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ABSTRACT This paper presents a novel deep learning framework for robotic path planning that seamlessly
integrates Linear Temporal Logic (LTL) with trajectory optimization to meet mission specifications
efficiently. Our approach innovates on several fronts: First, by training a neural network end-to-end to
generate control sequences that are not only cost-effective but also fully compliant with LTL-defined
mission objectives. This negates the need for generating traditional automatons, as our network is capable of
directly interpreting LTL formulas to guide path planning. Key to our framework is the use of a Conditional
Variational Autoencoder (CVAE), which is adept at identifying the optimal distribution of trajectories. This
enables the extraction of practical control sequences through a process of sampling latent variables and
inferring control outputs, thus addressing the critical challenge of trajectory optimization under uncertainty.
Moreover, our model incorporates transformer networks to refine these trajectory distributions into nearly
optimal control sequences, further enhanced by a Gaussian Mixture Model (GMM) to manage uncertainty
and fine-tune adjustments effectively. Empirical validation through comparative simulations showcases the
superior performance of our model. It achieves significant advancements in trajectory optimality andmission
success rates over existing deep learning-based path planning strategies. This work underscores the potential
of integrating LTL in deep learning models for robotic path planning, marking a significant leap forward in
the domain.

INDEX TERMS Deep learning-based control synthesis, formal methods, mission-based path planning.

I. INTRODUCTION
Path planning is a critical component in the field of
robotics, advancing from straightforward two-dimensional
navigation tasks to tackling complex systems such as robot
manipulators [1], [2], [3] and intricate scenarios [4], [5], [6].
This progression reflects the broadening scope of robotic
tasks, highlighting the need for advanced path planning
algorithms capable of navigating both physical environments
and the complex requirements of these tasks.

Translating mission specifications, often described in
human language, into computational models presents a
significant challenge in path planning. Formal methods
like Linear Temporal Logic (LTL), Computation Tree
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Logic (CTL), andµ-calculus have played a crucial role in this
context. Notably, LTL has been favored for its adaptability
and expressive power in defining complex missions [7], [8],
[9], providing a structured yet flexible means to encode
mission objectives.

Beyond defining mission parameters, identifying trajec-
tories that are both cost-effective and meet computational
efficiency standards is paramount. For example, in environ-
ments characterized by varying communication strengths,
finding low-cost paths that minimize exposure to areas with
poor communication is essential. Traditional methods like
Rapidly-exploring Random Tree Star (RRT∗) [10], while
effective, can be computationally intensive, especially in
environments laden with constraints.

The incorporation of deep learning techniques into the
realm of path planning presents an innovative alternative
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that excels at deriving optimal paths directly from datasets,
thus effectively addressing the computational limitations
associated with conventional methodologies. Demonstrating
wide-ranging applicability, these techniques have signifi-
cantly advanced the field in various domains. Specifically,
in the context of robotic systems, deep learning has
facilitated sophisticated control strategies for robot manip-
ulators [1], a domain characterized by complex interactions
within mechanical systems. Concurrently, in the domain of
autonomous vehicles, it has been instrumental in navigating
the multifaceted challenges of autonomous driving [11],
[12], further underscoring the versatility and computational
efficiency of deep learning-based approaches.

This paper proposes a novel deep learning framework for
robotic path planning that effectively integrates LTL for mis-
sion specification with trajectory optimization techniques.
Our model utilizes a Conditional Variational Autoencoder
(CVAE) and a Transformer network to generate control
sequences that comply with LTLmission specifications while
prioritizing cost efficiency, representing a substantial leap
forward in the integration of deep learning and formal
methods in path planning.

The introduction of the Transformer network for interpret-
ing LTL formulas and generating control sequences [13],
alongside the CVAE’s ability to explore complex trajectory
manifolds [14], underscores the innovative nature of our
approach. The use of a Gaussian Mixture Model (GMM)
to refine the output further highlights our method’s ability
to address uncertainties, enhancing both the precision and
reliability of path planning under LTL constraints.

Our contributions set new standards for cost-efficiency and
computational performance in robotic path planning. The
effectiveness and superiority of our model over existing deep
learning-based strategies are validated through comparative
simulations, demonstrating its potential to significantly
impact the field.

Figure 1 delineates the process flow of the proposed path
planning method. Starting with the environment and the LTL
formula on the left, the network generates an anchor control
sequence in themiddle step. Subsequently, the process arrives
at the final solution, which adheres to the GMM distribution,
as shown on the right. The prescribed LTL formula, φ =

♢(a∧ ♢(b)), requires that the solution trajectory visit regions
a and b in sequence. Comparative simulations illustrate that
our method not only achieves greater efficiency in generating
solution trajectories but also results in lower costs compared
to existing path planning methods.

II. RELATED WORK
Path planning is a cornerstone of robotics, striking a delicate
balance between achieving low-cost trajectories, navigating
complex dynamics, and adhering to precise mission specifi-
cations. The literature in this domain reflects a diverse array
of strategies, each addressing these challenges to varying
degrees.

A. FINITE DETERMINISTIC SYSTEMS
Studies in finite deterministic systems have explored optimal
controls with diverse cost functions, such as minimax for
bottleneck path problems [15], and weighted average for
cyclic paths [16]. Despite their insights, these approaches face
challenges in real-world continuous path planning scenarios,
particularly due to limitations in incorporating robot dynam-
ics and the need for high-resolution discretization.

