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ABSTRACT This review paper provides an in-depth analysis of the latest advancements in applyingMachine
Learning (ML) to solve theMulti-Agent Path Finding (MAPF) problem. TheMAPF problem is about finding
collision-free paths for multiple agents to travel from their source to goal locations in a known environment.
This method underpins a range of advanced, large-scale automated systems, notably in warehouse logistics.
The existing research on conventionalMAPF is extensive; however, recent developments inML have notably
augmented the capabilities of MAPF techniques. This research seeks to thoroughly investigate the emerging
field focused on using ML to help solve the MAPF problem. It aims to highlight the transformative potential
of ML in enhancing the efficiency and effectiveness of multi-agent systems in navigating and coordinating
in complex environments. Our study comprehensively examines the entire MAPF process, encompassing
environment representation, path planning, and solution execution.

INDEX TERMS Machine learning, multi-agent pathfinding, multi-robot system.

I. INTRODUCTION
Navigating a team of agents to their respective destinations is
a crucial technology in the rapidly evolving era of automation.
In fact, a wide range of systems can benefit from multi-agent
navigation technologies. A prime example is warehouse
automation using automated guided vehicles [1], [2], where
multiple robots are tasked with transporting packages. Here,
coordination among robots is crucial to increase the system’s
efficiency and avoid collisions that could lead to cascading
crashes or deadlocks that impair system throughput. This
fundamental problem manifests in various scenarios, such
as autonomous intersection management for self-driving
cars [3], railway scheduling for multiple trains [4], [5],
generating realistic motions for animated agents in video
games [6], planning airport surface operations involving
diverse mobile entities [7], automated vehicle parking [8],
swarm drone operation [9], to mention just a few.

The field of multi-agent navigation poses intricate chal-
lenges in artificial intelligence and robotics because, beyond
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the technical challenges encountered in single-agent nav-
igation, it introduces unique difficulties in orchestrating
coordination among multiple agents. These include design
choices of centralized versus decentralized control schemes,
dealing with entity heterogeneity, optimizing communication
methods, and determining the extent of shared knowl-
edge among agents. Among these multi-agent system-
specific challenges, an indispensable component is designing
coordinated movements for mobile agents. This aspect is
fundamentally encapsulated in the multi-agent path finding
(MAPF) problem [10], which is the focus of this paper.

A. MAPF DEFINITION AND BASIS
MAPF is a planning problem that aims to find collision-free
paths for multiple agents within a known environment,
enabling their transition from their respective start to goal
locations. The standard MAPF formulation includes a graph
representing the agents’ workspace and a set of start-goal
vertices. Agents are assumed to move synchronously, each
time step allowing them to remain idle or move to an
adjacent vertex. A solution to this problem is a collection
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of collision-free paths, each corresponding to an individual
agent, ensuring that no two agents simultaneously occupy the
same vertex or edge. Beyond finding feasible solutions, the
goal is generally to identify ‘‘good’’ solutions, characterized
by minimizing a solution cost. This cost could be the
makespan (i.e., the duration of the longest path among all
agents), the flowtime (i.e., the total sum of all agents’ path
costs; aka. sum-of-costs), or the sum of energy consumption
for robotic motions. Theoretical analyses have demonstrated
that solving the MAPF problem optimally with various
solution metrics is NP-hard [11], [12], [13]. This complexity
persists even when limiting the scope to planner graphs [14]
or grid structures [15], [16], and also in seeking bounded
suboptimal solutions within a small constant factor [17].
These findings underscore the computational challenges in
finding near-optimal MAPF solutions, particularly when
involving a large number of agents.

B. CUTTING-EDGE MAPF STUDIES
Despite the theoretical complexities of finding (near-)optimal
solutions, recent dramatic advances in MAPF algorithms
have made it possible to solve large MAPF problems.
Nowadays, optimal solutions can be found in less than
a minute for systems with tens of agents [18], [19],
[20], [21], [22], and plausible suboptimal solutions for
hundreds of agents in mere seconds [23], [24], [25], [26].
Remarkably, the latest work [27], [28], [29] can manage
thousands of agents within a few seconds on consumer-
grade laptops. These advancements have not only improved
planning capabilities but also expanded the research scope of
MAPF in related technological fields. This includes going
beyond the simplified assumption of uniform travel time
between vertices [30], [31], [32], extending MAPF to various
robotic systems like manipulators [33], [34], [35], moving
beyond the typical one-shot planning problems in MAPF [2],
[36], [37], joint planning with target assignments [38],
[39], [40], [41], and executing MAPF solutions with actual
robots under timing uncertainties [42], [43], [44], [45],
among others. This evolution broadens the horizons of
MAPF technologies, making them increasingly realistic and
practical for implementing efficient multi-agent navigation.

