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ABSTRACT This paper presents a new aggregate power tracking control scheme for populations of
thermostatically controlled loads (TCLs). The control design is performed in the framework of partial
differential equations (PDEs) based on a late-lumping procedure without truncating the infinite-dimensional
model describing the dynamics of the TCL population. An input-output linearization control scheme, which
is independent of system parameters and uses only partial state measurement, is derived, and a sliding
mode-like control is applied to achieve finite-time input-to-state stability for tracking error dynamics. Such a
control strategy can ensure robust performance in the presence of modeling uncertainties, while considerably
reducing the communication burden in large-scale distributed systems similar to that considered in the
present work. A rigorous analysis of the closed-loop stability of the underlying PDE system was conducted,
which guarantees the validity of the developed control scheme. Simulation studies were performed while
considering two TCL populations with a significant difference in their size, and the results show that the
developed control scheme performs well in both cases, thereby confirming the effectiveness of the proposed
solution.

INDEX TERMS Aggregate power tracking control, finite-time input-to-state stability, input-output
linearization, partial differential equations, thermostatically controlled loads.

I. INTRODUCTION
In the context of today’s smart grids, it is widely recognized
that demand response (DR) programs have great potentials
in dealing with ongoing demands, while enhancing the
energy efficiency and resilience of the power grid [1], [2],
[3], [4]. As a promising demand-response enabled resource,
thermostatically controlled loads (TCLs), such as air
conditioners (ACs), space heating devices, refrigerators, and
water heaters, are attracting increasing attention. Although a
single TCL unit has very limited power regulation capability,
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ensembles of a large number of TCLs, when managed in
an orderly and controllable manner, can have a significant
impact on the entire power grid [5], [6], [7], [8]. It has
been shown that a large TCL population can be managed to
support demand response tasks, including peak load shaving
and load following [9], [10], [11], [12], and to provide
ancillary services, such as primary or secondary frequency
controls [13], [14], [15], [16].

The present work focuses on load tracking control,
which allows the aggregate power of a TCL population to
follow a desired consumption profile. The control design
is based on a model of the dynamics of the TCL
population described by partial differential equations (PDEs).
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Specifically, we consider a set of TCLs in which the
dynamics of every individual device are modeled by a
lumped stochastic hybrid system (SHS) operated through
thermostat-based deadband control. The aggregate dynamics
of such a TCL population can be modeled by two
coupled Fokker-Planck equations (see, e.g, [17], [18],
[19], [20]) describing the evolution of the probability
distribution of TCLs in the ON and OFF states over the
temperature. Note that the same form of PDE-based models
can also be derived by assuming that the dynamics of
individual TCLs are described by deterministic systems
while considering population heterogeneity [21], [22], [23].
Compared with finite-dimensional state-space models, such
as state-bins [24], [25], [26], [27], [28] or state queues [29],
[30], [31], the PDE paradigm provides a more generic
framework for modeling the aggregate dynamics of TCL
populations, which allows handling nonlinearity, time-
varying operational conditions, and parametric uncertainties
with often very simple control algorithms. However, the PDE
control system design procedure generally involves more
complex mathematical analysis and is more challenging.

It is known that the total power consumption of a TCL
population can be manipulated by changing the temperature
set-point, moving the deadband, or interfering with the
probability distributions of the TCLs via forced switches (see,
e.g., [13], [18], [21], [27], [32]). Because a TCL population
usually contains a large number of units that may spread over
a large geographical area, only decentralized or distributed
schemes are applicable. In fact, a remarkable amount of work
on the control of TCL populations has been reported in the
literature, and the majority of the proposed solutions are
based on lumped models by applying optimization theory
and optimal control techniques, in particular model predictive
control (see, e.g, [13], [15], [21], [24], [25], [26], [27], [28],
[29], [30], [32], [33], [34], [35]). It should be noted that,
owing the nature of the considered problem, control schemes
requiring the state measurement of the entire population in
real-time are practically infeasible (see, e.g., [36] and the
references therein). This problem can be addressed using state
observers [15], [37]. Nevertheless, it is still very challenging
to assess the performance of model-based state estimation
algorithms because it depends heavily on the accuracy of the
system parameters.

The load tracking control algorithm developed in the
present work is a decentralized scheme in which the
rates for set-point temperature adjustment generated by a
central unit are broadcast to the TCLs over the population.
Emphasis is placed on solving issues arising in practical
applications, particularly communication restrictions and
modeling uncertainties for large-scale TCL populations. The
control system design is carried out in the framework of
PDE-based modeling and control techniques. It should be
noted that the two basic paradigms in PDE control system
design and implementation, namely early-lumping and late-
lumping procedures, have all been applied to the control
of the coupled Fokker-Planck equations associated with

TCL populations. The early-lumping method discretizes
the underlying PDEs to obtain a lumped model, and then
applies the techniques for finite-dimensional control system
design [18], [21], [22], [23], [32]. In contrast, with the late-
lumping method, the controller is designed using the PDE
model and then discretized for implementation [35], [38].
A significant advantage of the late-lumping method is
that it can preserve the essential properties of the PDE
model and no approximation is required in the control
design.

In this paper, we developed a new control algorithm based
on the input-output linearization technique, which results
in a system composed of finite-dimensional input-output
dynamics and infinite-dimensional internal dynamics. The
control design amounts then to finding a robust closed-loop
control law that stabilizes the finite-dimensional input-
output dynamics while guaranteeing the stability of the
infinite-dimensional internal dynamics. Specifically:

• A new system output for power tracking control is
proposed, guaranteeing the controllability of the input-
output dynamics.

• An input-output linearization control law, which is
independent of system parameters, e.g., the diffusion
coefficient, while requiring only knowledge of the states
of TCLs near the deadband boundaries, is derived.

• To tackle modeling uncertainties while making the
control scheme computationally tractable, a sliding
mode-like tracking control scheme that can achieve
finite-time input-to-state stability (FTISS) [39], [40],
is designed.

• The non-negativeness of the solution to the Fokker-Planck
equations under the developed control law and other
properties required to ensure closed-loop stability are
rigorously validated.

The main contribution of the present work lies in the
simplicity, scalability, and applicability of the control strategy
developed under a generic framework. In addition, it is worth
noting that compared to the existing TCL control techniques,
the developed control algorithm requires only measuring
the state of the TCLs near the end-points of the deadband.
Because the cyclic rate of the TCLs is much slower than
the controller sampling rate, the communication burden can
be significantly reduced. Obviously, it is very difficult for
state feedback control schemes based on lumped aggregate
models to achieve such features, which is critical for practical
implementations.

The remainder of this paper is organized as follows.
Section II introduces the notations used in the study and
preliminaries on FTISS. Section III presents the first-order
equivalent thermal parameter (ETP) model for a single TCL
unit and the coupled Fokker-Planck model for the aggregate
dynamics of the TCL population. Section IV presents the
power tracking control design and closed-loop stability
analysis. The results of simulation study for validating
the developed control strategy are reported in Section V,

VOLUME 12, 2024 57675



Z. Zhang et al.: Power Tracking Control of Heterogeneous Populations of TCLs

followed by concluding remarks in Section VI. Finally, the
proof of one of the main theoretical results is presented in the
appendix.