B. SAMPLING-BASED MOTION PLANNING
Sampling-based motion planning methods like the Rapidly-
exploring Random Tree (RRT) [17] have gained prominence
in addressing path planning challenges that require the inte-
gration of temporal logic and handling complex dynamics.
Among thesemethods, the Rapidly-exploring RandomGraph
(RRG) strategy has been specifically adapted for determinis-
tic µ-calculus specifications [18], demonstrating its utility in
optimizing motion planning. Despite their advantages, such
strategies encounter scalability and time efficiency issues as
the number of nodes expands and the complexity involved in
constructing product automata increases.

The Rapidly-exploring Random Tree Star (RRT∗) algo-
rithm, known for its asymptotic optimality—that is, its
solutions progressively converge to an optimal trajectory
that meets the task specifications—has been integrated
with process algebra specifications [19] to handle tasks
defined by ‘alternative’ and ‘sequential’ operators. Despite
its strengths, this specificity restricts the range of tasks that
can be addressed, signaling a potential area for extending
the methodology to accommodate a broader spectrum of task
specifications.

C. MULTI-LAYERED FRAMEWORKS
Multi-layered frameworks combine discrete abstractions with
automata representing co-safe LTL formulas [20], [21], [22].
These systems guide trajectory formation using sampling-
based methodologies. Certain studies [23] concentrate on
developing methods for low-cost trajectory planning, taking
into account both robot dynamics and temporal logic specifi-
cations. However, the geometric decomposition dependency
and computational intensity of sampling-based methods at
the lower layer remain challenges.

D. OPTIMIZATION METHODS
Optimization approaches, particularly those using mixed-
integer programming, have targeted optimal paths under LTL
constraints [24], [25]. Challenges in these methods escalate
with increasing obstacles and more complex LTL formulas
due to the growing number of integer constraints. The cross
entropy-based planning algorithm [26] improves efficiency
but struggles with extensive LTL formulas.

E. LEARNING FROM DEMONSTRATION (LFD)
LfD in robotics has increasingly intersected with temporal
logic. Key advancements include the integration of machine
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FIGURE 1. Visualization of the proposed path planning approach. The leftmost image showcases the initial
environment and LTL formula, the center image displays the generated anchor control sequence, and the
rightmost image presents the final trajectory solution over the GMM distribution.

learning and temporal logic for autonomous behavior,
employing STL robustness degree to delineate autonomous
systems’ actions [27]. Another study demonstrates the
incorporation of STL into LfD policies using Monte Carlo
Tree Search (MCTS), enhancing constraint satisfaction
by adjusting the MCTS heuristic with STL robustness
values [28].

Further research illustrates that learned continuous policies
can simulate discrete plans specified by LTL formulas,
highlighting LTL’s utility in continuous control contexts [29].
Additionally, a significant method has been proposed for
integrating formal task specifications within LfD skills
using STL and black-box optimization (BBO) for skill
adaptation [30].

F. TRAJECTORY FORECASTING
Advances in trajectory forecasting have leveraged deep
learning to predict future movements by analyzing past
data, closely aligning with LfD principles. This field
utilizes advanced models, such as GMMs for variability and
Variational Autoencoders with Transformer architectures for
generating action-aware predictions [31], [32]. Recent inno-
vations aim for more precise forecasting by integrating global
intention with local movement strategies [33], showcasing a
trend towards models that offer enhanced adaptability and
accuracy in predicting complex motion patterns.

G. SUMMARY
In the landscape of robotic path planning, foundational strate-
gies like ‘‘Finite Deterministic Systems’’ and ‘‘Sampling-
basedMotion Planning’’ havemade significant contributions,
yet often grapple with the demands of navigating real-
world, continuous environments, particularly within dynamic
settings and against complex mission criteria. Meanwhile,
‘‘Multi-layered Frameworks’’ and ‘‘Optimization Methods’’
have sought to integrate formal logic with optimization
techniques to tackle intricate path planning challenges, but
still face hurdles in computational efficiency and scalability,
limiting their broader application. The emergence of ‘‘Learn-
ing from Demonstration’’ and ‘‘Trajectory Forecasting’’,

propelled by advancements in machine learning, heralds new
possibilities. However, even these cutting-edge approaches
encounter challenges in seamlessly blending detailed mission
specifications with the inherent unpredictability and variabil-
ity of practical scenarios, underscoring the ongoing quest for
more adaptable and robust path planning solutions.

III. PRELIMINARIES
In this section, we lay the foundational concepts and notations
essential for understanding our approach to path planning
under LTL specifications. Establishing a clear framework
at the outset is crucial for comprehensively presenting the
system model, dynamics, and the specific temporal logic
used to articulate the desired properties of the paths. The
forthcoming subsections will introduce the mathematical
formulations that underpin our system’s model, delineate the
dynamics governing the system, and detail the principles
of LTL that are instrumental in defining and evaluating
the trajectory objectives. This preliminary groundwork is
indispensable for navigating the complex landscape of
autonomous systems and their operational criteria, setting the
stage for our proposed method’s detailed exploration.

