [86], [87] from an analysis of the following factors
(see Fig. 1):

• threat agents: individuals or entities responsible for
security incidents;

• vulnerabilities: weak points in a system that can be
exploited by a threat agent to conduct a cyberattack;

• impacts: harm or damage that results from the conse-
quences of an attack to a system.

A. THREAT AGENT
Understanding the capabilities, knowledge, intentions,
resources, andmethods of threat agents is crucial to anticipate
potential threats. Even if threat agents have at their disposal
a wide range of attacks to compromise AI systems, the
technical and financial costs of an attack and their uncertain
results may render them practically irrelevant in the case
when simpler means can achieve similar results [14].
The level of knowledge of an agent about AI systems

includes different elements [13]: the stage of the system in
its lifecycle (e.g., training, testing, deployment, see Fig. 2);
the technology used (e.g., library, architecture, processes);
the level of visibility (e.g., access to the weights, parameters,
architecture, training data input-output pairs, processes and
methodologies used by the provider). This evaluation should
also include the circumstances in which threat actors can be
assumed to have the knowledge and resources to implement
a technically demanding and uncertain attack.

All these elements are relevant to identify the range
of options at the disposal of the attacker, and identify
which type of systems in practice will be more at risk
than others [13], [15], [31], [37]. This remains particularly
complex to evaluate for actual cybersecurity risks since any
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long-term and widespread deployment of AI products is still
only in its infancy.

B. VULNERABILITY
Vulnerabilities in AI systems concern both those present in
non-AI (e.g., networking, database, ICT infrastructure), and
AI (e.g., models, inference engines) components [19], [26],
[27]. Generally speaking, a cyberattack against an AI system
usually involves the exploitation of several vulnerabilities
in one or more of its components. For instance, an attacker
may get access to the system through a classical software
vulnerability, and run an AI-specific attack (e.g., evasion
attacks) to do lateral movement [19].

A number of vulnerabilities affecting tools to build and
deploy AI models have already been reported, such as for
Jupyter (CVE-2022-29241), TorchServe (CVE-2023-43654),
or Tensorflow (CVE-2022-23587). The main concerns how-
ever lie in the existence of attacks exploiting AI-specific
vulnerabilities [27], including: data poisoning [88], [89],
manipulating or injecting false data with the intention to
compromise the training of machine learning models; back-
doors [90], installing AI-specific mechanisms triggering,
for specific patterns, unwanted behaviours; evasion (or
adversarial) attacks [91], crafting inputs to alter the outcome
of an AI system; model extraction and inversion [92],
[93], retrieving the parameters of a model; membership
inference [94], [95], retrieving data or specific features used
in training and testing sets; latency attacks [96], inducing a
high latency when computing outputs of machine learning
models.

These attacks exploit vulnerabilities that differ from
traditional vulnerabilities in that they are generally the
consequences of the opacity in AI systems [97]. This limits
the capacity to detect and mitigate vulnerabilities before
and after the development, and to test the full space of
potential user inputs in order to understand how a system
may respond to those inputs (e.g., for an exhaustive test
coverage). Managing AI-specific vulnerabilities, including
an assessment of their severity and their potential impact,
the development of patches, their listing in catalogues
(e.g., CVE) [98], and their disclosure [99], may be disrupted
by this incapacity to precisely characterise vulnerabilities and
reproduce exploits. Additionally, attacks as well as mitigation
techniques may not transfer well across all versions of the
model.

As of today, it is unclear whether and how AI vulnerabil-
ities can be exploited in practice under real environmental
conditions to affect the performance of systems, mostly
because of the limited amount of documented AI-specific
real-world attack events [90] due to the low level of
deployment of AI systems. The development of concrete
threat scenarios based on realistic applications should help
the assessment of the relevance of adversarial machine
learning methodologies in operational contexts [100] and a
better anticipation.

C. IMPACT
The evaluation of the impact of an attack is traditionally
conducted using the CIA model [84], [86], which has already
been translated to analysing AI systems [13], [24], [26]:

• Confidentiality: impacts related to the disclosure of
personal data, or of proprietary data sets and models
(e.g., after membership inference or model extraction);

• Integrity: impacts related to the degradation of the
predictive capabilities of models, either overall or in
a targeted way (e.g., after data poisoning or evasion
attacks);

• Availability: impacts related to the delay of processing,
or the stopping of the system (e.g., after latency attacks).

