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ABSTRACT In this paper, a method for creating texturemodels with physical significance using a parametric
equalizer (PEQ)-based approach is presented. The model is based on the frequency, amplitude, bandwidth,
and noise ratio corresponding to texture profiles. Additionally, the method simplifies the modeling process
by enabling the selective omission of imperceptible roughness layers based on human tactile thresholds. The
effectiveness of the simplified model was validated through subjective evaluations comprising both absolute
and relative assessments. The results confirmed that layers with imperceptible roughness could be excluded
without compromising perceived similarity, streamlining the texture modeling process. Regression analysis
revealed that PEQ parameters reflect physical interactions in tactile sensations, such as the relationship
between texture roughness and vibration amplitude. This study contributes to haptic texture modeling by
offering a method that efficiently reproduces actual textures and mirrors the fundamental physical principles
of touch. The findings hold promise for applications in texture authoring and material selection, indicating
potential advancements in the development of more intuitive and physically transparent texture models.

INDEX TERMS Haptic rendering, texture, vibration, tactile, force feedback.

I. INTRODUCTION
When probing the surface of an object with a hard tool
such as a pen, humans can perceive the texture profiles
of the surface. This perception is enabled by vibrations
transmitted to the tool during its interaction with the surface
[1]. This principle has been used to reproduce textures
using vibrators [2], [3]. The contributions of Bensmaia
et al. highlighted the significance of spectral similarity in
vibrations [4], leading to the prevalent approach of generating
vibrations through filtering [5], [6]. This method involves
measuring the interaction vibrations of actual object surfaces
and reproducing their spectra using digital filters. Romano
et al. extended this technique to an automatic filter design
system [7].Moreover, Culbertson et al. achieved reproduction
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with fewer filter orders [8]. There have also been some
efforts to accommodate inhomogeneous textures [9], [10],
[11], making the filtering method one of the most refined
texture reproduction methods available today.

A significant recent advancement is the ability to create
new textures from texture models. These include predicting
vibrations of unmeasured textures [12], [13], [14], texture
authoring [15], and texture suggestions based on user prefer-
ences [16]. In particular, texture generation systems based on
user preferences can potentially promote the development of
new materials in the surface processing industry [17]. Kurita
et al. provided a digital tactile design tool based on images
[18]. However, this is still a challenging topic. Existing
texture authoring systems are primarily structured around
subjective axes of roughness and hardness. It is difficult
for subjective evaluation to describe the details of texture
profiles.
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In this paper, a method for generating texture models
that can be associated with texture profiles is introduced.
From a physical perspective, object surfaces are composed of
multiple layers of roughness. From a perceptual viewpoint,
reproducing sufficiently small roughness can be redundant.
By integrating both perspectives, our model aims to facilitate
the challenging theme of texture authoring. The parameters
constituting our texture model are affected by physical
interactions. Physics-guaranteed texture models can be useful
in developing more specific texture authoring systems.
In addition, our method can be used to simplify the model
through physical and perceptual rules.

A. PHYSICALLY TRANSPARENT TEXTURE MODELS
The interaction vibrations arising from tool collisions with
specific surface patterns contain various vibration char-
acteristics corresponding to the texture profiles. Since it
is impractical to model all these interaction vibrations,
a texture authoring system has been proposed [15]. This
system allows users to determine the desired texture profile
and generates a texture model based on the determina-
tion. However, due to the complexity of texture modeling
techniques, the proposed authoring systems were unable
to configure detailed texture profiles. Modeling techniques
require versatility to accommodate all types of interaction
vibrations. In previousmodelingworks, filters with numerous
coefficients were adopted for versatility and reproducibil-
ity [7], [8]. These filter coefficients do not have physical
meaning.

According to texture authoring teams, these numerous
filter coefficients make physical interpretation difficult [15],
[16]. This means that the previous texture model lacks
physical transparency. Therefore, they used subjective-based
roughness and hardness data selected by the subjects in
advance. Although actual textures include multiple rough-
ness layers, representing the roughness of multiple layers
using subjective roughness is difficult. Additionally, the
randomness of texture patterns plays a crucial role in texture
perception [19], but this has not been included in subjective-
based approaches.

To create an advanced authoring system selectable for
these textures, the texture model must include physical
meaning. Although physical simulation generates vibrations
following physical procedures, this method challenges real-
time performance [20]. However, even without adhering
to physical procedures, the vibration spectrum itself offers
valuable insight into texture profiles [21], [22]. The important
information lies in the spectral peaks, i.e., parameters such
as the fundamental frequency that characterizes those peaks.
A modeling technique that utilizes the characteristics of these
peaks can provide an authoring system capable of detailed
configurations.