A. SYSTEM MODEL
To establish a foundation for our system model, we first
introduce essential notations:

• X ⊂ Rn : The system’s state space.
• Xobs ⊂ Rn : Space occupied by obstacles.
• Xfree = X \ Xobs : Free space not occupied by obsta-

cles.
• U ⊂ Rm : Set of feasible controls.
• W ⊂ Rnw : Workspace in which the system op-

erates.
• h : X → W : Mapping function from the state

space to the workspace.

The system’s dynamics are described by the following
equation:

ẋt = f (xt , ut ), (1)
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where xt ∈ Xfree represents the system’s state, ut ∈ U denotes
the control input, and f is a function that is continuously
differentiable.

Given a control signal u over a time interval [0,T ], the
trajectory x(x0, u) originates from state x0. The state of the
system along this trajectory at any time t ∈ [0,T ] is denoted
by x(x0, u, t).

For discrete analysis, the trajectory x(x0, u) is discretized
at time increments 1t ∈ R+, expressed as:

x1t (x0, u) = {x(x0, u, i1t)}
if
i=0, (2)

where if ∈ N represents the final time step and is determined
based on the specific requirements of the trajectory analysis.
This selection ensures that the discrete representation cap-
tures the essential dynamics of the trajectory over the desired
analysis period, balancing computational efficiency with the
accuracy of the simulation.

B. LINEAR TEMPORAL LOGIC (LTL)
LTL is a framework for formulating properties in a linear
timeline [34]. It comprises atomic propositions (APs),
Boolean operators, and temporal operators. An atomic
proposition is a statement that is either true or false. Key
LTL operators include ⃝ (next), U (until), □ (always), ♢
(eventually), and ⇒ (implication). The construction of LTL
formulas follows a specific grammar detailed in [35].
In our representation, 5 = {π0, π1, . . . , πN } represents

all atomic propositions. An LTL trace, denoted as σ , is a
sequence of atomic propositions. LTL evaluations typically
involve infinite traces, with 6ω symbolizing all possible
infinite traces derived from 6 = 25. A trace σ is said to
satisfy a formula φ if it is denoted as σ ⊨ φ.
For the purposes of this paper, our focus is on finite-time

path planning using syntactically co-safe LTL formulas (sc-
LTL) [36]. A sc-LTL formula φ has the property that any
infinite trace satisfying φ also has a finite segment adhering
to φ. All temporal logic formulas in this paper are in sc-LTL
format.

1) AUTOMATON REPRESENTATION
Given a set of atomic propositions 5 and a syntactically
co-safe LTL formula φ, a nondeterministic finite automaton
(NFA) can be constructed [37]. For example, for φ = ♢(a ∧

♢(b ∧ ♢(c))), the resulting NFA is illustrated in Figure 2.
An NFA can be converted to a deterministic finite automaton
(DFA), which is more computationally convenient. A DFA
is represented as Aφ = (Q, 6, δ, qinit ,Qacc), with each
component defined as follows:

• Q : Set of states
• 6 = 25 : Alphabet
• δ : Q× 6 → Q : Transition function
• qinit ⊆ Q : Initial states
• Qacc ⊆ Q : Accepting states

A trace σ of a DFA is accepted if its prefix reaches the
accepting states, i.e., σi ∩ Qacc ̸= ∅. Therefore, a trace

FIGURE 2. An NFA corresponding to the sc-LTL formula
φ = ♢(a ∧ ♢(b ∧ ♢(c))). The diagram shows four states and the input
alphabets for transition relations.

FIGURE 3. A trace defined over a discretized trajectory: For given
x1t (x0, u) = x0, x1, . . . , x5, its trace is a sequence with 6 elements
{π0, ¬π1, ¬π2}, {π0, ¬π1, ¬π2}, {¬π0, π1, ¬π2}

, {π0, ¬π1, ¬π2}, {¬π0, ¬π1, π2}, {π0, ¬π1, ¬π2}.

satisfies the sc-LTL formula (σ ⊨ φ) if it is accepted by the
corresponding DFA Aφ .

2) LTL SEMANTICS OVER TRAJECTORIES
In this work, we define regions of interest as P =

{P1, . . . ,Pn} within the workspace W . Each atomic propo-
sition, πj, from the set 5, is directly associated with a
corresponding region of interest Pj. We introduce a labeling
function, L : W → 25, that maps each point in the
workspace to a set of atomic propositions that are valid in that
point. For given πi ∈ 5, ¬πi holds true for {w ∈ W | πi /∈

L(w)}. In particular, π0 stays true in all workspace except
regions of interest and obstacles.

Considering a discretized trajectory, denoted as
x1t (x0, u) = x0, x1, . . . , xm, which starts from x0 and follows
the control inputs u with a time step 1t , we can express its
trace as [20]:

trace(x1t (x0, u)) = L(h(x0)),L(h(x1)), . . . ,L(h(xm)). (3)

An illustrative example of a trajectory and its asso-
ciated trace is provided in Figure 3. This representa-
tion allows us to map the trajectory’s discrete segments
to their corresponding traces. Given a trajectory trace
trace(x1t (x0, u)) = τ0, τ1, . . . , τm, we define the automaton
states set Aφ(trace(x1t (x0, u))) = q0, q1, . . . , qm with qk
being:

qk =

{
δ(qinit , τ0) if k = 0
δ(qk−1, τk ) if k ≥ 1.

(4)

A trajectory x1t (x0, u) is considered to comply with the LTL
formula φ, denoted by x(x0, u)⊨1tφ, if the automaton reaches
a subset of the accepting states Qacc.