C. MAPF DEPLOYMENT CHALLENGES
Although the remarkable progress of MAPF technologies
has been made, their deployment in real-world scenarios still
encounters significant challenges. Even from a basic planning
perspective, achieving real-time, scalable, and near-optimal
solutions remains an intractable task [46], [47], detrimental
to major applications. Furthermore, real-world conditions
introduce complex issues, such as kinodynamic constraints
that challenge conventional MAPF methods, unstable net-
work environments that rule out centralized controls, which
most MAPF methods assume, and unpredictable human
interactions in the operational process. Robust and resilient
methodologies are also essential to ensure that a single robot’s

failure does not trigger a cascade of malfunctions, potentially
halting the entire system’s operation [48], [49]. Consequently,
there remains a considerable gap between cutting-edge lab-
scale studies on MAPF and their deployments in real-world
applications.

D. POTENTIAL FOR MACHINE LEARNING
On a parallel front, machine learning (ML), especially deep
learning, has demonstrated outstanding success in addressing
complex challenges across various fields [50]. Notable
achievements include the development of superhuman-level
AIs for games [51], [52], [53], breakthroughs in protein
structure prediction, a fundamental issue in biology [54],
the generation of realistic images [55], advancements in
text generation exemplified by large language models [56],
[57], and significant progress in robotics [58], [59]. These
accomplishments underscore the profound and transforma-
tive impact of ML in solving intricate real-world problems.

This success leads us to envision that the proper incor-
poration of ML techniques could significantly enhance the
development of more practical, scalable, and robust MAPF
technologies, bridging the gap between lab-scale research and
real-world applications. In fact, various studies integrating
ML and MAPF have emerged in recent years. These include
augmenting classical MAPF solvers withML [60], [61], [62],
[63], algorithm selection as an ML prediction task to identify
suitable MAPF algorithms for each situation [64], [65], [66],
developing decentralized and adaptive agent policies through
learning [67], [68], [69], and enhancing graph generation
through generative modeling to aid MAPF algorithms in
deriving superior solutions [70], [71], among others.

E. PAPER OBJECTIVES
To this end, this survey paper aims to systematically
organize the emerging technologies in the field of MAPF
enhanced by ML, emphasizing the synergy between them.
Our objective extends beyond simply documenting the
integration of classical MAPF planning with ML. Instead,
we aim to comprehensively cover relevant studies in this
domain, aligning with the motivations observed thus far.
Accordingly, this paper categorizes existing studies based on
three perspectives as follows:

• Representation, modeling and designing workspaces
and MAPF problem statements, for subsequent process-
ing.

• Planning, synthesizing a sequence of actions for agents
to execute.

• Execution, concerning the implementation of these
actions by agents, considering the various uncertainties
encountered in real-world environments.

Figure 1 offers a visual illustration, elucidating the intuitive
interconnections among these three aspects. By adopting this
framework, the paper presents a unified perspective on how
ML can augment MAPF and its associated technologies,
thereby shedding light on potential future integrations and
innovations.
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FIGURE 1. MAPF stages. Using a discrete (1) representation such as a grid or a roadmap generated by sampling-based motion planning methods, MAPF
algorithms perform (2) planning that finds a sequence of collision-free actions for each agent. The resulting paths are (3) executed by agents grounded in
the real world.

This paper stands out as the first comprehensive survey that
broadly explores how ML techniques can improve MAPF-
related challenges. While existing surveys on MAPF [72],
[73], [74], [75], provide valuable insights, they primarily
focus on methods without ML and thus differ from our scope.
Recent surveys [76], [77], [78], [79], [80] focus more on the
role of ML in planning for MAPF, especially in designing
agent policies that can replace centralized MAPF methods.
However, their scope is limited to this specific planning
perspective. In contrast, this review provides unique insights
into integrating MAPF and ML across all three dimensions
mentioned above, thus providing a holistic view of the field.