B. REPRODUCING ROUGHNESS LAYERS
In the industrial field, the roughness is defined as the
arithmetic mean roughness (Ra) and maximum height (Ry).
This has two perceived roughness layers: macroroughness

and microroughness [23], [24]. Multiple peaks in the
measured vibration spectrum suggest the presence of mul-
tiple roughness layers. Among these multiple peaks, some
vibrations cannot be detected by humans [25]. The design
of a texture model can be simplified by discerning which
elements are significant and which are not significant for
humans [26], [27].

Compression according to perceptual rules was proposed
in the field of vibrotactile transmission [28], [29]. The ST-
SIM evaluation function proposed by Hassen et al. considers
the detection threshold, achieving both reproducibility and
signal compression [30]. Their procedure can also be used
to simplify the texture model. However, this compression
procedure does not follow physical rules. High-frequency
vibrations (fine roughness) only become vibrations beyond
the threshold with sufficient probing speed and force. The
removal of vibrations below the threshold can cause new
frequency components to appear when the probing speed
and force are suddenly high. This means that the texture
model is partially missing information. Texture models
with partially missing features are not suitable for machine
learning applications. Naturally, this also negatively impacts
texture authoring systems. In our approach, textures are
identified by the number of layers of roughness via peak
detection from the measured spectrum. Then, for each layer
of roughness, the decision is made whether to reproduce the
layer based on the perceptual threshold.

C. EQUALIZERS AND TEXTURE VIBRATIONS
The texture profile affects the prominent peaks in the
vibration spectrum, and the number of peaks indicates the
number of roughness layers. Therefore, an approach needs
to be developed to determine the peak characteristics that
change according to the probing speed and force.

We focused on employing an equalizing system for
this purpose. An equalizer consists of a combination of
narrowband filters and gains. The fundamental frequency
and bandwidth of the narrowband filter and the gain
represent the characteristics of the peaks. When representing
multiple peaks, a parametric equalizer (PEQ) constructed
with multiple equalizers is suitable. Few efforts have been
made to date, and equalizer-based texture reproduction has
yet to be proposed. In the vibrotactile sensations field,
equalizing has primarily been used for inverse filtering to
eliminate the effects of resonance characteristics [31]. Alma
et al. reported that bandwidth-limited white noise can replace
textural stimuli [32]. Their study is in the investigation
phase, and they are not yet at the stage of proposing a
texture model. Therefore, based on their reported results,
we employed a PEQ-based modeling method that includes
multiple roughness layers.

General approaches involve constructing an optimal filter
through a predictive loop that minimizes the spectral
matching function. This approach is not applicable when
reproducing individual peaks. To construct a PEQ from
measured vibration spectra, a modeling method based on
peak analysis is necessary. In this paper, a system that can
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be used to automatically design a PEQ by analyzing the
peaks of the measured vibrations is introduced. Additionally,
we present and discuss a model simplification process based
on roughness layers and perceptual thresholds.

II. DATA COLLECTION
In this section, the procedure for collecting probing vibration
data from actual object surfaces is described. The content of
this section includes an overview of the proprietary record-
ing device, data collection methods, and device controls.
In addition, the selection criteria for texture samples and the
procedures for processing the recorded signals are detailed.

A. DEVICE
The mechanism of the recording device is akin to that of a
record player, featuring a turntable and a contactor, as shown
in Fig. 1. The device is structured with an independent dual-
layer design, placing the turntable and contactor on the upper
part, while the motor driving the turntable, power supply,
and microcontroller are housed in the lower part. This design
effectively prevents vibrations from the speed-controlled
motor from infiltrating the recorded data. Hence, the turntable
and the driving motor are coupled with magnetic coupling,
maintaining a 10-mm separation.

The 3D-printed ABS resin contactor is equipped with an
Analog ’Devices ADcmXL3021 accelerometer, and a steel
ball with chrome plating is used at the contact point. The
spheres were sized with a diameter of 3 mm to interact with
the textured sample [33]. The turntable and contactor are
powered by the Maxon Motor gearless motor DCX32L. The
distance from the contact point to the motor shaft is 30 mm,
which is capable of exerting a maximum vertical force of
4.0 N. The rotation speed can reach 7260 rpm, covering
the entire range of tool-material interactions. A disturbance
observer (DOB) and reaction torque observer (RTOB)
proposed by Ohnishi et al. [34] are used for force control,
allowing for sensorless control of the contact force. The
observers also applied speed control, enabling the turntable
to rotate at the commanded speed. An ARM microcontroller
F767ZI entirely manages the motor control at a sampling rate
of 5 kHz.