IV. PROPOSED METHOD
In our approach, the focal point is optimizing the accumulated
cost J (x0, u), which represents the line integral of a cost
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function c over a trajectory. The cost is mathematically
described as:

J (x0, u) =
1
T

∫ T

0
c(x(x0, u, t))dt, (5)

where c : X → R+ is a bounded and continuous cost
function, u is the control signal from t = 0 to t = T , and
x0 denotes the initial state. The mission tasks are outlined
using a syntactically co-safe LTL formula, with each atomic
proposition linked to a designated region of interest.

In this paper, we introduce a novel approach to robotic
path planning that significantly advances the synthesis
of near-optimal control sequences. Our method uniquely
conforms to specific mission requirements, adheres to
system dynamics (as defined in Equation 1), and optimizes
cost-efficiency criteria (outlined in Equation 5).

Central to our innovative methodology is a deep learning
framework that marries a CVAE with Transformer networks,
creating an end-to-end solution unparalleled in current
path planning research. The CVAE is pivotal in learning
the distribution within the latent space of optimal control
sequences, a cornerstone for producing sequences that not
only satisfy LTL constraints but also aim at minimizing costs.

Our approach utilizes convolutional neural networks
(CNNs) to transform environmental inputs—such as cost
maps, regions of interest, and obstacle configurations—into
an image-like representation, optimizing the processing of
spatial information in a novel way.

The key characteristics of our research is the introduction
of two pioneering concepts: the anchor control sequence
and the utilization of Gaussian Mixture Model (GMM)
components. This modeling technique, involving a GMM,
offers a novel method to accurately represent the array of
potential control sequences. This technique is instrumental
in optimizing these sequences through precise modeling
of multimodal distributions, thereby enabling detailed and
effective trajectory planning in complex environments.

Initiating with the Transformer’s decoder generating an
anchor control sequence, the GMM refines this sequence to
incorporate minor uncertainties. This synergy, enhanced by
the latent distribution learning, markedly boosts the precision
and reliability of control sequence predictions. Our structured
approach innovatively addresses uncertainties, thereby ele-
vating the robustness of the path planning framework.

We dedicate subsequent sections to an in-depth explo-
ration of our methodology, particularly focusing on the
novel implementation of anchor controls within the GMM
framework and its significant implications. Through this
comprehensive elucidation, we aim to provide readers with
a clear understanding of the groundbreaking advancements
our path planning strategy introduces to the field.

A. DATA COMPONENTS
This section describes the input configurations used in our
proposed deep learning framework, specifically designed
to facilitate the interpretation of LTL formulas. Regions

FIGURE 4. Depiction of the state image X layers for regions of interest
{a, b, c}.

of interest within the operational environment are denoted
alphabetically, starting with a, to simplify the association of
LTL formulas with spatial regions.

Our framework relies on two primary data components: the
state image X and the solution control sequence U . The state
image X is composed of multiple channels, with each channel
representing different environmental features in a format that
the neural network can process. As illustrated in Figure 4,
the channels for the regions of interest, labeled {a, b, c}, are
stacked to provide a comprehensive environmental context.
The layering starts with the costmap at the base, followed by
obstacle and regions of interest layers, and concludes with the
layer representing the initial position.

The computation of control sequences is informed by
methodologies outlined in prior research [23], which are in
harmony with the dynamics of our system as delineated in
Equation 1 and the requirements of co-safe temporal logic
specifications. Specifically, the approach we have adopted
from [23] aims to discover low-cost trajectories that fulfill
the given co-safe temporal logic specifications. This is
achieved through a evaluation of LTL semantics applied
to the generated trajectories, ensuring compliance with the
necessary specifications.

Our strategy for data generation is intricately tailored
to meet the environmental constraints and LTL objectives
pertinent to our study. The process is visually represented
in Figure 5, illustrating the transformation of environmental
parameters and LTL formulas into the resultant output
control sequences. In instances where the length of generated
sequences does not meet the maximum designated length,
we employ dummy control values as placeholders. This
practice ensures uniformity in sequence length, facilitating
a straightforward training process by standardizing the input
data across various scenarios.

B. PROPOSED ARCHITECTURE
The architecture for the training phase of our proposed
deep learning network is depicted in Figure 6. This com-
prehensive end-to-end network facilitates the entire process
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FIGURE 5. Illustration of the data generation methodology for distinct LTL formulas, showcasing the synthesis of state
images and the resultant control sequences.

from inputting the environmental image and LTL formula to
generating the output control sequence.

Below is a glossary of key symbols used within the
architecture, as depicted across Figures 6, 8, and 7:

• hX : The encoded representation of the envi-
ronmental state.

• hφ : The encoded representation of the LTL
formula, encapsulating mission objectives.

• hU : The encoded control sequence, reflecting.
• ν : Parameters defining the CVAE encoder.
• θ : Parameters of the control decoder.
• z : A latent sample drawn from the encoded

space.
• Ua : The anchor control sequence.
• αiU , µi

U , 6i
U: Components of the GMM, facilitating the
modeling of control sequence distributions
with respect to uncertainty.

In the encoding stage, the network processes the input
data through specialized components: a CNN encodes the
state image, while Transformer encoders [13] are employed
for the control sequence and LTL formulas. The LTL
formulas undergo an encoding process where each character
is converted into an embedded representation, utilizing a
predefined alphabet and operator symbols set. The encoded
outputs, denoted as hX for the state image X and initial
state x0, hφ for the LTL formula φ, and hU for the solution
control sequenceU , are then integrated within the network to
facilitate the learning process.