The AI Incident Database [101] provides a collection of
incidents and near misses caused by AI systems deployed in
the world. With the growing importance of AI components
in systems, new incentives to invest time and resources
in exploiting their vulnerabilities will appear, indicating
a possible transition phase from traditional to AI-specific
cyberattacks. This initiative, as well with others (e.g., the
OECD AI Incidents Monitor) are well aligned with Action
(4) of the Code of Conduct developed by G7 [10], should be
complemented by more security-related incident, requiring
an active monitoring and reporting of AI-related events.

V. CHALLENGE: DEVELOPING SECURE-BY-DESIGN
AI SYSTEMS
The effective deployment and maintenance of AI models in
software development is itself a relatively new field often
summarised as MLOps, for which developing secure-by-
design approaches is still a subject of active development.
Securing AI systems requires indeed a continuous approach
to assessing and mitigating threats throughout the whole AI
lifecycle. As a result, this poses a set of challenges [35], [36],
[37], [102] to existing frameworks for testing, validating,
verifying, and auditing software, which will need to be
adapted.

The opacity of AI software introduces a need for major
adaptations to the way the security aspects of the different
stages of the lifecycle of products and services are handled,
the establishment of security controls adapted to AI-specific
vulnerabilities, and new approaches to test the security of
systems.

A. LIFECYCLE AND SUPPLY CHAIN
Lifecycle management refers to the process of managing
each stage of the life of systems, from their specification,
design, and implementation, to their operation, maintenance,
and decommission. For AI systems, new steps need to
be considered (see Fig. 2). This lifecycle depends upon
a supply chain that includes all the processes and assets
that are involved in the development, delivery, and mainte-
nance of software such as code repositories, build systems,
and third-party libraries. For AI systems, the main assets
are [26]: data (e.g., data sets for training, testing and
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FIGURE 2. Depiction of the typical lifecycle of an AI system based on
machine learning techniques [26]. The lifecycle illustrates the multiple
stages involved in the development of the system, and includes feedback
loops and potentially automated decisions.

validation, new input data for inference and/or continuous
learning); models (e.g., architecture, performance metrics,
design purpose, intellectual properties, pre-trained models);
ICT infrastructure (e.g., training algorithms, networks and
file systems, hardware, open-source libraries); stakeholders
(e.g., data scientists, system provider); lifecycle processes
(e.g., data engineering, model training, continuous learning);
and cybersecurity assets (e.g., controls, policies). AI systems
may also be developed and deployed in various physical
locations and hardware, such as data centres, HPC edge
devices, or embedded systems, adding potential weaknesses
to the whole system. In addition, in a regulatory context,
it is important to consider conformity testing with legal
requirements as a crucial part of the lifecycle.

Compared to traditional software systems, AI systems
have three notable differences regarding their supply chain
that increases their attack surface: 1) high dependence to
well-curated and reliable yet large data sets; 2) practice
of distributing and outsourcing assets to third parties, such
as the training of the model, reliance on generic models
(such as General Purpose AI or foundation models [65]);
3) prevalent culture of open-source in machine learning,
with a widespread use of freely available pre-trained models,
software libraries, and data sets, adding significant concerns
regarding the security of these assets (e.g., backdoors, mali-
cious code, or intentionally-made bad models), increasing
the visibility of attackers on the AI systems by allowing for
reverse-engineering [103], and questioning the accountability
in case of incidents involving one of these assets.

Securing this supply chain involves protecting assets from
any unauthorised access, modification, or exploitation. This
can be achieved by implementing various security measures,
such as strict access controls, continuous monitoring, or
vulnerability assessments, that can be adapted from
well-known and standardised data governance and code
development practices. However, an analysis is needed to
identify areas of supply chain management that require
additional work and specification, e.g., the handling of

training-time attacks such as data poisoning or model
backdoors. For both data and software, properly handling
the supply chain security is standardised for databases and
classical software, for example in the ISO/IEC 27000 series.
However, no AI-specific standards have been published
so far addressing in particular the above described supply
chain issues with AI robustness and cybersecurity which are
noticeably different in scale and content. ISO/IEC 27090,
whose aim is to provide information to organisations on
security threats to AI systems, may eventually address
the issue to some extent. Handling the cybersecurity of
pre-trained models and open source assets will entail a
specific set of organisational and policy measures, including
for their supply chain partners, as this situation is not very
different from what happens in traditional digital systems,
at the condition that these measures do not rely on immature
technical solutions.