II. NOTATIONS AND PRELIMINARIES
A. NOTATIONS
Let R := (−∞, +∞), R≥0 := [0, +∞), R>0 := (0, +∞),
and R≤0 := (−∞, 0]. Denote by ∂sf the derivative of the
function f w.r.t. argument s. Note that, for notation simplicity,
we may omit the arguments of functions if there is no
ambiguity.

By convention, we denote by | · | the module of a function.
For positive integersm, n and a given (open or closed) domain
� ⊂ Rn, let L∞(�; Rm) := {φ : � → Rm

| φ is
measurable in � and satisfies ess sups∈�|φ(s)| < +∞}. For
φ ∈ L∞(�; Rm), the norm of φ is defined by ∥φ∥L∞(�) :=

ess sups∈�|φ(s)|. Let L∞

loc(�; Rm) := {φ : � → Rm
| φ ∈

L∞(�′
; Rm) for any �′ ⫋ �}

For given (open or closed) domains �1, �2 ⊂ Rn and
�3 ⊂ R, let C (�1; �3) := C0 (�1; �3) := {φ : �1 →

�3| φ is continuous w.r.t. its all augments in�1}. For positive
integers i, j, let C i (�1; �3) := {φ : �1 → �3| φ has
continuous derivatives up to order i w.r.t. its all augments in
�1}, and C i,j (�1 × �2; �3) := {φ : �1 × �2 → �3| φ

has continuous derivatives up to order i w.r.t. its augments in
�1 and up to order j w.r.t. its augments in �2}. In particular,
if �3 = R, we denote C (�1) := C0 (�1; R) and C i (�1) :=

C i (�1; R) for i > 0.
As in [39] and [41], we define the following sets of

comparison functions. Let K := {ϑ : R≥0 → R≥0| ϑ(0) =

0, ϑ is continuous, strictly increasing}; L := {ϑ : R≥0 →

R≥0| ϑ is continuous, strictly decreasing, lims→+∞ ϑ(s) =

0}; KL := {β : R≥0 × R≥0 → R≥0| β(·, t) ∈ K, ∀t ∈ R≥0,
and β(s, ·) ∈ L, ∀s ∈ R>0}; K∞ := {ϑ : R≥0 → R≥0| ϑ ∈

K and lims→+∞ ϑ(s) = +∞}; GKL := {β : R≥0 × R≥0 →

R≥0| β(·, 0) ∈ K, and for each fixed s ∈ R>0 there exists
T̃ (s) ∈ R≥0 such that β(s, t) = 0 for all t ≥ T̃ (s)}.

B. FINITE-TIME INPUT-TO-STATE STABILITY OF FINITE
DIMENSIONAL SYSTEMS
Consider the following nonlinear system

ż(t) = f (z(t), d(t)), ∀t ∈ R≥0, (1a)

z(0) = z0, (1b)

where z := [z1, z2, . . . , zn]⊤ ∈ Rn is the state, z0 ∈ Rn

is the initial datum, d ∈ D := L∞

loc(R≥0; Rm) is the input
(disturbance) to the system, f : Rn

×Rm
→ Rn is a nonlinear

function that is continuous w.r.t. (z, d), ensures the forward
existence of the system solutions, at least locally, and satisfies
f (0, 0) = 0, and m ≥ 1 and n ≥ 1 are integers.
Definition 1: System (1) is said to be finite-time input-to-

state stable (FTISS) if there exist functions ϑ ∈ K and β ∈

GKL such that for any x0 ∈ Rn and d ∈ D its trajectory
satisfies

|z(t)| ≤ β(|z0|, t) + ϑ(∥d∥L∞(0,t)), ∀t ∈ R≥0. (2)

Remark 1: Note that FTISS is defined in a similar way
to the definition of input-to-state stability (ISS) in [41,
Chapter 4] via the norm of d over the interval (0, t) rather
than (0, +∞). Thus, the FTISS presented here is a refined
notion of the one introduced in [39] and [40], where the
second term in the right-hand side of (2) is under the form
ϑ(∥d∥L∞(0,+∞)), which describes the influence of the global
bounds of d instead of the bounds of d over the finite time
interval (0, t).
Definition 2: A continuously differentiable function V :

Rn
→ R≥0 is said to be an FTISS Lyapunov function for

system (1) if there exist functions µ1, µ2 ∈ K∞, χ ∈ K and
constants c > 0 and θ ∈ (0, 1) such that for all x ∈ Rn and
all d ∈ D it holds that

µ1(|x|) ≤ V (x) ≤ µ2(|x|),

|z| ≥ χ (|d |) ⇒ DV (z) · f (z, d) ≤ −cV θ (z),

where DV (z) :=

[
∂V
∂z1

, . . . , ∂V
∂zn

]
.

The following Lyapunov-like lemma gives a sufficient
condition for the FTISS.
Lemma 1: System (1) is FTISS if it admits a finite-time ISS

Lyapunov function.
Proof: Setting V := {z|V (z) ≤ µ2(χ (|d |))} in the

proof of [40, Theorem 1(a)], the lemma statement follows
immediately.

III. MATHEMATICAL MODEL AND PROBLEM
SPECIFICATION
A. DYNAMICS OF INDIVIDUAL TCLS
In the present work, we focus on modeling the population
of residential air conditioners (ACs). While, its extension
to other cooling and heating devices is straightforward.
We consider the case where all ACs are operated by
thermostats and hence, every AC switches between the ON
and OFF states whenever it reaches the prescribed lower
or upper temperature bounds. For simplicity, we ignore the
solar irradiation and internal heat gains and assume that the
ACs operate at a fixed frequency. Then, the dynamics of the
indoor temperature, denoted by x(t), can be expressed by the
following SHS (see, e.g., [17], [18], [32]):

dx(t) =
1
CR

(xa(t) − x(t) − s(t)RP)dt + σdw(t), (3)

where xa(t) is the ambient temperature, R, C , and P are the
thermal resistance, capacitance, and power, respectively, and
s(t) is the switching signal. In (3), w(t) is a standard Wiener
process, which, along with the parameter σ , represents
modeling uncertainties, such as unaccounted heat loss or heat
gain, parameter variations, and disturbances.

For a thermostat-controlled AC, the switching signal s(t)
takes a binary value from {0, 1}, representing theOFF andON
states respectively. Fig. 1 illustrates one possible trajectory
of an AC described by (3), where the temperature moves
back-and-forth in a fixed-width region. Meanwhile, forced
switches, denoted by r(t), may also occur in the process.
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FIGURE 1. Hybrid thermostat-based deadband control scheme.

Let r(t) = 1 represent the occurrence of switching and
0 otherwise and suppose that x and x are the lower and upper
temperature bounds, respectively. Then, the switching signal
s(t) for an AC can be expressed as

s(t) =


1, if x ≥ x;
0, if x ≤ x;
(s(t−) ∧ r(t)) + (s(t−) ∨ r(t)), otherwise;

where ‘‘+’’ is the one-bit binary addition with overflow.
In addition, the notations (·)− and (·)+ denote the left and
right limits of the scalar variable, respectively. Note that
different actions, such as random switches to avoid power
demand oscillations due to synchronization within a TCL
population, mechanisms for blocking the switches to protect
the ACs, etc., can be integrated in the design of forced
switching schemes.