B. TEXTURE SURFACE
Seven types of texture samples, including metals, fabrics,
animal-based materials, plastics, and wood, were used to
evaluate the modeling and rendering process (Fig. 2). Two
fabrics were selected to be perceived similarly in the subjec-
tive evaluation. Two types of plastics, PVC and wall paper ,
were selected to investigate perceptual differences in surface
morphology. All texture samples were cut to a diameter of
120 mm. During recording, texture samples were secured
to an aluminum turntable of the same diameter using
screws. Except for MDF , which was 4 mm thick, the
other six textures were mounted on acrylic plates with
double-sided tape. This process was performed to match the
thicknesses.

C. RECORDING
Vibration data were recorded through the EVAL-ADCM
evaluation board at 22.704 kHz for 1 second. Vibration data
corresponding to the two conditions of force and speed were
recorded. Once the data were saved to the specified folder
on a PC, the following measurement conditions were used
according to the number of saved files. Regarding the mea-
surement conditions, researchers have previously determined
the range of speeds and forces based on haptic exploration
by humans [8]. This range was investigated experimentally,
reflecting its dependence on the experimental environment.
In our experimental environment, seven velocity steps up to
350 mm/s and seven force steps up to 3.5 N were needed. The
recorded data were downsampled to 5 kHz, and a high-pass
filter at 10 Hz was applied.

III. MODELING
Fig. 3 illustrates the process of PEQ construction from the
recorded vibrations. Four essential elements are required to
construct a PEQ: the amount of white noise, the fundamental
frequency, the bandwidth, and the amplitude. These elements
are the vibration characteristics that describe the influences
of the texture profiles. The amount of white noise can be
used to determine the degree of randomness. Regardless of
the texture, achieving a perfectly clean sine-wave grid is
rare. Most textures have some degree of randomness, which
can be represented across all bands by adjusting the amount
of white noise. The fundamental frequency can be used
to explain the spatial wavelength of the texture, typically
defined as f = v/λ. v is the velocity, and λ is the wave-
length, indicating multiple spatial wavelengths if multiple
frequencies are present. Furthermore, the surface hardness
can alter the transient acceleration frequency [35]. The
bandwidth indicates the variation in fundamental frequency,
representing the randomness of the spatial wavelength [19].
The amplitude is directly related to the vibration energy
arising from collisions between the probe and the surface
bumps [20]. The depth of probe penetration, influenced by the
bump depth, affects probe displacement [36]. The collision
force increases with the hardness of the probe and object.
Thus, the amplitude is affected by the hardness and bump
depth [37].
Multiple narrow-band filters and gains are required to

express roughness layers with an equalizer. This combination
of multiple narrow-band filters and gains is used as a PEQ in
acoustics. The PEQ formula is expressed as follows:

â(z) = Gwaw(z) + HPEQ(z)aw(z) (1)

Here, aw(z) represents the original white noise signal. The
composite signal is the sum of the signal limited by HPEQ(z)
and the noise amplified by the noise gain Gw. HPEQ(z) is
defined as follows:

HPEQ(z) =

m∑
i=1

Gi(z)Hi(z) (2)

where Gm is the peak gain, and Hm(z) is the bandpass
filter. Both increase with the number of peaks m, and
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FIGURE 1. A vibration recording device. The rotational speed and normal force that operate the device are controlled on a microcontroller at a 5 kHz
sampling rate. The measured vibrations are stored on a PC database in CSV format.

FIGURE 2. Seven texture samples used for validation. Each sample has
different physical properties and was used to evaluate the texture
reproduction methods in this paper. Surface images were taken with a
Nikon Z6 lens (TAMRON SP AF90 mm F/2.8 Di MACRO1:1). The captured
images were cropped to 15 mm in height and width.

peak reproduction is achieved through band limitation and
amplification (Fig. 4). The characteristics Qm of Hm(z)
are determined by the fundamental frequency f m and the
bandwidth Bm. Thus, the parameters needed to construct
a PEQ are obtained from the peak information, which is
analyzed after peak detection.