F. OUT OF SCOPE TOPICS
Since multi-agent navigation has a high impact on industrial
applications, there are many research areas not limited to
MAPF that aim to implement multi-agent navigation. Among
others, to avoid an explosion of discussion content, this paper
does not cover so-called reactive approaches, where agents
locally avoid collisions in continuous spaces. Typical meth-
ods of this class include velocity obstacles [81], [82], [83],
artificial potential field [84], [85], social force [86], dynamic
window approach [87], and control barrier function [88],
[89]. In general,MAPF-basedmethods are called deliberative
approaches, and they have advantages over reactive ones in
terms of theoretical guarantees for global agent coordination,
such as guarantees of collision-free, deadlock-free, and
optimality of agent motions. Meanwhile, reactive approaches
often excel at scalability for the number of agents and real-
time nature, allowing a team of agents to quickly adapt to
dynamic environmental changes.

Target/task assignment [90], deciding where agents should
go, which is a domain to which conventionalMAPF is closely
related as seen in [38], [39], [40], [41], is another topic not
covered in this paper. This decision is primarily due to our
focus on path planning systems themselves, and partially due
to the lack of literature on how ML can improve the joint
problems of target assignment and pathfinding.

G. PAPER ORGANIZATION
This paper is structured to first delve into representation,
followed by detailed discussions on planning and execution
strategies and concluding remarks. In addition to providing a
review of the literature, each section includes open questions
worthy of future investigation. It is noteworthy that the
sections on representation and execution encompass a less
substantial number of studies compared to the planning
section. This distribution is a deliberate reflection of the
current research landscape, and does not diminish the
thoroughness of our coverage across the entire field.

H. TERMINOLOGIES
In the context of this paper, the terms agents and robots
are used interchangeably without any notable distinction.
The term environment is defined as the space in which
the agents operate. A MAPF instance comprises a graph,
a collection of agents, and their respective start-destination
pairings. A MAPF problem is a typical planning challenge
that aims to identify a set of collision-free paths (referred to
as a solution) for a givenMAPF instance. AMAPF algorithm
or solver describes a method employed to address and solve
the MAPF problem.MAPF challenges encompass the MAPF
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problem and associated concerns, such as environment
representation and the implementation of solutions given
additional constraints.

II. REPRESENTATION
This section addresses how to represent MAPF problems
to implement efficient multi-agent navigation. Specifically,
we discuss three non-trivial perspectives and how ML
techniques can be applied to enhance each:

• Representation for Planning (Section II-A) focuses
on how to generate a suitable graph representation that
assists MAPF algorithms in deriving plausible paths
while sustaining the computational effort.

• Environment Optimization (Section II-B) focuses on
adjusting the layout of movable obstacles or other
artifacts such as shelves in the environment. This
strategic manipulation aims to enhance the effectiveness
of MAPF algorithms.

• Representation for Selection (Section II-C) addresses
how to represent a MAPF instance in order to select the
most suitable MAPF algorithm, considering the diverse
types of algorithms that exist.

A. REPRESENTATION FOR PLANNING
The initial step in addressing MAPF problems is to answer
the following question: ‘‘Where can agents move within the
environment?’’ Since MAPF is fundamentally a combina-
torial search problem in a discretized space, it necessitates
representing the agents’ environment with a graph G =

(V ,E), where V represents the set of vertices and E the
edges. This representation is crucial as it must accurately
reflect navigable areas, forming a foundation for developing
collision-free paths. More specifically, this task involves
effectively identifying obstacle-free spaces, denoted as Cfree,
within the configuration space. The configuration space C is
defined as the domain encompassing all potential states of an
agent. Subsequently, a graphG, often referred to as roadmap,
is constructed within Cfree to facilitate the generation of
obstacle-free paths.