One key feature of our proposed network is the utilization
of a CVAE model, chosen for its proficiency in navigating
the complexities of high-dimensional spaces and its adapt-
ability to various input configurations. The CVAE plays a

crucial role in our model by facilitating the generation of
output control sequences through a process of latent space
exploration. During the learning stage, the CVAE learns a
probability distribution that represents the potential control
sequences, conditioned on encoded state image features hX
and LTL formula features hφ .
Our CVAE model is structured around three key param-

eterized functions: the recognition model qν(Z |hX , hφ, hU ),
which approximates the latent variable Z ’s distribution given
the input features and the control sequence; the prior model
pθ (Z |hX , hφ), representing the latent variable’s distribution
independent of the control sequence; and the generation
model pθ (U |z, hX , hφ), which predicts the control sequence
from a latent sample z. The parameters θ and ν denote the
model-specific parameters, with Z as the latent space and z
as a specific sample within that space.

The models function as follows:

• The recognition model qν(Z |hX , hφ, hU ) is defined as a
Gaussian distributionN (µν(hX , hφ, hU ), 6ν(hX , hφ, hU )),
with µν and 6ν representing the mean and covariance
determined by the network.

• The prior model pθ (Z |hX , hφ) is assumed to be a
standard Gaussian N (0, I ), simplifying the latent space
structure.

• The generation model pθ (U |z, hX , hφ) computes the
likelihood of each control sequence element ui condi-
tional on the latent sample z and the encoded inputs,
represented as the product of conditional probabilities
over the sequence length Nu.

A sample z drawn from the recognition model is input into
the decoder, generating the predicted control sequence Û =

u0, . . . , uNu , where Nu denotes the sequence length. This

VOLUME 12, 2024 57415



C. Yang et al.: End-to-End Path Planning Under Linear Temporal Logic Specifications

FIGURE 6. Training process of the proposed end-to-end deep learning network. This diagram illustrates the network’s training
process, highlighting the data flow from the multi-channeled state image X , initial state x0, LTL formula φ, and solution control
sequence U to the predicted control sequence Û .

FIGURE 7. Schematic of the control decoder architecture, illustrating the
process of generating the control sequence from the latent sample z and
the encoded information hX , hφ .

process encapsulates the network’s capability to synthesize
control sequences that align with the specified conditions and
objectives.

The architecture of the proposed control decoder model,
depicted in Figure 7, which generates the output control
sequence. Given a latent sample z and the encoded infor-
mation hX , hφ , the control decoder synthesizes the control
sequence for a set duration in a single step, adopting a
non-autoregressive model for efficiency and coherence.

In the proposed model, a Transformer decoder is utilized
where time information, encoded as sinusoidal positional

encodings, serves as the query. Simultaneously, the latent
vector, combined with the encoded state image and LTL
formula features, acts as the key and value in the decoder.
This configuration enables the decoder to produce an anchor
control sequence Ua = ua,0, · · · , ua,Nu , along with GMM
components.

The generation of the control sequence distribution
employs a probabilistic model, described by the equation
below [31], which projects input features to a parameterized
space of control sequences:

pθ (U |z, hX , hφ) =

L∑
l=1

αlUN
(
U |Ua + µl

U , 6l
U

)
. (6)

In this formulation, αlU , µl
U , and 6l

U represent the
mixture coefficients, means, and covariances of the GMM,
respectively, derived from the control decoder. The parameter
L specifies the number of mixture components, encapsulating
the model’s capacity to represent complex control sequence
distributions.

This approach integrates the latent variable z, and historical
data hX and hφ , through the GMM to delineate a probabilistic
space where the potential control sequences are distributed.
The anchor control sequence Ua serves as a reference from
which the distribution is centered, facilitating the identifica-
tion of feasible control sequences by contextualizing them
within the operational domain. Rather than predetermining
the outcome, Ua and the GMM enable the prediction of
control sequences that are adaptable to varying conditions and
uncertainties inherent in environments.
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To ensure clarity and maintain focus on the model’s
predictive capability, we present the parameters of the GMM
directly, without delving into the underlying functional
dependencies on θ . This direct presentation underscores the
model’s utility in forecasting control sequences that are both
feasible and optimized, based on the computed probability
distribution.

C. DEFINING THE LOSS FUNCTION DURING THE
TRAINING PHASE
The training of our CVAE is governed by the Evidence Lower
Bound (ELBO) loss function, initially formulated as:

Eqν (Z |hX ,hφ ,hU )[log pθ (U |z, hX , hφ)]

−DKL
(
qν(Z |hX , hφ, hU )||pθ (Z |hX , hφ)

)
. (7)

We adapt the ELBO function to a form more suited to
our application’s specific requirements. The customized loss
function is defined as:

−

∑Nu

i=0
log

(
pθ (ui|z, hX , hφ)

)
+ λ ·DKL

(
N

(
µν(hX , hφ, hU ), 6ν(hX , hφ, hU )

)
||N (0, I )

)
,

(8)

where ui represents an element of the control sequenceU , and
λ is a scaling factor introduced to balance the terms. TheDKL
(Kullback-Leibler divergence) measures how one probability
distribution diverges from a second probability distribution.
We set λ = 1, optimizing parameters ν and θ by minimizing
this loss function. The first term of Equation 8, leveraging
Equation 6, is detailed as follows:

log
(
pθ (ui|z, hX , hφ)

)
=

∑L

l=1

[
logαlU + logN

(
ui|ua,i + µl

U , 6l
U

)]
,

(9)

with ua,i being an element of the anchor control sequenceUa.
This formulation embodies our methodology for estimating
the probability distribution of control sequences, which
is pivotal in ensuring that the model accommodates the
diversity of potential solutions and manages uncertainties
with efficacy.