After a fast Fourier transform (FFT) is performed, the
recorded texture dataset was initially smoothed with a
Gaussian filter with a standard deviation of σ = 30.
Peaks were then detected using a hill-climbing algorithm on
the smoothed spectrum. The detected peak amplitudes and
frequencies become the peak gain Gm and the fundamental
frequency f m of the PEQ. The peak gainGm is the ratio of the
peak amplitude Am to the average amplitude of the original
white noise. Gaussian fitting was applied to the detected
peaks to estimate their bandwidths using the PEQ bandwidth
Bm. The average amplitude in a band sufficiently distant from
the peaks (e.g., 2 k to 2.5 kHz) was defined as the noise
amount Aw, andGw was calculated via the same process used
to obtain Gm.
Please note that this PEQ is very sensitive to the quality

of the acquired signals. It is necessary to ensure that the
accelerometer is low-noise, and that sufficient data is secured

with constant force and speed. In addition, we are addressing
this issue signal-processing-wise. Assuming that the number
of peaks correlates with the number of roughness layers,
even if the number of detected peaks varies with recording
conditions, the number of roughness layers should not
fluctuate within the texture model. Therefore, peak detection
was performed in descending order from the data with the
most potent force and the fastest speed to maintain peak
identity under various conditions. The number of peaks
detected in the first dataset was fixed to the maximum
peak number. The frequencies of the detected peak and
adjacent data were compared to determine the peak with the
frequency closest to that of the same peak. To prevent mixing,
we limited the comparison range to half the frequency
difference between previously identified adjacent peaks. If a
peak was not detected in subsequent data, the fundamental
frequency of the previous peak data was inherited, and only
the bandwidth and amplitude were updated. This inheritance
system addresses sudden peak detection errors and peak
disappearances at low speeds.

IV. VIBRATION PROPERTY
This section aims to demonstrate that the created texture
models possess physical transparency. As explained in
Section III, the parameters of PEQ are influenced by the
texture profile and the interactions involved. By examining
the modeled PEQ parameters, details of the interaction of the
texture samples are predicted. Furthermore, by analyzing the
response to the force and speed, measurement or modeling
errors are considered.

A. MULTIPLE REGRESSION MODEL
It is essential to investigate the response to the force and
speed to understand the relationship between the texture
profiles and these PEQ parameters P (such as the frequency,
amplitude, or bandwidth). The response of each parameter
might depend on the speed, force, or their interaction.
Therefore, we apply the following multiple regression
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FIGURE 3. The acquired vibration signal is downsampled, the FFT is applied, and the result is further smoothed. Peak detection is performed on the
smoothed spectrum, and information about the detected peaks is acquired. The acquired peak information about the probing force and velocity during
vibration recording is stored. Notably, the amount of data stored depends not only on the number of force and velocity steps during the recording but
also on the number of peaks detected.

FIGURE 4. Block diagram of PEQ. Band-pass filters limit the bandwidth
and are then amplified by gains. The combinations of band-pass filter and
gain vary depending on the number of peaks.

formula to examine the influence on each parameter P:

P = β + α1v+ α2F̂ + α3vF̂ (3)

In this equation, P is a generic PEQ parameter, β is the
intercept, α1 is the regression coefficient for speed, α2 is for
force, and α3 is for the interaction between speed and force.
The appropriate regression models are selected for each PEQ
parameter by checking the significance of each regression
coefficient.

B. REGRESSION MODEL FIT LEVEL
Table 1 lists the effectiveness of each regression model
excluding the intercept for each PEQ parameter on different
peaks. It includes the multiple correlation R, the adjusted
coefficient of determination R2, and each regression model’s
significance level p. Intercepts are significant if they are
above zero, making them significant about frequencies and
bandwidths. If there is no significant difference, it is only
because the value of amplitudes and bandwidths in most
minor combinations of the speed and force was small.

By averaging the R2 values for each PEQ parameter,
R̄2(n) = 0.68, R̄2(f ) = 0.40, R̄2(a) = 0.88, and R̄2(b) = 0.2.
Except for R̄2(b), these values indicate a good fit (R̄2 > 0.4),
showing that the regression models were adequate to explain
the PEQ parameters. Only the intercept might be affected by
the low value of R̄2(b).

C. PHYSICAL INTERPRETATION OF THE MODEL
Before examining individual peaks, it is necessary to identify
the overall trends. The support ratings and the averages of the
coefficients are shown in Table 2 and were calculated based
on the significance of each PEQ parameter (p < 0.05).

The physical implications of the regression model are
discussed in Table 2. From this table, α1 of the noise gain
showed a negative trend. The noise gain is the overall
randomness of the surface. The noise gain shows a strong
decrease in the velocity response, probably due to an increase
in the signal at the primary spatial wavelengths. On the other
hand, the bandwidth did not respond to velocity or force due
to the randomness of the primary spatial wavelengths. Since
the bandwidth only responds to the intercept and not to either
velocity or force, it becomes statistically insignificant in the
analysis.