B. DYNAMICS OF AGGREGATE TCL POPULATION
As mentioned previously, the dynamics of an aggregate
TCL population can be characterized by the evolution
of the distributions of the TCLs over temperature. When
the number of TCLs in the population tends to be
infinite, this population can be modeled as a continuum
whose temperature distribution is governed by the coupled
Fokker-Planck equations [17], [18], [22], [23]. Specifically,
we denote by f1(x, t) and f0(x, t) the probability density
functions (PDFs) of the TCLs in the ON and OFF states
at temperature x and time t , respectively. As illustrated in
Fig. 2, we assume that all the loads are confined in a fixed
temperature range (xL , xH ) along all possible operations,
where xL and xH are constants, which is a reasonable
assumption for practical application. Moreover, owing to
the nature of thermostat-based control, there must be that
f1(x, t) = 0 for all x ≤ x and t ∈ R>0, and that

FIGURE 2. Illustration of probability density functions of a TCL population
at a given time.

f0(x, t) = 0 for all x ≥ x and t ∈ R>0. Therefore, we can
divide the range (xL , xH ) into three segments:

Ia := (xL , x), Ib := (x, x), Ic := (x, xH ),

which will be used in the upcoming study.
Suppose that the dynamics of each load in the TCL

population are described by (3). Let further

α0(x, t) :=
1
CR

(xa(t)−x) ,

α1(x, t) :=
1
CR

(xa(t)−x − RP) .

The evolutions of f0(x, t) and f1(x, t) are governed by the
following coupled Fokker-Planck equations [17], [18], [32]:

∂t f0 = ∂x

(
σ 2

2
∂x f0 − (α0 − u)f0

)
in Ia × R>0, (4a)

∂t f0 = ∂x

(
σ 2

2
∂x f0 − (α0 − u)f0

)
− g(f0, f1) in Ib × R>0,

(4b)

∂t f1 = ∂x

(
σ 2

2
∂x f1 − (α1 − u)f1

)
+ g(f0, f1) in Ib × R>0,

(4c)

∂t f1 = ∂x

(
σ 2

2
∂x f1 − (α1 − u)f1

)
in Ic × R>0, (4d)

where g(f0, f1) represents the net probability flux due to the
switches which only occur over the segment Ib, that is, the
so-called forced switches. Hence, the signs of g(f0, f1) in (4b)
and (4c) should be opposite to each other, which implies
a mass conservation property as claimed in Theorem 4 in
Section IV-C. Note that (4b) and (4c) have a general form
compared to that given in [32] (see (19a) and (19b) of that
paper), where an explicitly linear function g(f0, f1) was used
to model a switching rate control scheme.

Following [32], we introduce the notation of probability
flows Fi. When there is no additional flux from the forced
switches, i.e., g = 0,Fi is the integral of the probability fluxes
∂t fi over the temperature (x-) coordinate:

Fi(x, t) :=
σ 2

2
∂x fi(x, t) − (αi(x, t) − u(t))fi(x, t), i = 0, 1.

The boundary conditions can then be written as

F0(x
+

L , t) = 0, ∀t ∈ R>0, (5a)

F0(x−, t) = F0(x+, t) + F1(x+, t), ∀t ∈ R>0, (5b)

f0(x−, t) = f0(x+, t), ∀t ∈ R>0, (5c)

f0(x−, t) = 0, ∀t ∈ R>0, (5d)

f1(x+, t) = 0, ∀t ∈ R>0, (5e)

f1(x−, t) = f1(x+, t), ∀t ∈ R>0, (5f)

F1(x+, t) = F0(x−, t) + F1(x−, t), ∀t ∈ R>0, (5g)

F1(x
−

H , t) = 0, ∀t ∈ R>0, (5h)

F0(x−, t) > F0(x+, t), ∀t ∈ R>0, (5i)

F1(x+, t) < F1(x−, t), ∀t ∈ R>0. (5j)
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The initial data of f0 and f1 defined over Ia0 :=

[xL , x(0)], Ib0 := [x(0), x(0)], and I c0 := [x(0), xH ] are
given by

f0(0, x) = f a00 (x), ∀x ∈ Ia0, (6a)

f0(0, x) = f b00 (x), ∀x ∈ Ib0, (6b)

f1(0, x) = f b01 (x), ∀x ∈ Ib0, (6c)

f1(0, x) = f c01 (x), ∀x ∈ I c0. (6d)

Note that the integration of f1(x, t) with respect to x is the
proportion of the ACs in ON state in the population. Thus, the
total power demand of the TCL population at time t ∈ R≥0
is given by

ytotal(t) :=
P
η

∫ xH

x(t)
f1(x, t)dx, (7)

where η is the load efficiency coefficient, which indicates
the effectiveness of a device at transferring heat versus the
amount of electrical power it consumes.
Remark 2: We provide remarks on the boundary conditions

presented in (5).
(i) For continuous functions α0, α1, and u, the boundary

conditions in (5) are equivalent to:

σ 2

2
∂x f0(x

+

L , t) = (α0(x
+

L , t) − u(t))f0(x
+

L , t), (8a)

∂x f0(x−, t) = ∂x f0(x+, t) + ∂x f1(x+, t), (8b)

f0(x−, t) = f0(x+, t), (8c)

f0(x, t) = 0, (8d)

f1(x, t) = 0, (8e)

f1(x−, t) = f1(x+, t), (8f)

∂x f1(x+, t) = ∂x f0(x−, t) + ∂x f1(x−, t), (8g)

σ 2

2
∂x f1(x

−

H , t) = (α1(x
−

H , t) − u(t))f1(x
−

H , t), (8h)

∂x f1(x+, t) > 0, (8i)

∂x f0(x−, t) < 0. (8j)

(ii) It is worth noting that this set of boundary conditions
((5) or (8)), with possible variations, is commonly used
in the literature [17], [18], and [32], which captures
the basic properties of the considered problem, for
example, impenetrable wall reflections ((8a) and (8h)),
absorbing actions due to thermostat switching ((8d))
and (8e)), and probability conservation at the
boundaries of the deadband ((8b) and (8g)). Note that
because of the absorbing property and the continuity
of the PDFs on the boundaries of the deadband, the
conditions (8b) and (8g) remain the same as those
originally derived in [17], even though the considered
problem in the present work contains control actions.

C. PROBLEM STATEMENT AND BASIC ASSUMPTIONS
In this work, we study the dynamics described by the PDE
model (4) under the boundary and initial conditions (5)
and (6). Based on (7), a new output function will be

defined and specified in Section IV. With these dynamics,
a continuous time controller that considers the convergence
time and robustness is designed to stabilize the tracking
process.

In the sequel, we assume that xa ∈ C(R≥0) x, x ∈

C1(R≥0; R>0), and denote

Sab :=

(
C2,1(Ia × R>0) ∩ C(Ia × R≥0)

)
∪

(
C2,1(Ib × R>0) ∩ C(Ib × R≥0)

)
,

Sbc :=

(
C2,1(Ib × R>0) ∩ C(Ib × R≥0)

)
∪

(
C2,1(Ic × R>0) ∩ C(I c × R≥0)

)
.