Figure 1 includes two commonly used representations
for MAPF planning: (a) a lattice grid and (b) a roadmap
constructed by sampling-based motion planning (SBMP)
methods [91], such as the Probabilistic Roadmap (PRM) [92].
The lattice grid is simple to construct, while the latter
roadmap typically follows three steps: (i) Vertex sampling
samples vertices V from the agent’s collision-free configu-
ration space Cfree, given the known environment; (ii) Edge
creation connects sampled vertices with collision-free edges
E , and; (iii) Graph refinement post-processes the generated
graph G = (V ,E) to adapt agent or environment-specific
constraints and potential optimizations in vertex location,
edge cost, and direction. Both representations of grid and
roadmaps with SBMP methods establish a navigation graph
structure. This ensures agents remain collision-free from
static obstacles when positioned at a vertex and while
transitioning to another vertex via an edge.

The main challenge in representation for planning is
finding a balance between the environment’s graph density
and the availability of a viable solution, as illustrated
in Figure 2. On one hand, a very dense representation may
encompass the solution but slow down the planning due
to an expanded search space, impacting subsequent plan-
ning processes, including inter-agent collision management.
On the other hand, a sparser representation might expedite
the solving process but at the risk of lacking a valid solution.
In fact, the typical representations mentioned above struggle
with this challenging trade-off. Grid representations that are
too sparse risk having unreachable areas, while those that
are too dense require significant planning effort. In contrast,
sparse roadmaps with SBMP often overlook the specific
structural layout of the environment. For instance, SBMP
may result in varying sampling densities in corridors or fail
to add vertices in essential areas for agent navigation, but
denser roadmaps incur significant planning effort. Since this
challenge also occurs in single-agent navigation, researchers
have studied how to densify the representation of the
environment for single-agent navigation [93], [94], [95].
Multi-agent scenarios pose more complex challenges due to
interagent interactions.

In the following, we first explore non-ML approaches to
address this representation challenge and then examine how
ML can enhance this aspect.

1) NON-ML APPROACHES
The first attempt in this specific topic that we are aware of was
made by Henkel and Toussaint [96]. The work proposed to
optimize the generation of PRMs for MAPF using stochastic
gradient descent [97] and Adam [98] as the optimizer. This
strategy proceeds by continuously iterating through the vertex
sampling and edge creation steps while minimizing a custom
cost function that aims for sparser graphs, leaving enough
space between the edges while optimizing travel costs for
planning the MAPF solution.

Gao et al. [99] studies a graph embedding method in
complex environments, where the resulting graph is used in
subsequent planning. The study focuses on increasing free
space coverage by defining ad-hoc re-meshing operators,
along with mathematical optimization of the geometric rela-
tionship between vertices. The approach converts feasibility
conditions into differentiable geometric constraints, enabling
the mesh optimizer to find feasible solutions through con-
strained numerical optimization while maximizing metrics
for denser robot packing.

Okumura et al. [34] takes a holistic view of solving multi-
agent navigation, which transfers to diverse environments and
agent kinematics, such as ground robots of different sizes and
robotic arms in 3D space. In essence, the work proposed an
algorithm combining the gradual development of roadmaps
and motion planning for multiple agents, aiming to balance
the representation issue in Figure 2.

All these studies [34], [96], [99] leverage optimization
techniques without any learning process involved; they
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FIGURE 2. Representation trade-offs. Navigation graphs (i.e., roadmaps) are represented by small dots and thin lines, while
environments have multiple obstacles represented by black squares. The left roadmap is a ‘dense’ representation of the
workspace, which provides sufficient coverage of the environment and allows the solver to derive plausible solutions, but
potentially requires significant planning effort. In contrast, the right presents a ‘sparse’ one with a smaller search space, having a
risk of deriving bad solutions or failure of the planning.

showcase the effectiveness of environment representation
in MAPF techniques and inspire the advancement of more
sophisticated methods, detailed in the following section.

2) ML APPROACHES
The literature on this topic is still sparse; this part provides
a detailed review of two significant studies. The essence
of these works is the extension of roadmaps with SBMP
to sample sparse yet promising locations for subsequent
planning. These regions are identified through offline
compute-intensive methods and leveraged in online graph
generation, which can be cast as ML prediction problems.