D. TEST PHASE
The test phase of our deep learning architecture is illustrated
in Figure 8. During this phase, the control decoder operates
by accepting a latent sample z, which is drawn from the
prior distribution. It then deterministically transforms this
sample into a predicted control sequence Û . Importantly,
the generation of the control sequence continues until one
of the following conditions is met: the sequence fulfills
the specified LTL constraints, encounters a collision with
obstacles, or exceeds the boundaries defined by the cost map.

This process effectively incorporates encoded state infor-
mation alongside the LTL specifications, thereby enabling the
network to produce control sequences that not only adhere

to the required temporal logic constraints but also optimize
for cost efficiency. The integration of these elements ensures
that the resulting trajectories are viable within the operational
environment, balancing adherence to LTL specifications with
practical navigational requirements.

V. EXPERIMENTAL RESULTS
This section presents the outcomes from a series of simula-
tions and experiments utilizing the Dubins car model as the
dynamic model. The model follows the kinematic equations:

ẋ = v cos(θ), ẏ = v sin(θ ), θ̇ = ω, (10)

where (x, y) denotes the car’s position, θ the heading, and
v and ω the linear and angular velocities, respectively.
It’s important to clarify that the symbol θ is also utilized
elsewhere in this manuscript to denote different concepts,
distinct from its use here as the vehicle’s heading.

UsingGaussian process regression, we generated costmaps
for training, ensuring that each map contained no more than
four regions of interest and no more than eight obstacles.
Employing the dynamic model defined by Equation 10,
we computed near-optimal control sequences in accordance
with the method described in [23]. The resulting dataset
comprised 750 costmaps, with each facilitating the generation
of 1200 control sequences, thereby capturing a wide array of
environmental scenarios.

To enhance the robustness and generalizability of our
model, we introduced variability in the data generation phase.
This was achieved by randomly varying the starting positions,
the placements of regions of interest, obstacle configurations,
and the assignments of LTL formulas for each data instance.
Such a strategy aims to simulate a diverse array of potential
operational scenarios, preparing the model to handle a wide
range of conditions effectively.

For the network input, we standardized images to 128 ×

128 pixels, aligning with the constraints imposed by our GPU
hardware’s memory capacity. This dimensionality strikes a
balance between retaining necessary environmental details
and maintaining computational feasibility. The network
underwent training over 300 epochs to ensure adequate
learning depth, with a batch size of 32 selected to optimize the
balance between memory usage and convergence stability.
An initial learning rate of 1e−3 and a weight decay of
1e−5 were empirically determined to provide a suitable
compromise between training speed and the minimization
of overfitting risks. Furthermore, the decision to use eight
components (L = 8) in the GMMwas based on experimental
validation, which indicated this as a reasonable number for
capturing the complexity of control sequence distributions
within our model framework.

We conducted three distinct sets of simulation experi-
ments to comprehensively evaluate the proposed method’s
effectiveness and versatility. The first set utilized generated
costmaps to test the method in controlled environments,
focusing on its ability to navigate based on cost efficiency.
The second set applied real-world data, incorporating a
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FIGURE 8. Test phase architecture of the proposed system, demonstrating the process of converting latent samples into the
predicted control sequences.

traffic accident density map from Helsinki, to demonstrate
the method’s applicability and performance in real-world
scenarios. The third set of experiments was designed to
showcase the proposed method’s capability to generate near-
optimal solutions.

A. THE GENERATED COSTMAP
Figure 9 showcases the test costmap, synthesized using
the same methods as the training costmaps. The costmap
displays regions of interest marked with red boxes labeled
with alphabetic identifiers, while obstacles are indicated by
grey boxes.

In our experimental setup, we aimed to assess the
robustness and effectiveness of our system in executing a
variety of LTL missions. These missions were categorized
into sequential missions (φ1 and φ2) and coverage missions
(φ3 and φ4). A key aspect of this evaluation involved
monitoring for potential failuremodes, such as collisionswith
obstacles or deviations from the designated costmap areas.
Such events were critical for determining the mission’s suc-
cess or incompleteness. Specifically, a mission was deemed
incomplete if the system either exceeded the maximum
allowed sequence length or encountered a collision, thereby
failing tomeet themission criteria. To visually represent these
instances, collisions observed during the experiments are
highlighted with red dotted circles in Figure 9 (subsections
(b) and (c)). This inclusion serves to illustrate the system’s
interaction with complex environments and the challenges
posed by obstacle avoidance and mission adherence.

Each row in the figure corresponds to a set of four
subfigures, with each subfigure varying the initial position.
Two control sequence solutions are displayed for comparison
in each subfigure: the anchor control sequence Ua from the
control decoder module is shown with an orange line, while
the green line represents the final sampled solution from the
GMM of the control decoder module. The cost of the final

solution is normalized to one, with the cost of the anchor
control sequence expressed in relation to this value.