Based on the physical properties of the problem,we impose
the following structural conditions and basic assumptions on
the solution and control for the system:

• The function of net probability flux g belongs to
C1(R2

; R) and satisfies

(G1) g(0, τ ) ≤ 0 for all τ ∈ R;
(G2) g(s, 0) ≥ 0 for all s ∈ R;
(G3) |gs(s, τ )| + |gτ (s, τ )| ≤ 1 for all (s, τ ) ∈ R2.

• The pair of solution (f0, f1) and the control u satisfy

(U) u ∈ C(R≥0; R) such that ẋ = ẋ = u in R≥0;
(F1) f a00 ∈ C(Ia0; R≥0), f b00 ∈ C(Ib0; R≥0), f b01 ∈

C(Ib0; R≥0), f c01 ∈ C(I c0; R≥0);
(F2) f0 ∈ Sab and has derivatives ∂x f0(x

+

L , t), ∂x f0(x±, t), and
∂x f0(x−, t) for any fixed t ∈ R>0;

(F3) f1 ∈ Sbc and has derivatives ∂x f1(x
−

H , t), ∂x f1(x±, t), and
∂x f1(x+, t) for any fixed t ∈ R>0.

Remark 3: It should be mentioned that for f0 = 0 (or
f1 = 0), condition (G1) (or (G2)) guarantees −g(f0, f1) ≥ 0
(or g(f0, f1) ≥ 0) in (4b) (or (4c)). This indicates that
forced switching, which generates additional fluxes, is only
possible from the f1 system into the f0 system when f0 is
zero.
Condition (G3) indicates that the change in the probability

density of the additional flux cannot be too fast for practical
applications. This is in accordance with the suggestion
provided in [32].
Condition (F1) indicates that the initial data are assumed

to be nonnegative and continuous over the given domains.
Conditions (F2) and (F3) describe the regularity of the
solutions at the endpoints of the given domains at any
time t.

IV. CONTROL DESIGN AND STABILITY ANALYSIS
In this section, we design a feedback control law to ensure
that the output of the system (4)-(6) tracks a reference
power curve, and assess the stability of the error dynamics
in the framework of FTISS theory. Moreover, we study the
mass conservation and non-negativeness properties of the
solutions to the considered system, which allows further
clarification of the physical meanings of the mathematical
model.
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A. CONTROL DESIGN
The control objective is to drive the power consumption of the
population to track the desired regulation signal. To this end,
we choose an output of the power tracking control scheme as

y(t) := ytotal(t) +
P
η

∫ xH

x(t)
f1(x, t)dx

−
P
η

∫ x(t)

xL
f0(x, t)dx, t ∈ R≥0. (9)

It is worth noting that, as the probability flows of f0 and
f1 always move towards the deadband, y(t) defined in (9)
converges to the aggregated power demand ytotal(t) in the
steady state. The motivation to add two extra terms to
ytotal(t) is to ensure the controllability of the input-output
dynamics.

The regulation of power consumption of the TCL
population is achieved bymoving the mass of the temperature
distribution, and the control signal is chosen to be the
set-point temperature variation rate ẋsp, which may induce a
change in the probability flux [18], [19]. As we consider a
control scheme with a fixed deadband width, denoted by δ0,
we have x = xsp −

δ0
2 , x = xsp +

δ0
2 . Thus, the actual control

signal is given by u(t) := ẋsp = ẋ = ẋ.
Let yd : R≥0 → R be the desired power profile, which

is sufficiently smooth, and define the power tracking error
as

e(t) := y(t) − yd (t).

In what follows, we introduce a nonlinear control law and
derive the corresponding tracking error dynamics.
Theorem 2: Consider the system given in (4) and (9) under

the boundary conditions in (5) (or equivalently (8)). Let the
control input be defined as

u(t) :=
k|e(t)|γ sgn(e(t)) + 8(t)

2
(
f1(x, t) + f0(x, t)

) , (10)

where k ∈ R>0 and γ ∈ (0, 1) are constants, sgn(e) is the
sign function defined by

sgn(e) :=


−1, e < 0,
0, e = 0,
1, e > 0,

and

8(t) := −
η

P
ẏd (t). (11)

Then, the power tracking error dynamics are given by

ė(t) = −
P
η
k|e(t)|γ sgn(e(t)) + 0(t), (12)

where

0(t) :=
P
η

(
α1(x, t)f1(x, t) + α0(x, t)f0(x, t)

)
−

σ 2P
2η

(
∂x f1(x+, t) + ∂x f1(x+, t)

)

−
σ 2P
2η

(
∂x f0(x−, t) + ∂x f0(x−, t)

)
+
P
η

∫ x(t)

x(t)
g(f0, f1)dx. (13)

Remark 4: 0(t) defined in (13) captures the terms
depending on the diffusion coefficient or requiring
instantaneous state measurements and will be treated
as a disturbance thereafter. Moreover, the control law
given in (10) involves only the measurement of the states
(probability distributions f0 and f1) on the end-points of the
deadband (x and x), which results in a control scheme with
significantly reduced communication burden compared to
control schemes that require full-state measurements.

Proof of Theorem 2: Note that

ė(t) = ẏ(t) − ẏd (t)

=
d
dt

(
P
η

∫ xH

x(t)
f1(x, t)dx +

P
η

∫ xH

x(t)
f1(x, t)dx

−
P
η

∫ x(t)

xL
f0(x, t)dx

)
− ẏd (t)

=
P
η

d
dt

∫ xH

x(t)
f1(x, t)dx +

P
η

d
dt

∫ xH

x(t)
f1(x, t)dx

−
P
η

d
dt

∫ x(t)

xL
f0(x, t)dx − ẏd (t).

Hence, we decompose the whole computation process into
three steps.
Step 1: Compute d

dt

∫ xH
x(t) f1(x, t)dx. It follows immediately

from Leibniz’s integral rule and (4d) that

d
dt

∫ xH

x(t)
f1(x, t)dx

= 0 − ẋ(t)f1(x, t) +

∫ xH

x(t)
∂t f1(x, t)dx

= −u(t)f1(x, t)

+

∫ xH

x(t)
∂x

(
σ 2

2
∂x f1(x, t) − (α1(x, t) − u(t))f1(x, t)

)
dx

= −u(t)f1(x, t)

+

(
σ 2

2
∂x f1(x

−

H , t) − (α1(x
−

H , t) − u(t))f1(x
−

H , t)
)

−

(
σ 2

2
∂x f1(x+, t) − (α1(x, t) − u(t))f1(x, t)

)
.