The fundamental frequency of the peaks shows the
individual responses to the speed and force, although the
support rating is relatively low. This result might be due to
the variation in individual peaks across textures. For example,
in canvas, the lower frequency peak increases with speed,
while the others do not. This trend suggests that at higher
speeds, fewer interactions occur due to hopping over larger
bumps. To confirm this hypothesis, the spectral centroid SC
was calculated as follows:

SC =

∑m
i=1{Gi(z)}

2Fi(z)∑m
i=1{Gi(z)}2

(4)

SC shows a frequency trend across the spectrum.
SC can be applied similarly to a multiple regression model,

and a strong increasing trend appeared for the velocity
(Fig. 5). The frequency trend of the entire spectrum follows
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TABLE 1. Validity list for each regression model at each PEQ parameter by peak. The significance levels are defined as p < 0.05 for *, p < 0.01 for **, and
p < 0.001 for ***. The intercept coefficient β is excluded from this table.

TABLE 2. Average of the support and regression coefficients of the
regression model for each parameter of the PEQ. Support is high for any
significant difference at any peak.

the relationship between spatial frequency and probing speed,
but some peaks do not. In other words, it is not a measurement
or peak detection error but rather the observed hopping
effect.

The amplitude responds to the speed, force, and their
interaction, although it proportionately decreases with the
force. This trend might be due to the damping effect of
higher forces on hopping, which reduces the amplitude. The
correlation R > 0.6 between SC and amplitude supports this
hypothesis, indicating a relationship between the roughness
and the response to the amplitude and speed. These findings
suggest that the proposed texturemodel can be used to explain
the physical interactions on the surfaces. Future work could
be conducted to involve a regression model for textures

FIGURE 5. Response of the spectral centroid SC to the probing speed.
The plot is an average between the different force conditions at the same
speed conditions. The error bar is its standard deviation.

with known roughness and hardness values, linking physical
texture properties directly to the model parameters.

V. MODEL SIMPLIFICATION
In the previous section, we established that the constructed
texture models can reflect the physical interactions inherent
to the tactile sensations. In this section, we describe the
simplification process of these texture models, evaluating
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FIGURE 6. Comparison of the vibration spectra with the ADT. (a) is the
case where all peaks are reproduced. (b) is the case where the peaks
below the ADT are reduced. Spectra of the canvas are shown as an
example.

the feasibility of selectively eliminating the roughness layer
based on a perceptual threshold.

A. SIMPLIFICATION METHOD
Hassen et al. developed amethod for compressing vibrotactile
signals based on human perceptual thresholds [29]. While
many researchers have investigated the perceptual threshold
in terms of displacement [25], general vibrotactile display
works use acceleration.

For this purpose, Hassen et al. described converting
displacement-based perceptual thresholds into acceleration
detection thresholds (ADT). Given a displacement x(t) with
amplitude a oscillating over time t , the acceleration ẍ can be
described as follows:

ẍ = −aω2x(t) (5)

where ω represents the angular frequency of vibration. The
ADT was calculated using this equation unit of G and
compared with the amplitude of the PEQ. If the amplitude
of each peak in every force and speed condition is below the
ADT, the applicable peaks (roughness layers) are excluded
from the texture model (Fig. 6).

B. SIMPLIFICATION RATE AND QUALITY
Some researchers have adopted the goodness fitting coef-
ficient (GFC) to evaluate the similarity of vibration spec-
tra [33], [38]. This function was initially used to assess the

TABLE 3. A list of the degree of reduction in the number of peaks and the
change in the spectral matching evaluation. A reduction of one peak
reduces the number of the PEQ parameters by three. The minimum
configuration is four parameters combined with the noise gain.

similarity of the light spectra. The GFC is an adaptation of
the cosine similarity tailored for spectral evaluation without
considering the sign [39], as defined by the following
expression:

GFC =
|
∑

i Ŝo(fi)So(fi)|√
|
∑

j[Ŝo(fj)]2|
√

|
∑

k [So(fk )]2|
(6)

AGFC value above 0.9 indicates high reproduction accuracy.
Table 3 lists the degree of peak reduction and the change
in the GFC for each texture. The GFC remains nearly
unchanged for minimal peak reductions, such as in the case of
canvas, where the difference is less than 0.01. The number of
reduced peaks also impacts the GFC . The amplitude over the
ADT curve was required to be larger at higher frequencies.
Therefore, in this verification, the removed peaks were all
more frequent. In other words, they were fine bumps. For
example, in fabrics, only the roughness of the weave was
presented, not the texture of the fibers, due to tool tip
size limitations. The result excludes specific layers of the
roughness based on the perceptual thresholds, suggesting the
judgment of necessary roughness layers in texture authoring.