The solutions were generated to traverse low-cost areas
on the costmap, depicted in blue, striving to complete the
LTL missions effectively. For coverage missions, as seen in
Figures 9(c) and 9(d), the solution paths differ in the order
they visit regions of interest, varying according to the starting
position. It is observed that the GMMprojection in the control
decodermodule enhances the solution quality, in terms of cost
and LTL mission fulfillment, when compared to the anchor
control sequence.

Figure 10 presents solution trajectories generated by the
proposed network for an LTL mission specified by φ =

♢(a) ∧ ♢(b) ∧ ♢(c), which mandates visiting regions of
interest a, b, and c at least once. Each subfigure corresponds
to trajectories initiated from different starting positions,
illustrating the adaptability of the network to various initial
states. In this figure, trajectories colored identically are
derived from the same latent sample value. The latent
distribution encapsulates the sequence in which regions of
interest are visited, ensuring LTL satisfaction, while the
GMM component of the control decoder models uncertainty
within this framework. For instance, the green trajectories
in subfigure (a) represent a sequence of visiting b, followed
by a, then c. In contrast, the orange trajectories in subfigure
(b) depict a sequence of visiting a, b, and then c. This
variation demonstrates the network’s capability to generate
diverse solutions that adhere to the given LTL mission while
accounting for uncertainty.

Performance evaluation of the developed path planning
approach was carried out through comparative experiments.
These experiments aimed to quantify trajectory cost and mis-
sion success rates across a variety of scenarios characterized
by differing lengths of sequential LTL formulas (|φ|) and
obstacle counts (nobs). Here, the length of the sequential LTL
formula corresponds to the number of regions of interest it
specifies.
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FIGURE 9. Comparative results generated by the proposed control sequence generation method for different LTL formulas,
denoted as φi . In each subfigure, two trajectories are shown: the anchor control sequence Ua is depicted by an orange line,
representing a baseline solution from the control decoder module, and the green line indicates the optimized sampled solution
derived from the GMM of the control decoder module. The costmaps illustrate cost gradients, with blue zones signifying lower
costs and yellow indicating higher costs.

VOLUME 12, 2024 57419



C. Yang et al.: End-to-End Path Planning Under Linear Temporal Logic Specifications

FIGURE 10. Solution trajectories for an LTL mission φ = ♢(a) ∧ ♢(b) ∧ ♢(c), requiring at least one visit to
each region of interest a, b, and c . Trajectories sharing the same color originate from the same latent
sample value, illustrating the network’s approach to fulfilling the mission criteria from different starting
points.

The experimental design included 500 trials per scenario,
encompassing variables such as costmap configurations,
region of interest placements, obstacle locations, initial
positions, and LTL formulas. To ensure a rigorous assess-
ment, these elements were systematically varied within
each trial, providing a comprehensive evaluation of the
approach’s robustness. Trials lacking feasible solution paths
were excluded to maintain the experiment’s integrity.

The method’s performance was benchmarked against
several established deep learning networks:

• MLP: A fundamental Multilayer Perceptron architec-
ture.

• Seq2Seq-LSTM: A sequence-to-sequence model utiliz-
ing LSTM networks [38].

• TCN: A Temporal Convolutional Network [39].
• TFN: A Transformer network model [13].
• CVAE: A Conditional Variational Autoencoder
approach [14].

These models were trained to learn the mapping from initial
conditions and LTL formulas to control sequences, with
a CNN feature extractor handling image-like inputs. The
LTL formula φ was encoded as an input sequence using
the same embedding technique applied in the proposed
method. Additionally, LBPP-LTL [23], a sampling-based
path planning algorithm known for its longer computation
times but also for guaranteeing asymptotic optimality, was
included as a benchmark for cost performance despite its
computational intensity.

The results, summarized in Table 1, present the average
trajectory cost and mission success rate for each method in
the evaluated scenarios. The LBPP-LTL method serves as a
baseline with its trajectory cost normalized to 1, providing a
standard for comparison despite its computational demands.

The experimental findings indicate that the proposed
method outperforms other deep learning-based path planning
techniques in terms of cost efficiency and success rate for
missions defined by LTL. This superior performance can be
primarily attributed to two novel aspects of the proposed
method: (1) the adoption of advanced transformer networks

FIGURE 11. Visual representation of Helsinki’s traffic landscape:
(a) Traffic accidents are marked with red dots, regions of interest are
alphabetically labeled, and gray areas denote obstacles. (b) A traffic
accident density map, where blue indicates low-density (low-cost) zones
and red indicates high-density (high-cost) zones.

for accurate sequence prediction, and (2) the effective incor-
poration of diversity and uncertainty into the path planning
process through latent space modeling paired with GMMs.
Although the LBPP-LTL algorithm demonstrates superior
trajectory cost and LTL mission success rates, its practicality
is moderated by the requirement for extensive computational
resources. These results highlight the capability of the
proposed method to reliably approximate optimal solutions
with reduced computational demands.

B. THE HELSINKI TRAFFIC ACCIDENT MAP
This section presents an examination of autonomous nav-
igation for traffic surveillance within a designated area of
Helsinki, as depicted in Figure 11. Four regions of interest
are demarcated with alphabetic labels, while obstacles are
represented as gray rectangles.