Using boundary condition (8h), it follows that

d
dt

∫ xH

x(t)
f1(x, t)dx

= −2u(t)f1(x, t) −
σ 2

2
∂x f1(x+, t) + α1(x, t)f1(x, t). (14)

Step 2: Compute d
dt

∫ xH
x(t) f1(x, t)dx. Since

d
dt

∫ xH

x(t)
f1(x, t)dx

=
d
dt

∫ x(t)

x(t)
f1(x, t)dx +

d
dt

∫ xH

x(t)
f1(x, t)dx,
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and d
dt

∫ xH
x f1(x, t)dx is given by (14), we only need to

compute d
dt

∫ x(t)
x(t) f1(x, t)dx. It follows from (4c) and (8e) that

d
dt

∫ x(t)

x(t)
f1(x, t)dx

= u(t)f1(x, t) +

∫ x(t)

x(t)
g(f0, f1)dx

+

∫ x(t)

x(t)
∂x

(
σ 2

2
∂x f1(x, t) − (α1(x, t) − u(t))f1(x, t)

)
dx

= u(t)f1(x, t) +

∫ x(t)

x(t)
g(f0, f1)dx

+

(
σ 2

2
∂x f1(x−, t) − (α1(x−, t) − u(t))f1(x−, t)

)
−

(
σ 2

2
∂x f1(x+, t) − (α1(x+, t) − u(t))f1(x+, t)

)
= u(t)f1(x, t) +

σ 2

2
∂x f1(x−, t) − (α1(x, t) − u(t))f1(x, t)

−
σ 2

2
∂x f1(x+, t) +

∫ x(t)

x(t)
g(f0, f1)dx

= 2u(t)f1(x, t) +
σ 2

2
∂x f1(x−, t) − α1(x, t)f1(x, t)

−
σ 2

2
∂x f1(x+, t) +

∫ x(t)

x(t)
g(f0, f1)dx. (15)

Combining (14) and (15) we obtain by (8h)

d
dt

∫ xH

x(t)
f1(x, t)dx

= −
σ 2

2
∂x f1(x+, t) −

σ 2

2
∂x f0(x−, t) +

∫ x(t)

x(t)
g(f0, f1)dx.

(16)

Step 3: Compute d
dt

∫ x(t)
xL

f0(x, t)dx. According to (4a)
and (8a), we have

d
dt

∫ x(t)

xL
f0(x, t)dx

= u(t)f0(x, t) +

∫ x(t)

xL
∂t f0(x, t)dx

= u(t)f0(x, t) +

∫ x(t)

xL
∂x

(
σ 2

2
∂x f0 − (α0 − u)f0

)
dx

= u(t)f0(x, t) +

(
σ 2

2
∂x f0(x−, t) − (α0(x, t) − u(t))f0(x, t)

)
−

(
σ 2

2
∂x f0(x

+

L , t) − (α0(x
+

L , t) − u(t))f0(x
+

L , t)
)

= 2u(t)f0(x, t) +
σ 2

2
∂x f0(x−, t) − α0(x, t)f0(x, t). (17)

Finally, by combining (14), (16), and (17), we obtain:

ė(t)

=
P
η

(
−

σ 2

2
∂x f1(x+, t) −

σ 2

2
∂x f0(x−, t)

)

+
P
η

(
−2u(t)f1(x, t) −

σ 2

2
∂x f1(x+, t) + α1(x, t)f1(x, t)

)
−
P
η

(
2u(t)f0(x, t) +

σ 2

2
∂x f0(x−, t) − α0(x, t)f0(x, t)

)
− ẏd (t) +

P
η

∫ x(t)

x(t)
g(f0, f1)dx

= −
2P
η
u(t)

(
f1(x, t) + f0(x, t)

)
−

σ 2P
2η

∂x f1(x+, t)

−
σ 2P
2η

∂x f1(x+, t) −
σ 2P
2η

∂x f0(x−, t)

−
σ 2P
2η

∂x f0(x−, t) +
P
η

∫ x(t)

x(t)
g(f0, f1)dx

+
P
η

α1(x, t)f1(x, t) +
P
η

α0(x, t)f0(x, t) − ẏd (t).

The error dynamics can then be expressed as

ė(t) = −
2P
η
u(t)

(
f1(x, t) + f0(x, t)

)
+
P
η

8(t) + 0(t).

Let

u(t) :=
v(t) + 8(t)

2
(
f1(x, t) + f0(x, t)

) ,
where v(t) is an auxiliary control input, then

ė(t) = −
P
η
v(t) + 0(t). (18)

Considering an auxiliary control of the form:

v(t) := k|e(t)|γ sgn(e(t)), (19)

the tracking error dynamics in the closed loop are then given
by (12).
Remark 5: Note that for the given initial data (see (F1)),

it can be shown that the term f1(x, t) + f0(x, t) is strictly
positive (see Theorem 5 (iii) in Section IV-B). Therefore, the
control signal u, given in (10) is well-defined. In addition,
u is continuous due to the fact that γ ∈ (0, 1) and the
assumptions on the continuity of ẏd (t) and f1(x, t) + f0(x, t)
(see (F2) and (F3)). It is also worth noting that, as f1(x, t) and
f0(x, t) describe the probability density of TCLs in the ON and
OFF states at the prescribed upper and lower temperature
boundaries x and x, respectively, it is impossible in practice
that f1(x, t) + f0(x, t) → 0 as t → +∞.
Fig. 3 shows the schematic diagram of an implementation

of the proposed power tracking control for a TCL population
on a digital platform. Note that each TCL is configured with
a zero-order-hold (ZOH), which allows keeping the control
signal to be a constant in every controller execution period.
Furthermore, a numerical approximation method, which uses
only partially observed states, is used to compute the values
of f1(x(tk ), tk ) and f0(x(tk ), tk ) in u(tk ) at the control center.
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FIGURE 3. Schematics diagram of power tracking control of a TCL
population.

B. FINITE-TIME INPUT-TO-STATE STABILITY OF THE
TRACKING ERROR DYNAMICS
In this section, we assess the robust stability of the tracking
error dynamics in the sense of FTISS, with 0 as the input
(disturbance). One of the main properties of the closed-loop
system is stated below.
Theorem 3: The power tracking error dynamics (12)

under the control law given in (10) are FTISS w.r.t. 0(t) for
any γ ∈ (0, 1).

Proof: Consider a Lyapunov candidate of the form
V (e) =

1
2e

2. The time derivative of V along the trajectory
of the tracking error dynamics (12) is given by:

V̇ = eė

= e
(

−
P
η
k|e|γ sgn(e) + 0

)
= −

P
η
k|e|1+γ

+ e0

= −
P
η
k
(√

2V
)1+γ

+ e0

= −
P
η
k (2V )

1+γ
2 + e0,

which implies that

DV (e) · f (e, 0) ≤ −
P
η
k(2V )

1+γ
2 + |e||0| (20)

with f (e, 0) := −
P
η
k|e(t)|γ sgn(e(t)) + 0(t).

Let C0 ∈ (0, k) be a constant. Then, for any |e| ≥(
η
PC0

|0|

) 1
γ
, i.e., |0| ≤

P
η
C0|e|γ , we deduce by (20) that

DV (e) · f (e, 0) ≤ −
P
η
k(2V )

1+γ
2 +

P
η
C0|e|1+γ

= −
P
η
k(2V )

1+γ
2 +

P
η
C0(2V )

1+γ
2

= −
P
η
(k − C0)2

1+γ
2 V

1+γ
2 .

Note that P
η
(k − C0)2

1+γ
2 > 0, 1+γ

2 ∈ ( 12 , 1), and that

χ (s) := ( η
PC0

s)
1
γ is a K-function w.r.t. s ∈ R≥0. The FTISS

of system (12) is then guaranteed by Lemma 1.