We first examine the construction of Avoidance Critical
PRM (ACPRM) [70], which enhances traditional PRM by
learning to identify critical areas in the environment for better
obstacle avoidance. It defines ‘avoidance criticality’ as the
likelihood of an agent pausing due to dynamic obstacles,
with higher criticality in more challenging areas like narrow
aisles. ACPRM’s self-supervised learning method classifies
areas based on their avoidance criticality. It significantly
accelerates the search and planning process in multi-agent
scenarios up to five orders of magnitude over uniform grid
sampling.

Another interesting approach is the construction of
Cooperative Timed Roadmaps (CTRMs) [71], which aims
to streamline planning by balancing graph sparsity and
high-quality solutions. This two-step process involves a
Conditional Variational Autoencoder (CVAE) [100], [101]
learning to predict agents’ next promising locations during
offline training. During inference, a combination of the
CVAE and a random walk model constructs CTRMs for
MAPF. The CVAE leverages previous solutions to predict
agents’ movements, considering other agents’ presence. The
random walk model, integrated during inference, enhances
CTRMs’ adaptability beyond the initial training data.

Open Question 1: What can be beneficial criteria and
reliable benchmarks for assessing the quality of environment
representation?

A good environment representation has varying criteria,
as each study uses different optimization metrics, such as
maximizing the coverage of the workspace [99] orminimizing
planning effort [71]. Moreover, additional constraints like
‘‘move parallel to walls’’ [96] may be introduced. Identifying
and formulating useful metrics is valuable in itself. It is also
beneficial for the research community to have a benchmark
to assess the qualification of environmental representation
generation methods, which contain challenging instances
from real-world applications such as narrow aisles and
logistics environments with highways.

B. ENVIRONMENT OPTIMIZATION
In typical MAPF studies, environments are often modeled
with static layouts that have been predetermined. However,
real-world applications frequently pose a different challenge:
the design of effective environment layouts for multi-agent
navigation. The significance of these layouts is paramount
as they include various elements that define navigation
graphs, such as obstacle locations, shelf positions, and
pickup-delivery points in package delivery tasks, which
are sometimes modifiable. A carefully designed layout
significantly enhances the performance and efficiency of
MAPF solvers by complementing their capabilities. This
leads to the crucial task of optimizing logistics facility layouts
in conjunction with MAPF solvers.

The concept of environment optimization considers the
facility layout as a key component in system-wide opti-
mization. It entails adjusting the layout to optimize the
performance of selected MAPF solvers. This optimization
can be implemented in two ways [102], [103]: offline,
involving a one-time optimization followed by the deploy-
ment of a MAPF solver, and online, which includes the
dynamic rearrangement of obstacles as agents move, aiming
to minimize specific costs, such as flowtime. This dual
strategy for layout optimization is illustrated in Figure 3.
Traditionally, layout design in this context has been a

manual process conducted by human logistics experts. While
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FIGURE 3. Environment layout optimization following the formulation in [102]. Black cells represent movable obstacles. Offline optimization adjusts the
layout before applying the MAPF algorithms, while online optimization continuously changes the layout as agents move.

this method can be effective, it may introduce subtle biases
that are hard to detect or recognize and could compromise
system performance. An alternative approach involves using
heuristic search methods to identify effective environment
layouts. Indeed, the joint optimization of environments
and MAPF has been studied [104], [105], where agents
maneuver obstacles to reduce bottlenecks and create shorter
paths. However, such search-based strategies are limited to
smaller environments, as larger ones lead to combinatorial
explosions. This limitation underscores the potential of ML
in optimizing such environments.

Several studies have demonstrated the potential of ML
in enhancing the optimization of environments. Gao and
Prorok [102], [103] introduce learning-based methodologies
to optimize obstacle layouts. These methodologies aim
to improve the performance of multi-agent navigation in
both offline and online scenarios mentioned above. More
specifically, these methods use model-free reinforcement
learning to adjust the locations of obstacles, which involve
encoding environments with deep learning methods such as
convolutional neural networks or graph neural networks.