B. SECURITY CONTROLS
Security controls are implemented to protect digital systems,
and are part of mitigation measures selected on the basis of
the threats and vulnerabilities identified in the risk assess-
ment. Their integration should come with an assessment of
their capacity to detect, track down, and mitigate the effects
of attacks. There are several types of security controls that
can be implemented to protect AI systems [19], [23], [24],
[26], [39]. Some of them are directly connected to security
controls of digital systems in general and may only be in
need to be reconsidered in the light of AI, such as access
control, encryption, monitoring, incident response, security
assessments, or similar. Existing practices, such as the ones
listed in ISO/IEC 27002, will remain important. Others, more
specific to AI technology, such as data validation, input
sanitation, model watermarking or crucially incorporating
hardenedmodels and defences, may need additional work and
an adaptation of practices. These problems are exacerbated
when considering whole AI systems made of several AI
subsystems. Any set of security controls for relevant AI assets
will always depend on the particular AI system at hand.

Despite constant research and proposed attacks, some
AI-specific vulnerabilities present in machine learning sys-
tems do not have applicable defences, mitigation measures,
or security controls able to efficiently mitigate them. The
earliest research literature focused on applying cybersecurity
principles to machine learning problems took place in the
context of evasion attacks, with the establishment of controls
for applications such as network intrusion detection systems
or spamfiltering [31], [32], [33]. Subsequent works expanded
on these [13], [104], aiming at conceptually bringing together
the perspectives the complexities of deep neural network
models and cybersecurity risk assessment. For example,
accepted state-of-the art in research is to use adversarial
training to increase the robustness of a model during training
time against specific attacks [53], [54], by including in the
training set adversarial examples, at increased computational
cost and potentially decreased performance on benign data.
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As detailed in [16], security controls for AI vulnerabilities
may not need to be themselves based on AI, or directly fixing
flaws in AI models. For example, protecting models against
membership inference [105] may rely on a combination of
model-based controls of differential privacy [106], but also
on system-level controls such as restriction of the number of
queries possible to AI models for API-based AI systems.

C. TESTING
Conformity assessment is usually conducted with some type
of testing to measure one or several characteristics of the
system and determine whether the system is compliant with
requirements. Measuring the cybersecurity of AI systems
includes, as for classical information systems [107], tasks
such as comprehensive reviews of the system’s architecture,
vulnerability assessment, identification and access manage-
ment policies, evaluation of the effectiveness of intrusion
detection and prevention systems, an assessment of the
security awareness of the system’s users, and an evaluation
of the likelihood of threats and their impact on the whole
system and its environment. Testing can thus describe a very
granular technical activity, such as testing for the statistical
accuracy or the correct implementation of specific controls.
This definition of testing is similar to the meaning of classical
software testing [102] and close to a certain degree to
the one used in machine learning [77] for determining the
performance of a trained model.

A measure of interest in the context of AI regulation
is the robustness of AI systems, in particular against
cyberattacks exploiting AI-specific vulnerabilities [75], [76],
[77], [78]. Generally speaking, two approaches co-exist:
formal methods [108], [109] and statistical and empirical
approaches [52], [75]. Methods for formal verification
involve defining a set of constraints or specifications that
the model must satisfy and ensuring that the outputs of
models are within a certain range for a given input. Even if
they can provide certified and guaranteed robustness of AI
models [110], [111], many of the knownmethods are scalable
only with difficulty to complex deep neural networks [37].
Conversely, statistical and empirical approaches provide
local approximations to global robustness measures by
calculating metrics on a given set of samples, e.g., from
benchmarks [112], [113]. They are more adapted to the large-
scale and stochastic nature of machine learning, but are also
highly dependent on data sets, model architectures, attack
types, and transferability betweenmodels [37]. For both types
of approaches, defining acceptable thresholds for metrics is
context-dependent and not straightforward.