To facilitate path planning, a synthesized traffic accident
density map was created using Gaussian process regression
based on historical traffic accident data [40]. This map
categorizes areas with high accident density as high-cost and
those with lower density as low-cost, influencing the path
planning algorithm’s cost assessments.

The study defines four distinct scenarios, each with a
unique mission profile. Scenarios 1 and 2 focus on sequential

57420 VOLUME 12, 2024



C. Yang et al.: End-to-End Path Planning Under Linear Temporal Logic Specifications

TABLE 1. Comparative Performance of Path Planning Approaches on Scenarios with Sequential LTL Missions. The table reports trajectory costs and LTL
mission success rates, categorized by the length of LTL missions (|φ|) and the number of obstacles (nobs). Metrics are normalized to the LBPP-LTL
benchmark (with normalized trajectory cost of 1 and mission success rate of 100%). The proposed method demonstrates robust efficacy across the
scenarios.

FIGURE 12. Solution paths on the Helsinki traffic scenario map, with the initial anchor control sequences presented in orange and the optimized
GMM-influenced solutions in green. The accompanying annotations indicate cost improvements, with all cost metrics normalized relative to the cost of
the final solution.

navigation missions, while Scenarios 3 and 4 are based on
area coverage. The corresponding LTL formulas defining the
mission objectives are as follows:

Scenario 1 : φ1 = ♢(a ∧ ♢(b ∧ (♢c))).

Scenario 2 : φ2 = ♢(a ∧ ♢(b ∧ ♢(c ∧ (♢d)))).

Scenario 3 : φ3 = ♢(a) ∧ ♢(b) ∧ ♢(c).

Scenario 4 : φ4 = ♢(b) ∧ ♢(c) ∧ ♢(d).

These LTL formulas articulate the mission goals for the
autonomous agent. For example, φ1 stipulates that the agent
must visit regions a, b, and c in any order, whereas φ2 adds
region d to the sequence. The formulas for Scenarios 3 and
4 imply the agent is required to visit specified regions without
dictating a particular sequence, focusing on coverage.

Figure 12 illustrates the trajectories computed by the
proposed algorithm for various scenarios within the Helsinki
traffic framework. Echoing the format seen in Figure 9, each
subfigure contrasts two control sequences: the provisional
anchor control sequenceUa derived from the control decoder
module is delineated by an orange line, while the refined

trajectory, influenced by the GMM within the same module,
is traced in green. In line with previous experiments,
trajectory costs are normalized against the cost of the final,
refined solution, which is established as a baseline metric
of 1. Annotations accompanying the visual data highlight
the cost metric adjustments, emphasizing the algorithm’s
ability to improve cost efficiency through its refinement
process. These graphical depictions reinforce the algorithm’s
adeptness at optimizing trajectories, passing lower-cost
regions and meeting the specified LTL mission objectives
efficiently.

C. OPTIMALITY ANALYSIS
To assess the performance of our proposed algorithm,
we conducted experiments focused on optimality in path
planning (as illustrated in Figure 13). The employed costmap,
represented in Figure 13, features a concentric low-cost
area (depicted in blue), which strategically challenges the
algorithm to navigate efficiently.

We positioned the regions of interest (a, b, and c) adjacent
to the upper boundary of the low-cost region to encourage
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FIGURE 13. Solution trajectories for an LTL mission φ = ♢(a) ∧ ♢(b) ∧ ♢(c), mandating a visit to each
region of interest a, b, and c . Each subfigure illustrates the generated solution (dashed green line)
alongside the optimal solution (solid red line), starting from different initial positions.

the algorithm to find the most cost-effective path that still
satisfies the mission requirements. The specific LTL mission
formula we used was φ = ♢(a) ∧ ♢(b) ∧ ♢(c), necessitating
at least one visit to each region of interest.

Figure 13 showcases the results of the algorithm’s path
planning with each subfigure depicting the generated solution
(illustrated by a dashed green line) against the optimal
solution (depicted in red), originating from varied initial
states. The relative cost of the generated solutions is indicated
beneath each subfigure, with the cost of the optimal solution
normalized to 1. The outcomes indicate that the paths
generated by our algorithm not only traverse the low-cost
areas but also closely approximate the optimal solution.

VI. CONCLUSION
This study presented an innovative path planning approach
that effectively integrates co-safe LTL specifications with an
end-to-end deep learning architecture. Our method stands
out by generating near-optimal control sequences through
the synergy of a transformer encoder informed by LTL
requirements and a variational autoencoder enhanced with
GMM components. This architecture navigates the complex-
ities of path planning by embracing both the diversity of
tasks and the inherent uncertainties. Empirical evaluations
highlight our approach’s advantages over similar deep
learning strategies. Its adaptability and scalability confirm the
method’s suitability for a wide array of systems, enhancing
path planning processes significantly.

Looking ahead, we aim to apply our methodology to
more challenging high-dimensional path planning problems,
particularly those that include additional logical constraints
and intricate operational contexts, like multi-joint robotic
manipulations. Focusing on these areas will likely yield
further valuable insights into robotics and automation,
enhancing both the sophistication and efficiency of path
planning.

The fusion of deep learning with logical frameworks in
our study signifies a notable advancement in robotic path
planning, setting the stage for more complex and efficient
mission executions in the future.
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