Another example of environment optimization with ML
is the work by Zhang et al. [106], [107]. Their study focuses
on optimizing warehouse layouts, particularly for offline
scenarios and lifelong MAPF, where agents’ goals are con-
tinuously updated. The environments are represented as grids
to assign specific functions, like shelf locations, to each grid
cell. To efficiently generate these environment layouts, the
initial study [106] combines a deep surrogate model with an
evolutionary algorithm that relaxes the computational burden
of the optimization process. The follow-up study [107] uses
neural cellular automata [108] to create layouts of varying
sizes.

Open Question 2: What are efficient transition mecha-
nisms between offline and online environment optimization?

While offline optimization benefits from more computation
power and available processing time, it lacks reactivity to
real-time environmental changes. On the other hand, online
optimization has access to such information under time con-
straints to generate more efficient layouts. Offline approaches
that consider the possibility of failures or changes for more
efficient online optimization will be beneficial to real-world
scenarios. Similar techniques were studied for the planning
phase of the MAPF problem [45], [109].

C. REPRESENTATION FOR SELECTION
Given a set of algorithms called algorithm portfolio and a
representation of the problem instance, an algorithm selection
problem is about choosing the best-suited algorithm for the
specific input instance [110]. The definition of ‘‘best suited’’
depends on the metric we aim to optimize. Selecting an
appropriate algorithm becomes crucial in scenarios where
distinct algorithms exhibit varying strengths and weaknesses
contingent upon the specific problem instance. The strategic
choice of an algorithm, tailored to the unique characteristics
of each instance, can significantly enhance the efficiency and
effectiveness of the problem-solving process.

ML techniques can benefit algorithm selection due to
their feature extraction capabilities that help automate the
selection process [111]. This can help uncover relevant
features previously unknown and avoid the bias introduced
by hand-crafted feature selection. Furthermore, ML-powered
algorithm selection simplifies the addition of more algo-
rithms to the portfolio with additional training/fine-tuning,
which helps create a portfolio with complementary strengths.

This paradigm, ML-powered algorithm selection, proves
particularly advantageous for MAPF because:

• A vast array of MAPF algorithms exists, ranging
from optimal approaches [18], [19], [20], [21], [22]
to unbounded suboptimal strategies [23], [24], [25],
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[26], [27], [28]. This diversity enables the creation of a
comprehensive algorithm portfolio.

• No universally dominant MAPF algorithm has been
identified that performs optimally across all domains
thus far [46]; hence, we must carefully select a suitable
algorithm for each instance.

• Additionally, several algorithms are associated with
hyperparameters, making the case-by-case manual tun-
ing of appropriate parameters challenging.

Thus, we discuss the following ML challenge: Which solver
is best suited for the particular MAPF instance at hand?

We put this as a representation problem because algorithm
selection entails a significant challenge in representing
MAPF instances for ML input. For instance, some studies
represent MAPF instances as images [64], [65], [66], [112],
while others utilize manual features [112]. In the following,
we first describe a general view of how MAPF algorithm
selection happens with different approaches taken in the
literature, followed by open questions.

1) METHODOLOGY REVIEW
As illustrated in Figure 4, algorithm selection for MAPF
starts with representing a MAPF instance and then trains ML
functions such as neural networks to predict the best MAPF
algorithm. The algorithm portfolio is typically constructed
from optimal MAPF algorithms, such as [22], [113], [114],
and [115]. Once trained, such a function can be used as
an instant oracle, providing which MAPF algorithms to use
depending on the input instance. Typical MAPF situations
aim tominimize solution costs, such as themakespan (i.e., the
maximum travel time) or the flowtime (i.e., the sum of travel
time), while ensuring a solution within given time constraints.
Therefore, the best algorithm to be chosen is the one that
exhibits the minimum metric while also achieving the fastest
solving speed. In specific situations where only optimal
algorithms are available [64], [65], [66], [112] depicting
the same solution quality, the selector is therefore tasked to
choose the fastest algorithm for the given instance.

Sigurdson et al. [64] conducted the first study on this topic,
which represents the MAPF instance as an image of the
occupancy grid with green and red dots representing agents’
start and goal location. The work uses AlexNet [116], a pio-
neering neural network architecture for image classification,
to classify an input as ‘‘best solvable using X algorithm from
our portfolio.’’