VI. RENDERING
In this section, we discuss the system for rendering texture
vibrations in response to varying probing speeds and forces.
The vibrations are rendered on a virtual surface using a
cable-linked force feedback device. The device’s motor
movements are monitored by a microcontroller, which drives
the PEQ parameter models. The models are interpolated, and
the PEQ parameters generate the texture vibrations (Fig. 7).

A. FORCE FEEDBACK
To present the target texture, the model must include the
interaction forces and speeds of the operator. Pen-arm-
based force-feedback devices, such as the Phantom Omni
device, are widely used for such applications [40], [41], [42].
Although this device is easy to install in experimental setups,
it is unsuitable for presenting a wide range of workspaces and
strong forces. The arm frames also suppress vibrations. This
limitation is a standard issue for robust arm-type devices.

In our approach, the cable-linked force feedback device
generates force by pulling cables [43] with the two motors to
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FIGURE 7. A cable-linked force feedback device provides the reaction force output on the virtual surface. When the operator manipulates this device, the
tangential velocity and normal force are input to the texture model. If these velocities and forces are not on the recording data point, they are
complemented by bilinear completion. With each PEQ parameter determined by completion, a PEQ can synthesize texture vibrations.

provide the reaction force. The position x of an end effector
can be estimated by solving the kinematics using the rotation
angles of the two motors. This position x is used to calculate
the velocity v, input into the texture model, and compute
the interaction with the virtual surface. The virtual surface is
simplified as a spring model from which the reaction force
Fv is calculated. The inverse Jacobian matrix converts the
reaction force Fv into the output torque τ v for each motor.
The operator torque τ̂ applied at the motors is computed by
the RTOB. This torque τ̂ is converted back into the force F̂
applied by the operator on the surface through the Jacobian
matrix and is input into the texture model.

B. MODEL INTERPOLATION
The PEQ parameters are linked with the forces and speeds
during vibration recording. Similarly, it is necessary to
interpolate between the data points to drive the texture
model according to the operator’s current speed and force.
In this paper, to evaluate the pure reproduction ability of the
PEQ, bilinear interpolation, a traditional method in texture
modeling, was implemented. In bilinear interpolation, the
four nearest data points are used to calculate the parameters
corresponding to the current location. Therefore, the number
of interpolation equations depends on the number of peaks.
One peak requires four equations, two peaks require seven,
and three require ten. However, from the results of multiple
regression analysis, a simpler complementary method can be
applied in the future.

C. VIBRATION FEEDBACK
Interpolation equations provide PEQ parameters correspond-
ing to the current operating state. These parameters define the
characteristics of the current PEQ.White noise is generated in
real time and filtered by the designed PEQ, producing texture

vibrations according to the model. These texture vibrations
are output as voltage signals from the microcontroller and
drive the vibrator according to the voltage. However, this
approach assumes that the vibrator has ideal characteristics.
The vibrator’s ability to reproduce vibrations decreases as the
frequency deviates from the resonance point. Therefore, it is
necessary to apply an inverse filter to cancel out the resonant
characteristics.

Our vibrator used is aVibrotransducer Vp416 fromAcouve
Labs. The characteristics of the vibrator were recorded
by placing it on a sponge and measuring it with the
ADcmXL3021 accelerometer. The test signal, white noise
at maximum amplitude, was played back to visualize the
full-band reproduction characteristics. A notch filter HBEF(z)
was applied to the waveform to pass frequencies other than
the resonance point based on the frequency, amplitude, and
bandwidth at the resonance point. The resonance features of
the peaks were analyzed using the same procedure used for
modeling. The inverse filter formula is as follows:

ã(z) = Goâ(z) + GBEFHBEF(z)â(z) (7)

where GBEF is the gain applied to the waveform after the
notch filter, andGo is the gain applied to the waveform before
the filter. Combining these two waveforms compensates for
the decrease in amplitude away from the resonance point.
This process enables the output of the texture model-specific
characteristics from the vibrator.

VII. EXPERIMENTAL METHOD
In this section, the methodologies employed to evaluate the
reproducibility of the simplified texture models developed in
this research are described. The evaluation consisted of two
subjective tests, absolute and relative, conducted to verify
the efficacy of the simplified texture models. The Human
Life Ethics Committee at Tokyo Denki University approved
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FIGURE 8. Experimental setup for subjective evaluation. The entire
apparatus is visible to the subject. Subjects could touch the real surface
by pressing the red button to turn off the virtual surface.

the experiments, ensuring ethical compliance throughout the
study.