Another approach for testing the cybersecurity of AI
systems is to adopt practices from penetration testing [114],
actively finding vulnerabilities in systems and exploit them
to determine their associated risks. Its application to AI
systems as part of red-teaming [115] requirements has
emerged recently with the latest developments in generative
AI [116]. Putting under stress controls aims at preventing
unexpected behaviours, such as hallucinations, jailbreaks or

bias, and addressing the risks that come from automating
these new technologies at scale [67]. Its current imple-
mentation for AI systems (e.g., as presented in DEFCON
2023) differs significantly from traditional cybersecurity red-
teaming by the scale it requires, and the way subjective
evaluation is required to define whether a vulnerability
has been exploited [117]. Adapting classical cybersecurity
practices [118] to AI systems will require to change the focus
to data and AI-specific vulnerabilities. Yet, no guidelines to
conduct such assessment and evaluate its relevance in the
context of conformity assessment, exist, even if development
of these practices [119], [120], [121] is a step in the right
direction that needs to be harmonised and assessed.

VI. ILLUSTRATION: EVASION ATTACKS ON LARGE-SCALE
LANGUAGE MODELS
Large language models (or LLMs) are self-supervised
machine learning models designed to understand, interpret,
and generate text. These models are trained on vast amounts
of text data including webpages, books, and any other
specific datasets that are designed to help the model learn
various tasks such as translation or question-answering, and
representing hundreds of billions of words. This allows LLMs
to predict the likelihood of a sequence of words and generate
coherent and contextually relevant text. Their integration into
software-as-a-service products, often through application
programming interface (API), makes possible their use in a
wide range of applications, from automated customer service
chatbots to virtual assistants to content creation, to language
translation services. The direct interaction between the users
and the AI systems makes the alignment of models to
human values a desirable feature to ensure that they not
only understand and generate human-like text, but also do it
in a manner that is responsible, transparent, and respectful,
without generating biased, false, or offensive content.

Techniques used by providers to achieve this alignment
include fine-tuning on curated datasets, incorporating human
feedback, and specific training methodologies. Testing the
alignment is on the other hand done by using standard bench-
marks [112], or by applying penetration testing principles and
finding potential flaws in the model. For the latter, prompt
hacking [115] is a technique in which the tester engages with
the system without privileged access or knowledge, in order
to bypass restrictions implemented by the system providers
to protect the users and avoid misuses of the system, such
as producing offensive content, returning private information,
or supporting malicious actions [117]. While referred to as
red-teaming, prompt hacking leaves out the traditional red-
teaming objectives [122] related to breaking into the system,
and focuses instead on the safety issues at the detriment of
more security-relevant aspects.

We consider an automated application screening system
for recruitment. The system takes as inputs a summary
of the application of a candidate (e.g., education, previous
employments) and a short text written by the applicant to
explain his/her motivation. It then returns, for a job title and a
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list of requirements, a score of relevance and an explanation
for the decision. This system could operate in an automated
way and designed to return a selection of the best candidates
that would be then screened by human recruiters. In such a
setting, it could be considered as high-risk according to the
Annex III 4(a) of the proposed AI Act, and therefore subject
to its requirements.

The AI system is built by integrating the language model
Zephyr-7B-β [123] along other components such as web
interface, a database, and various software components for
the processing and the decision-making capabilities. In this
scenario, we only consider the part of the system in which
inputs are sent to the language model, and the outputs are
parsed to extract the score and the explanation.

The prompt given to the language model is as follows:

You are a recruiting assistant. The
company is looking for a network
engineer with at least 5 years of
experience. You will be presented
with a profile of a candidate. Give a
score on a scale of 0 to 4 to evaluate
the relevance of the candidate to the
position. You have to provide your
answer in JSON format, for example:
{"score": 3}.

SUMMARY Statement by the applicant:
STATEMENT

We consider an applicant with the following application
summary:

Mark Smith has a strong background in
business analysis, with over 5 years
of experience in process improvement,
data analysis, and project management.
He has worked for leading financial
services and consulting firms, and has
a proven track record of delivering
successful business outcomes through
data-driven insights and collaborative
stakeholder engagement. The candidate
has a Bachelor of Science in Business
Administration from University of
California, Berkeley, and holds
certifications in Six Sigma Green
Belt and Certified Business Analyst
(CBA). He possesses a range of skills
including business analysis, data
analysis, project management, process
improvement, data visualization,
communication, stakeholder engagement,
requirements gathering, and systems
analysis.