Several studies then enrich the MAPF algorithm selection.
For instance, Kaduri et al. [112] proposed two algorithm
selectors. One uses the exact representation from [64]
by replacing AlexNet with a modified VGG-16 architec-
ture [117], another prominent image classification model.
The other selector relies on manually selected features and
an XGBoost model for the prediction. The study done by
Ren et al. [65] based itself on the representation in [64],
hence using the image representation, while overlaying the
single-agent shortest paths for each pair of start-goal. Alkazzi
et al. [66] later developed more efficient and simpler neural

network designs, using the same representation technique as
referenced in [65].

2) CHALLENGES
Input instances can be of varying shapes with different
numbers of agents, obstacle density, and possible maximum
makespan. As a result, effectively representing MAPF
instances for ML models poses non-trivial challenges.

For instance, the issues for image representation stem from
attempting to encapsulate spatial and temporal features on
a 2D plane, thereby constraining the temporal attribute’s
value. Additionally, distinguishing between different agents
becomes challenging, aggravating the path overlap issue.
Figure 5, which is taken from [65] and [66], presents a
concrete example; we can see how the density of agents
plays a negative role in the clarity of the representation. This,
in turn, hinders the performance of the deep learning model
trying to extract relevant features for the selection process.
Themore overlap there is for the single-agent paths, the lower
the quality of the input, hence less relevant features and lower
selection performance.

Open Question 3: What is the appropriate input instance
representation for algorithm selection?
Manual features may bias the learning process [112] while
current 2D image representations do not scale to instances
with a higher density of agents [65], [66] and are insufficient
to relay temporal information. A viable approach might entail
employing a 3D representation or assigning a unique color to
each agent. In a 3D setup, each slice of the input represents
the spatial configuration of the problem at a specific
temporal checkpoint, which helps differentiate between path
intersection and actual agent collision. Meanwhile, this may
require more advanced model architectures that act on sparse
input.

Open Question 4: What is the appropriate representation
for MAPF on non-grid worlds?
Previously presented approaches have focused on a 2D
representation for grid-world environments [64], [65], [66].
This keeps non-grid worlds as an untackled open challenge.

III. PLANNING
The planning phase in MAPF is designed to generate
collision-free paths for each agent to reach its goal. These
paths are represented as sequences of vertices and edges
within a graph, spanning obstacle-free spaces (i.e., Cfree),
as prepared in the previous section. The essence of MAPF
lies in deriving such solution paths, making this domain’s lit-
erature extensive and rich. However, two primary challenges
arise.

The primary challenge lies in the fact that, even with
considerable progress in MAPF algorithms, achieving real-
time, scalable, and nearly optimal planning methods remains
an elusive ultimate goal. Real-world applications such as
warehouse automation [1] demand methodologies capable
of managing hundreds or more agents efficiently within a
limited and short time frame. Consequently, the practical
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FIGURE 4. MAPF algorithm selection generic steps. Some example representations for MAPF instances are shown at the
top. Using the given representation, a learning algorithm (i.e., selector; middle) selects the ‘‘best’’ MAPF algorithm from the
available candidates (i.e., portfolio; bottom).

FIGURE 5. Overcrowded input representation from MAPFAST [65] dataset.
The color scheme follows Figure 4.

deployment of MAPF algorithms still faces significant
challenges.

Another challenge arises from the fact that, although
centralized approaches, which dictate all agent actions based
on complete information, have been extensively studied, real-
world situations often require decentralized control systems,
particularly in unstable network infrastructure environments.

In these schemes, each agent independently decides its
actions based on local observations. Furthermore, decen-
tralized approaches are particularly valuable in dynamic
environments with frequently changing obstacle layouts,
requiring agents to adapt to these changes autonomously.
While decentralized MAPF methods exist, as proposed
by [118], [119], their reliance on complex, ad hoc rules often
poses deployment challenges.

TwoML-assisted approaches have emerged in recent years
to overcome these challenges:

• Augmenting Existing Solvers: Leverage ML to
enhance the optimization process in traditional non-
ML algorithms. The goal is to improve these solvers’
efficiency, scalability, or adaptability.