A. APPARATUS
In the experimental setup, a cable-linked force feedback
device is utilized to generate surface reaction forces. The
device comprises two motors spaced 600 mm apart, with
the force feedback mediated through cables (Fig. 8). The
workspace was up to 200 mm from the center, and the virtual
surface was 50 mm below the motor position. An actual
surface, mounted on springs capable of a 10 mm extension,
is positioned 80mmbelow the virtual surface. This placement
allows for the presentation of a virtual surface with spring
characteristics similar to those of the actual surface, ensuring
consistency in haptic feedback.

A button is placed on the side of the device, allowing
subjects to toggle the virtual surface on and off, allowing
direct comparison with the actual surface. The experimental
console for subject evaluation is set up on a laptop that is used
to manage the texture presentation order and record selected
answers.

B. PROCEDURE
An initial training session was conducted to accommodate
subjects unfamiliar with the haptic presentation device. This
training was essential to ensure that the subjects stayed within
the operational limits of the device. The training also included
familiarization with the texture samples and the experimental
tasks. The sequence of texture presentations was randomized
using the Fisher-Yates algorithm. Therefore, the experimental
order was unknown to the subjects and the experimenter to
maintain objectivity.

1) ABSOLUTE EVALUATION
In the absolute evaluation, the participants were informed
that the virtual surface presentations corresponded to the
actual surface. They were asked to compare the virtual
surface with the actual surface and the vibration magnitude
and frequency similarity. The visual analog scale (VAS)
was used for the evaluation, allowing for detailed subjective

assessments [44], [45]. The subjects rated the similarity of
the vibration amplitude and frequency patterns corresponding
to the surfaces’ perceived intensity and texture patterns. The
evaluation covered all seven texture types used in the study.
The presentation order and the sequence of virtual and actual
surface interactions were randomized.

2) RELATIVE EVALUATION
In the relative evaluation, a forced choice method [46],
where the subjects were presented with an actual surface
and had to identify the corresponding virtual surface from
seven options, is implemented. This 7-alternative forced-
choice task assessed the ability of the subjects to match the
virtual surfaces to the actual surface, resulting in a baseline
chance level of 14 %. The selection was made on a laptop,
with the chosen virtual surface presented upon button press.
The subjects could freely switch between the actual and
virtual surfaces to make comparisons and selections. This
process was repeated three times for each texture sample,
with the button layout and the surface randomly assigned
in each session. The entire procedure was conducted for the
complete and simplified texture models on different days and
in a randomized order to prevent bias.

VIII. RESULTS
The simplified texture models were evaluated through
subjective absolute and relative evaluations. Twenty subjects
(18 males and 2 females in their 20s) participated in
the absolute evaluation experiment. Twenty-four subjects
(22 males and 2 females in their 20s) participated in the
relative evaluation experiment. None of the subjects had
specific illnesses and could adequately determine the tactile
perceptions. The subjects could refuse to participate in
any stage of the experiment, depending on their physical
condition. They could also take breaks to recover from
numbness in their fingers. Both experiments were completed
in approximately 30 minutes per trial, and the subjects were
not restrained for long periods.

A. ABSOLUTE EVALUATION
The data were averaged across subjects, and the results
were presented as the mean values and standard error bars
(Fig. 9). A paired t-test was applied to compare the perceived
similarities before and after simplification of the texture
models.

Strong significant differences were observed for the
vibration magnitude similarity for PVC and leather , indi-
cating a notable perception change due to the simplification
process. Other textures did not show significant differences,
suggesting that the simplification did not markedly affect the
perceived similarity. Most textures, except aluminum, scored
above 50 % in similarity at the pre-simplification stage.

Frequency similarity followed a similar trend, and most
textures did not show significant differences after simplifi-
cation, except for PVC . However, leather showed a lower
similarity score even before simplification, and a slight
but significant difference was observed for canvas post-
simplification. Despite this, the similarity remained high for
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FIGURE 9. These are the results of the subjective evaluation using the
VAS. (a) The similarity of the stimulus magnitude and (b) the frequency
similarity. The reduction in roughness layers for either item did not affect
most textures.

canvas, indicating a minor perceptual impact due to the
simplification.

B. RELATIVE EVALUATION
The 7-alternative forced-choice task was repeated three
times for each texture under complete and simplified model
conditions, with the sequence randomized. Correct matches
were plotted in a confusion matrix, and the diagonal
represents accurate selections (Fig. 10).