C. PROPERTIES OF THE GOVERNING PDES
In practice, we can assume that the number of TCLs in a
population remains unchanged within a specific DR control
period. Therefore, the mass conservation property of the
solutions to the system (4)-(6) should be verified under
the imposed boundary conditions, thereby conforming the
compliance of the mathematical model with the imposed
condition.Moreover, non-negativeness of the solutions is also
required.
Theorem 4 Mass conservation property: The solution to

the initial-boundary value problem (IBVP) (4)-(6) is
conservative in the sense that∫ x(t)

xL
f0(x, t)dx +

∫ xH

x(t)
f1(x, t)dx = 1 ∀t ∈ R≥0, (21)

provided that∫ x(0)

xL
f a00 (x)dx +

∫ x(0)

x(0)
f b00 (x)dx

+

∫ x(0)

x(0)
f b01 (x)dx +

∫ xH

x(0)
f c01 (x)dx = 1. (22)

Proof: Using (4a), (4b), (8a), (8b), and (8d), and noting
(U) and (F2), we have

d
dt

(∫ x(t)

xL
f0(x, t)dx

)
=

d
dt

(∫ x(t)

xL
f0(x, t)dx +

∫ x(t)

x(t)
f0(x, t)dx

)

=

∫ x(t)

xL
∂t f0(x, t)dx + f0(x(t), t)ẋ(t) +

∫ x(t)

x(t)
∂t f0(x, t)dx

+ f0(x(t), t)ẋ(t) − f0(x(t), t)ẋ(t)

=

∫ x(t)

xL
∂x

(
σ 2

2
∂x f0(x, t) − (α0(x, t) − u(t))f0(x, t)

)
dx

+

∫ x(t)

x(t)
∂x

(
σ 2

2
∂x f0(x, t) − (α0(x, t) − u(t))f0(x, t)

)
dx

−

∫ x(t)

x(t)
g(f0, f1)dx

=

(
σ 2

2
∂x f0(x, t) − (α0(x, t) − u(t))f0(x, t)

) ∣∣∣∣x−(t)

x+

L

+

(
σ 2

2
∂x f0(x, t) − (α0(x, t) − u(t))f0(x, t)

) ∣∣∣∣x−(t)

x+(t)

−

∫ x(t)

x(t)
g(f0, f1)dx

=
σ 2

2
∂x f0(x−(t), t) − (α0(x(t)) − u(t))f0(x(t), t) − 0

+
σ 2

2
∂x f0(x−(t), t) − (α0(x(t)) − u(t))f0(x(t), t)

−

(
σ 2

2
∂x f0(x+(t), t) − (α0(x(t)) − u(t))f0(x(t), t)

)
−

∫ x(t)

x(t)
g(f0, f1)dx
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=
σ 2

2
(∂x f0(x−(t), t) − ∂x f0(x+(t), t))

+
σ 2

2
∂x f0(x−(t), t) −

∫ x(t)

x(t)
g(f0, f1)dx

=
σ 2

2
∂x f1(x+, t) +

σ 2

2
∂x f0(x−(t), t) −

∫ x(t)

x(t)
g(f0, f1)dx.

(23)

Similarly, we infer from (4c), (4d), (8e), (8g), (8h), (U), and
(F3) that

d
dt

(∫ xH

x(t)
f1(x, t)dx

)

=
d
dt

(∫ x(t)

x(t)
f1(x, t)dx +

∫ xH

x(t)
f1(x, t)dx

)

= −
σ 2

2
∂x f1(x+, t) −

σ 2

2
∂x f0(x−(t), t) +

∫ x(t)

x(t)
g(f0, f1)dx.

(24)

By (23) and (24), we obtain

d
dt

(∫ x(t)

xL
f0(x, t)dx +

∫ xH

x(t)
f1(x, t)dx

)
= 0 ∀t ∈ R≥0,

which along with (22) implies (21).
Theorem 5 Non-negativeness: The following statements

hold true for the solution to IBVP (4)-(6):
(i) f0(x, t) ≥ 0 for all x ∈ [xL , x(t)] and all t ∈ R≥0;
(ii) f1(x, t) ≥ 0 for all x ∈ [x(t), xH ] and all t ∈ R≥0;
(iii) f0(x(t), t) + f1(x(t), t) > 0 for all t ∈ R>0.
The proof of this theorem is provided in Appendix.

V. SIMULATION STUDY
In this section, we present the results obtained in simulation
study to demonstrate the effectiveness of the proposed control
scheme. Note that the control law given in (10) is derived
from the coupled Fokker-Planck equations, which assume
a population of an infinite number of TCLs. Therefore, the
larger the population size, the more accurate the PDE model.
Consequently, a better performance can be expected for
populations with larger numbers. To illustrate this property,
we consider in the simulation two heterogeneous populations,
with 1,000 and 100,000 TCLs respectively. To quantitatively
evaluate the control performance, root-mean-square error
(RMSE) is used to measure the average tracking errors.

A. SIMULATION SETUP
A numerical simulation is conducted to validate the proposed
control scheme and evaluate its performance. Table 1 lists
the physical parameters of the AC units utilized in the
simulation, which are the same as those in [18]. The thermal
capacitances of the TCLs in the population follow the
log-normal distribution with a mean value of 10 kWh/◦C and
a standard deviation of 2 kWh/◦C. The thermal resistances of
the TCLs also follow the log-normal distribution with a mean

value of 2 ◦C/kW and a standard deviation of 0.4 ◦C/kW.
This results in a heterogeneity described by σ in the Fokker-
Planck equations (4) [18], [42]. Nevertheless, as mentioned
in Remark 4, the implementation of the proposed robust
control scheme is independent of the value of σ . In our
experiment, the initial temperatures of the AC units are
uniformly distributed around the initial set-point x0sp = 20◦C
over the deadband, and initially 40% of the AC units are set
randomly in the ON-state. This setting causes the population
to begin running from an almost steady state.

TABLE 1. Simulation parameter.

The disturbances brought into the system come mainly
from the following three sources. First, all AC units operate
under the same varying outside temperature, as depicted in
Fig. 4, which rises from 30◦C at 11:30 to 23◦C at 12:30
and then drops back from 14:30 to 15:30. Second, a forced
random switch mechanism is added to desynchronize AC
operations. The number of forced interrupts per hour can be
adjusted through the hyper-parameter pf . Moreover, a safe
border distance of 5% of the deadband width is incorporated
to prevent forced switches from happening when an AC
is around x(t) and in ‘‘ON’’ state or around x(t) and in
‘‘OFF’’ state. Finally, because frequent switching leads to
reduced energy efficiency and more rapid compressor wear
out, a lockout time, tlock, is included for eachAC. Thus, anAC
unit remains inactive to the control signals when it is locked.

FIGURE 4. Ambient temperature.

The reference power is a predefined curve, as shown in
Fig. 5, which is chosen arbitrarily. From 10:30 to 11:30, the
normalized desired power is maintained constant at 0.4. From
11:30 to 12:00, the reference power drops to 0.2 and keeps
constant for the following two and a half hours. From 14:30,
the desired power rises to 0.5 in 30 minutes and remains
constant until 16:30. During the rising and dropping phases,
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FIGURE 5. Desired power profile.

the desired power is specified by a smooth polynomial with
the endpoint constraints given below:

yd (t) =
(
yd (tf ) − yd (ti)

)
τ 5(t)

4∑
l=0

alτ l(t), t ∈ [ti, tf ], (25)

ẏd (ti) = ẏd (tf ) = ÿd (ti) = ÿd (ti) =
...
yd (ti) =

...
yd (tf ) = 0,

(26)

where ti and tf are, respectively, the starting and ending times,
and τ (t) := (t − ti)/(tf − ti). By a direct computation, the
coefficients can be determined as follows:

a0 = 126, a1 = 420, a2 = 540, a3 = 315, and a4 = 70.