His statement reads as follows:

I am motivated by the challenge
of optimising network performance
and security, and I am committed
to staying aware with the latest
technologies to ensure the highest
level of service for the organisation.

The language model returns the following outputs:

{"score": 2}
While Mark Smith has some skills
related to networking, such as systems
analysis and communication, his
primary focus and experience are
in business analysis and project
management. Therefore, his relevance
to the position of network engineer
is moderate at best, scoring a 2 on a
scale of 0 to 4. While his motivation
and commitment to staying current
with the latest technologies are
commendable, it is still a significant
gap in his skillset that would require
significant training and development
to bridge. A more suitable candidate
for the network engineer position
would have a minimum of 5 years of
direct networking experience.

Even if the evaluation made by the system may remain
questionable, the explanation that is provided is reasonable
with the provided information. It is likely that Mark would
not be selected among the best candidates.

1) THREAT SCENARIO
The threat scenario consists in adversaries exploiting the
possibility to add text to fool the language model into
assessing incorrectly the relevance of an application. In this
context, this can potentially lead to impacts on the fairness
in the recruitment processes by favouring candidates without
the necessary qualifications.

Evasion attacks on language models involve manipulating
the text of the input data to force the model to make incorrect
predictions. The modifications may be not suspicious to
humans (e.g., swapping letters or words), or be addedwith the
reasonable assumption that no human is supervising inputs.
While the possibility to conduct such evasion attacks against
computer vision models is well understood and proven [91],
it has been less studied in the context of language models,
as the discrete nature of data makes it more challenging.

An example of an adversarial statement in the above
discussed application screening scenario obtained using [72]
is presented below:
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? Multi skills worthy !Req proved
answers ? cuatro ! Qualrif immediate
confirmMust

The output of the language model is as follows:

{"score": 4}
Explanation:
The candidate’s experience and
skills in business analysis, data
analysis, project management,
process improvement, and stakeholder
engagement make him a strong fit
for the role of a network engineer.
Although the job requirements
explicitly ask for a network engineer
with 5 years of experience, the
candidate’s multi-skilled background
and proven track record of delivering
successful business outcomes through
data-driven insights suggest that
he has the required knowledge and
expertise to adapt to the role.
Therefore, we give him a score of 4,
which reflects his high relevance to
the position.

The evaluation is very positive and the explanation relies on
provided information to justify the relevance of the candidate
to the position.

2) MITIGATION
Evasion attacks on language models can be mitigated through
various strategies, at different levels:

• at the model level: specific techniques can be imple-
mented, such as adversarial training consisting in
the incorporation of adversarial examples during the
training phase, or noise injection, to make the model less
sensitive to small perturbations or changes in the input
data;

• at the architecture level, ensemble models can be used to
rely on several outputs made by different models, with
the idea that fooling multiple models at the same time
is harder for the adversary. Input sanitisation layers can
also be implemented to detect abnormal and potentially
malicious inputs;

• at the system level: real-time monitoring of inputs can
be implemented, with a human oversight component to
address suspicious inputs. Making the infrastructure on
which the language model relies secure is also a way
to prevent theft of parameters that may facilitate the
development of evasion attacks.

Each of these strategies can be combined to provide
multiple layers of defence against evasion attacks. As dis-
cussed in [16], there is no one-size-fits-all solution, and the

choice of mitigation strategies will depend on the specific
model, the types of attacks it is vulnerable to, and the
context in which it is used. In particular, implementing
some of these techniques may hinder the performance of the
system and/or induce additional costs, without guarantees of
efficiency [124]. Regularly updating models and systems to
respond to new threats as they are discovered is also a crucial
part of maintaining robustness against evasion attacks.