Errors showed patterns, with canvas and polyester often
being confused with each other over chance level. Aluminum
did not exhibit a consistent misidentification pattern.
After simplification, the range of textures misidentified as
aluminum expanded, suggesting a general shift in perceptual
attributes due to simplification.

Only the correct rates are compared, as shown in
Fig. 11. The t-test was performed in the same way as in
Subsection VIII-A. For wall paper , most subjects could
select an answer without error. canvas also had a correct
response rate of approximately 60 %, while others had a
response rate less than 40 %.MDF exceeded 60 % under the
simplification condition. The only significant change was in
the MDF , with little difference in the others. Compared to

FIGURE 10. The confusion matrices of the 7-alternative forced-choice
task. (a) The case where all peaks are reproduced. (b) The case where the
peaks below the ADT are reduced.

FIGURE 11. Comparisons were made before and after reducing the
roughness layer concerning the percentage of correct responses. The
error bars represent the standard errors between the subjects. It can be
seen that only the MDF has a large variation.

the chance level, aluminum before reduction and leather after
reduction were below the chance level.
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IX. DISCUSSION
The aim of this subjective evaluation is to validate our
simplification approach through absolute and relative assess-
ments. The results indicate that the selective elimination of
imperceptible roughness layers from the texture models does
not significantly compromise their perceived similarity to
actual textures. In this section, the results obtained from our
experiments and the feasibility of the texture models based
on multiple regression models are discussed.

A. EVALUATION OF PEAK ELIMINATION
The ability to selectively omit non-perceptible roughness
layers without affecting perceived similarity is a significant
finding. These results suggest that the criteria for determining
the perceptual threshold based on the ADT were generally
adequate, although there is some need formore consideration.
PVC and leather showed notable differences in perceived

vibration magnitude after simplification. The decrease in
perceived similarity for specific textures shows the need for
a more conservative approach to defining the simplification
threshold. Due to their randomness, the white noise used for
the simplification process and experiments is not entirely the
same wave. The variation could have caused the amplitude of
some textures near the boundary to be above the threshold.
Sample vibrations of about one second were used for the
simplification process, but a longer span of samples was
needed.

B. REGRESSION MODEL-BASED VIBRATION GENERATION
FEASIBILITY
The results of both subjective evaluations suggest that
perceived differences, particularly for the amplitude, were
more pronounced than for frequency. This result implies
that while the overall vibration intensity might change as
a result of simplification, the removed specific frequency
components were not identified. This observation is crucial
for considering regression model-based approaches. There-
fore, a detailed model for each peak might be optional for
texture vibration generation. Instead, focusing on the spectral
centroid’s response to the velocity and deriving the individual
peak characteristics from this overarching trend could be a
more efficient strategy.

C. LIMITATIONS
In this study, we did not account for temporal variations,
which can be significant for inhomogeneous textures. The
impact of temporal variations may not be needed for
applications primarily concerned with material selection or
surface treatment in texture authoring. However, additional
methods for capturing these aspects would be necessary for
applications where precise temporal dynamics are crucial.

Furthermore, the regression analysis provided insights into
the physical interactions captured by the texture models.
However, a direct model between physical texture properties
(e.g., roughness and hardness) and model parameters remains
to be fully established. Future research could involve
creating regression models for textures with known physical

properties, thereby creating a texture authoring system based
on physical texture properties.

X. CONCLUSION
In this research, we presented a novel approach to creating
texture models using PEQ techniques. The texture models
were constructed on the basis of frequency, amplitude,
bandwidth, and noise ratio parameters, which have physical
significance. Additionally, a simplified modeling approach
was introduced to improve authoring and rendering efficiency
based on physical and perceptual rules.

Subjective evaluations, comprising both absolute and
relative evaluations, confirmed the effectiveness of the
simplification approach. It was demonstrated that excluding
imperceptible roughness layers did not significantly diminish
the perceived similarity of the texture models to actual
textures. This finding has practical implications for texture
modeling, making it more efficient while maintaining essen-
tial perceptual qualities.

This research also showed the potential of regression
analysis in modeling texture vibrations, revealing insights
into the relationship between surface interactions and
vibration properties. This knowledge could provide more
streamlined texture authoring approaches, particularly in
material selection and surface treatment.

In conclusion, this study contributes to tactile texture
modeling by offering a method that efficiently reproduces
actual textures while reflecting the fundamental principles of
surface interactions. The results have promising applications
in texture authoring and material selection in the industrial
field.
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