In the simulation, the control signal is updated every
30 seconds (tci in Table 1). The control signal that every
AC receives is the set-point variation rate. To compute the
denominator of the controller given in (10), a mid-point
rectangular method with a temperature bin width δx is used
to estimate f1(x(tk ), tk ) and f0(x(tk ), tk ). The percentage of
ACs falling in the rectangular region is used as f1(x(tk ), tk )×
δx or f0(x(tk ), tk ) × δx . In general, δx should not be too
large because the underlying system has complex nonlinear
dynamics. On the other hand, considering the limited number
of ACs involved in the simulation, the bin width δx should
not be too small, which may introduce larger biases. In our
implementation, histogram bin widths of 0.008◦C, 0.004◦C,
and 0.002◦C are used, which are reasonable and provide
reliable estimations of f1(x(tk ), tk ) and f0(x(tk ), tk ). Note that
the mid-point rule only requires partially observed states of
the population distributions, which is a great relief of the
communication burden.

B. NUMERICAL RESULTS AND ANALYSIS
First, we present the test results for the population with
1,000 TCLs. The control cycle lasts for 6 hours, from 10:30
to 16:30. The test is performed continuously for 10 episodes,
and the tracking performance is measured by the RMSE,
as reported in Table 2. In the test, the controller parameters
in (10) are set to be k = 8 and γ = 0.5, respectively. The final
result shows that the mean RMSE for this setting is 0.896%,
and the standard deviation (STD) of the RMSEs is 0.040%.

Fig. 6 shows a sample of the control results corresponding
to the episode with an RMSE of 0.948%. It can be seen from
Fig. 6a that the proposed control strategy is effective. The

TABLE 2. Tracking performance of 10 episodes for the population with
1,000 TCLs.

FIGURE 6. Control performance for a population of 1,000 TCLs:
(a) tracking performance; (b) temperature trajectories of 10 ACs;
(c) set-point variation rate.

temperature evolution of 10 randomly selected ACs in the
population is presented in Fig. 6b. It can be observed that
all of them, unless forced switches occur, operate smoothly
inside the deadband between the turning-on and turning-off
points. Fig. 6c shows the control signal generated during this
episode. During the first 30 minutes (from 10:00 to 10:30),
the controller is inactive, and the system operates in an open-
loop mode. The control loop is closed at 10:30. It can be
observed that the amplitude of the control signal may vary
importantly in transient state or when the reference power
raises or drops rapidly.

When the number of ACs increases, the model of the
coupled Fokker-Planck equations becomes more accurate.
To evaluate the effectiveness of the proposed control strategy,
tracking control performance is examined for a population of
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TABLE 3. Tracking performance of 10 episodes for the population with
100,000 TCLs.

FIGURE 7. Control performance for a population of 100,000 TCLs:
(a) tracking performance; (b) temperature trajectories of 10 ACs;
(c) set-point variation rate.

100,000 ACs. The RMSE values for 10 continuous tests are
shown in Table 3, which gives a mean RMSE of 0.497% and
an STD of 0.004%. In this test, k = 15 and γ = 0.5 are used.
Fig. 7 illustrates one of the control samples corresponding
to the episode with an RMSE of 0.505%. The normalized
power consumption is shown in Fig. 7a, and the temperature
evolutions of 10 ACs are shown in Fig. 7b. The control signal
is shown in Fig. 7c.

The results of the comparative study show clearly that the
tracking control system performs better for the population of
larger size with smaller RMSE, smoother power trajectory,
and less ‘‘noisy’’ control signals. This is consistent with the
nature of the PDE model on which the proposed control
scheme is based. Nevertheless, the performance is not
significantly degraded for a population with a significantly

smaller size. This demonstrates the robustness and potential
applicability of the developed control strategy to practical
systems.

VI. CONCLUSION
In this work, we have developed a strategy for power
tracking control of heterogeneous TCL populations based
on a PDE model. It is shown that the proposed control
scheme can ensure a robust performance in the presence
of modeling uncertainties in the sense of FTISS and
requires measuring the states of the system only on the
end-points of the deadband. The simulation results provided
encouraging evidence that the proposed control approach
is highly effective. However, great challenges still exist for
deploying this control scheme for real world applications.
Particularly, the Fokker-Planck equations can only describe
TCL populations with a limited heterogeneity and hence,
they cannot capture populations involving different type of
devices or systems. Moreover, power tracking is only a
task in demand response programs. Therefore, coordinating
with other systems in the grid, such as distributed power
generation [43] and energy storage [44], or other demand-
response tasks, such as frequency regulation or transaction
controls [45], [46], [47], [48], [49], is still a challenging
problem. These issues will be considered in our future work.

APPENDIX
PROOF OF THEOREM 5
We first prove statement (i). Given any T > 0, it suffices to
show that f0 ≥ 0 over [xL , x(t)] × [0,T ] for all t ∈ [0,T ].

Indeed, the transformations of variable y :=
x−xL
x−xL

:=
x−xL
h

and f0(x, t) = f0(yh+ xL , t) := f̃0(y, t) yield

∂x f0 =
1
h
∂y f̃0,

∂xx f0 =
1
h2

∂yy f̃0, ∂t f0

= ∂t f̃0 + ∂y f̃0
∂y
∂t

= ∂t f̃0 − (x − xL)
ẋ
h2

∂y f̃0

= ∂t f̃0 −
1
h
yu∂y f̃0.

Note that

x ∈ [xL , x] ⇔ y ∈ [0, 1],

0 < δ0 ≤ h(t) ≤ xH − xL , ∀t ∈ [0,T ].

The PDEs (4a) and (4b) are equivalent to

∂t f̃0 −
1
h

(
σ 2

2h
∂yy f̃0 + ((1 + y)u− α̃0) ∂y f̃0 − α̃0y f̃0

)
= 0, ∀y ∈ (0, z(t)) , ∀t ∈ (0,T ], (27a)

∂t f̃0 − g(f̃0, f̃1) −
1
h

(
σ 2

2h
∂yy f̃0 + ((1 + y)u− α̃0) ∂y f̃0

− α̃0y f̃0
)

= 0, ∀y ∈ (z(t), 1) , ∀t ∈ (0,T ], (27b)
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respectively, where α̃0(y, t) := α0(yh(t) + xL , t), f1(x, t) =

f1(yh+ xL , t) := f̃1(y, t), and z(t) := 1 −
δ0
h(t) .

Note that (8) is equivalent to (5), and (8a), (8b), and (8d)
become

σ 2

2
∂y f̃0(0+, t) − (α̃0(0+, t) − u(t))h(t)f̃0(0+, t) = 0,

∀t ∈ (0,T ], (28a)

∂y f̃0
(
z−(t), t

)
− ∂y f̃0

(
z+(t), t

)
= σ0(t) ∀t ∈ (0,T ], (28b)

f̃0(1−, t) = 0 ∀t ∈ (0,T ], (28c)

where, for the given solution f1, σ0(t) :=
σ 2

2 ∂x f1(x+(t), t) is a
well-defined function w.r.t. t , and σ0(t) > 0 for all t ∈ [0,T ]
owing to (F3) and (8i).