3) DISCUSSION
Generally speaking, all machine learning systems, in particu-
lar those based on deep learning, are known to be susceptible
to adversarial attacks, and it is likely that adversarial inputs
can be transferred between different models [72]. However,
it is not simple to estimate the likelihood of this threat
scenario. The scenario assumes that the threat agent has a high
level of technical skills and access to computing resources.
Furthermore, it considers that the AI system is solely based
on a publicly available model, which does not always
happen in real context. As analysed in [76] for traffic sign
recognition systems, the technical feasibility of conducting
a physical evasion attack with acceptable resources is
unclear, even beyond the above questions of motivation.
It can be easily argued, with the low accuracy of evasion
attacks, that a similar or greater impact can be successfully
achieved with traditional means without conducting such an
elaborate adversarial attack [14]. However, with the increased
integration of language models in products and services, the
incentives will also grow. This, combined with the trend that
makes such systems more autonomous and more capable of
interacting with external services, increase the overall risks,
even if the likelihood of the success of an attack remains the
same. Other works beyond evasion attacks demonstrate that
other vulnerabilities can be exploited [125], [126], [127], and
that current alignment techniques may prove inefficient to
protect users [128].

VII. CONCLUSION
This paper has outlined the challenges and open questions
that arise in the process of establishing cybersecurity
practices and methodologies to comply with the requirement
of cybersecurity in future regulations on AI, such as the
upcoming EUAIAct. These challenges stem from the current
technological limitations and the evolving state of scientific
and technical knowledge. Regulating a rapidly evolving
technology such as AI requires scientific and technological
expertise, anticipation and foresight capacity, and special
consideration are needed in the definition of horizontal
rules that are as technology-agnostic and future-proof as
possible. These requirements can, in turn, be fulfilled with
the best available techniques and approaches at any given
time, in consideration of the risks and intended purpose
of specific AI systems. Some of the challenges described
in this paper may have an impact on how a cybersecurity
requirement — such as in the EU AI Act — will be
implemented, andwhere boundaries of the accepted scientific
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state-of-the-art are reached. In the same way, this discussion
could serve well as a source of information for future
development and evaluation of standards, or in post-market
evaluation of products. The more salient questions may also
help to identify needs for additional AI research funding in
the upcoming years.

Some of the technological limitations highlighted in this
article are connected to new computing and product lifecycle
paradigms, introduced by machine learning systems. This
is due to the fact that not only a growing number of
new AI-specific vulnerabilities are being identified, without
generally accepted and established practices to address
them [104], but also theoretical limits to the securing of
individual models exist. How to best integrate these new
challenges and technological limits in cybersecurity practice
can still be considered an open question in AI cybersecurity.
It is likely that general rules and practices are going to
be established with time, but, in accordance with a risk
based approach, the detailed integration of these challenges
may depend on individual AI systems and their context
of application. All these limitations induce a significant
shift from current practices. Not only is the presence of
vulnerabilities in an AI system not fully known because of
potentially unknown vulnerabilities, but also measuring and
guaranteeing security against known threat vectors cannot
at the moment be consistently overcome or quantified at
model level. For standardisation, it seems important to be
clear about the limits of technological feasibility. Horizontal
standards are not overly concerned with specific techniques
or metrics, but rather with setting requirements that result in
a proportionate and effective level of security, in accordance
with the risks of the system and the state of the art [34].

To conclude, even if cybersecurity may be seen as a
transversal field that touches upon a wide range of topics,
such as data governance, human oversight, or robustness,
the challenges linked to securing AI systems in a regulatory
context can and should be independently addressed, keeping
in mind the interdependencies between trustworthiness
requirements. The connection of current research efforts to
realistic cybersecurity threat models is of prime importance,
built on the accumulated academic and engineering knowl-
edge for daily cybersecurity practice [129]. To this date,
studying this more applied approach of modelling threats in
adversarial machine learning remains an underrepresented
field of study, especially for complex deep models and/or
in cyber-physical contexts. However, adversarial machine
learning, as a field of scientific research, cannot provide
all solutions needed to secure real machine learning-based
systems, but could become central to provide technical
controls for providers to achieve conformity. Adapting
management tools and approaches to AI in the rapidly
evolving landscape of emerging AI technologies is a complex
task that will require the collaboration of very different
groups and skill sets from private and public sector and
civil society. The implementation of security and safety
mechanisms appropriate to the risk depends on the specific

architecture and application context of an AI system. It will
depend on the capacity of stakeholders to continuously
address new technological features and related challenges
specific to the AI technology.
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