The initial data of f̃0 over the domain [0, z(t)] and [z(t), 1]
are given by

f̃ a00 (y) := f a00 (yh(0) + xL) ≥ 0,

and

f̃ b00 (y) := f b00 (yh(0) + xL) ≥ 0,

respectively.
Let φ(y) := em(y−

1
2 )

2
and f̃0 := φ eγ t f̂0 with m > 0 and

γ > 0 being constants that will be chosen later. Then (27)
and (28) lead to

∂t f̂0 −
σ 2

2h2
∂yy f̂0 + B(y, t)∂y f̂0 + C(y, t)f̂0

= 0,

∀y ∈ (0, z(t)) , ∀t ∈ (0,T ], (29a)

∂t f̂0 −
σ 2

2h2
∂yy f̂0 + B(y, t)∂y f̂0 + C(y, t)f̂0 +

e−γ t

φ(y)
g(f̃0, f̃1)

= 0, ∀y ∈ (z(t), 1) , ∀t ∈ (0,T ], (29b)

σ 2

2
∂y f̂0(0+, t) − k(t)f̂0(0+, t) = 0, ∀t ∈ (0,T ], (29c)

∂y f̂0
(
z−(t), t

)
− ∂y f̂0

(
z+(t), t

)
= σ̂0(t), ∀t ∈ (0,T ], (29d)

f̂0(1−, t)

= 0, ∀t ∈ (0,T ], (29e)

where

B(y, t) := −
1
h

(
σ 2

2h
2∂yφ

φ
+ (1 + y)u− α̃0

)
,

C(y, t) :=
1
h

(
γ −

σ 2

2h
∂yyφ

φ
−

∂yφ

φ
((1 + y)u− α̃0) + α̃0y

)
,

k(t) :=
mσ 2

2
+ (α̃0(0+, t) − u(t))h(t),

σ̂0(t) :=
e−γ t

φ(1)
σ0(t).

The initial data for the f̂0-system over the domain [0, z(t)]
and [z(t), 1] are given by

f̂ a00 (y) :=
f̃ a00 (y)

φ(y)
≥ 0 and f̂ b00 (y) :=

f̃ b00 (y)

φ(y)
≥ 0, (30)

respectively.
Note that u, α̃0, and α̃0y are continuous in [0, 1] × [0,T ].

Letting first m and then γ be sufficiently large, there must be
positive constants k0 and c0 such that

k(t) ≥ k0, ∀t ∈ (0,T ], (31)

C(y, t) − 1 ≥ c0, ∀(y, t) ∈ (0, 1) × (0,T ]. (32)

To prove the non-negativeness property of f0, it suffices to
show that f̂0 ≥ 0 in [0, 1] × [0,T ]. We now proceed with
the proof by contradiction. Assume that there exists a point
(y0, t0) ∈ [0, 1] × [0,T ] such that

f̂0(y0, t0) = min
(y,t)∈[0,1]×[0,T ]

f̂0(y, t) < 0.

Considering (29e) and (30), we have y0 ̸= 1 and t0 ∈ (0,T ].
Case 1: y0 ∈ (0, z(t0)). At point (y0, t0), it holds that

∂t f̂0(y0, t0) ≤ 0, ∂y f̂0(y0, t0) = 0, ∂yy f̂0(y0, t0) ≥ 0.

Then (29a) and (32) imply that

0 > (c0 + 1) f̂0(y0, t0) ≥ ∂t f̂0(y0, t0) −
σ 2

2h2(t0)
∂yy f̂0(y0, t0)

+ B(y0, t0)∂y f̂0(y0, t0) + C(y0, t0)f̂0(y0, t0)
= 0,

which leads to a contradiction.
Case 2: y0 ∈ (z(t0), 1). At the point (y0, t0), it also holds

that

∂t f̂0(y0, t0) ≤ 0, ∂y f̂0(y0, t0) = 0, ∂yy f̂0(y0, t0) ≥ 0.

In addition, using the Mean Value Theorem, (G1), and
(G2), we obtain:

g(f̃0(y0, t0), f̃1(y0, t0))

= g(0, f̃1(y0, t0)) + f̃0(y0, t0)gs(s, f̃1(y0, t0))|s=ξ

≤ |f̃0(y0, t0)|,

where ξ is between 0 and f̃0(y0, t0).
It follows that

e−γ t0

φ(y0)
g(f̃0(y0, t0), f̃1(y0, t0)) ≤ |f̃0(y0, t0)|

e−γ t0

φ(y0)

= −f̂0(y0, t0). (33)

From (29b), (32), and (33), we obtain:

0 > c0 f̂0(y0, t0)

≥ (C(y0, t0) − 1) f̂0(y0, t0)

≥ C(y0, t0)f̂0(y0, t0) +
e−γ t0

φ(y0)
g(f̃0(y0, t0), f̃1(y0, t0))

≥ ∂t f̂0(y0, t0) −
σ 2

2h2(t0)
∂yy f̂0(y0, t0)
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+ B(y0, t0)∂y f̂0(y0, t0) + C(y0, t0)f̂0(y0, t0)

+
e−γ t0

φ(y0)
g(f̃0(y0, t0), f̃1(y0, t0))

= 0,

which leads to a contradiction.
Case 3: y0 = 0. It follows that ∂y f̂0(0+, t0) ≥ 0, which,

along with (29c) and (31), yields

0 < −k0 f̂0(0+, t0) ≤ −k(t0)f̂0(0+, t0)

≤
σ 2

2
∂t f̂0(0+, t) − k(t0)f̂0(0+, t) = 0.

We get a contradiction.
Case 4: y0 = 1. It follows that ∂y f̂0(1+, t0) ≤ 0, which

along with (29c) and (31) yields

0 < −k0 f̂0(0+, t0) ≤ −k(t0)f̂0(0+, t0)

≤
σ 2

2
∂y f̂0(0+, t) − k(t0)f̂0(0+, t) = 0.

We get a contradiction.
Case 5: y0 = z(t0). It follows that ∂y f̂0(z−(t0), t0) ≤ 0 and

∂y f̂0(z+(t0), t0) ≥ 0, which along with (29d) and σ̂0(t) >

0 yields

0 ≥ ∂y f̂0(z−(t0), t0) − ∂y f̂0(z+(t0), t0) = σ̂0(t0) > 0,

leading to a contradiction.
Because we always obtain a contradiction in each case,

we have shown that f̂0 ≥ 0 over the domain [0, 1] × [0,T ],
which implies the non-negativeness property of f0 over the
domain [xL , x(t)]× [0,T ] for all t ∈ [0,T ] and all T ∈ R>0.

Because the proof of statement (ii) can proceed in the same
way as above, we omit the details of the proof.

Finally, suppose that statement (iii) fails to be true; then,
for any given T ∈ R>0 there must be a t0 ∈ (0,T ] such that

f0(x(t0), t0) + f1(x(t0), t0) = 0,

which, along with the non-negativeness property of f0 and
f1, implies that f0 and f1 attain their minima at (x(t0), t0) and
(x(t0), t0), respectively. Then, using the same argument as that
inCase 5, we obtain a contradiction. Therefore, statement (iii)
holds true.
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