• Developing Effective Decentralized MAPFMethods:
Employ ML techniques like imitation or reinforcement
learning to achieve decentralized agent behaviors. These
behaviors are influenced by the agents’ local observa-
tions and, if applicable, by their interactions with one
another, to develop more responsive and self-governing
decentralized MAPF approaches.
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The subsequent parts will detail these strategies, represent-
ing pivotal progress in MAPF and opening new prospects for
more efficient and adaptable path-finding solvers.

A. AUGMENTING EXISTING SOLVERS
The integration of ML into existing algorithms has been
an active research topic. For instance, such integration has
long been captivating in operations research, as shown in
numerous studies [120], [121], [122], [123]. Recent develop-
ments in deep learning have further advanced these methods.
Examples include learning to branch [124], [125], [126],
[127], [128], [129], learning a node selection strategy [130],
and learning to search from scratch [131].
Reflecting the progress in operations research, the incor-

poration of ML into MAPF algorithms presents a substantial
opportunity for advancement in this field. The core idea
primarily involves replacing traditional, manually crafted
heuristics or components with counterparts derived through
ML algorithms. These ML-based components are developed
by training on large datasets generated through intensive
offline computational processes. The following section
elaborates on specific instances of this approach.

1) ENHANCING CONFLICT-BASED SEARCH
A widely recognized and exemplary optimal MAPF
algorithm is Conflict-Based Search (CBS) [113]; hence,
several studies enhance CBS with ML.

CBS derives a solution by employing a two-level search,
typically referred to as a high- and low-level search. While
the high-level search manages collisions between agents,
the low-level search computes single-agent paths respecting
constraints posed by the high-level. Once the low-level search
returns paths, the high-level search checks for collisions
in the proposed paths. When a collision (i.e., conflict) is
detected, the high-level search divides the search space into
two subspaces, one of which prohibits the use of the colliding
location for one of the two agents in the collision, and
the other prohibits the use of the location for the other
agent. This division is done by constructing a binary tree
structure called a conflict tree, where each node specifies
agent spatiotemporal constraints. For example, if agents 1 and
2 collide at vertex E at timestep 1, one of the nodes created
will prohibit agent 1 from being at vertex E at timestep 1. This
process proceeds until finding collision-free paths.

There are various design choices in implementing CBS
where ML can play a crucial role. For instance, selecting
target conflicts to resolve significantly impacts the efficiency
of the search [132], [133]. While conventional methods
rely on manually designed strategies for conflict selection,
Huang et al. [134] introduced a learning-based method for
finding better target conflicts beyond handcrafted rules.
Another example where ML helps CBS is in its subop-
timal variant [135], which allows flexibility in selecting
high-level nodes based on user-defined evaluation functions.
For instance, [60] uses a support vector machine (SVM),

and [63] employs a Transformer-based architecture [136] to
learn effective heuristic functions that accelerate CBS, again
beyond manually designed heuristics.

2) ENHANCING PRIORITIZED PLANNING
Prioritized planning [6], [137] is another widely-used MAPF
algorithm focusing on planning based on assigned priorities
per agent. It sequentially plans paths for each agent while
avoiding conflicts with paths planned for previous higher-
priority agents. The order in which agents are planned
significantly impacts the success rate and the quality of
the solution. Consequently, various studies have explored
the effectiveness of different heuristics in determining these
priority orders [138], [139], [140].
ML has been applied to enhance this prioritization

process. For instance, Zhang et al. [61] adopted SVM to
effectively learn and establish agent rankings. In contrast,
Wang et al. [141] explored the use of genetic algorithms to
synthesize priority functions.

3) ENHANCING OTHER MAPF SOLVERS
Viramni et al. [142] extends M∗ [18], a dynamic conflict
resolution approach similar to CBS, with ML. Specifically,
it incorporates imitation learning to develop individual
agent policies aware of interactions among multiple agents.
Huang et al. [62] extend the large neighborhood search for
MAPF [143], which progressively improves the quality of
solutions by modifying the paths of a subset of agents. In a
nutshell, the work splits agents into subsets to be replanned,
and a learned policy that decides which subset, if replanned,
would lead to the most significant positive difference in the
tracked metric. The recent work by Yan and Wu [144] uses
a deep learning model to identify the effective subset to be
selected.

4) CHALLENGES
The techniques mentioned above aim to accelerate MAPF
algorithms. Generally, these approaches share a common
challenge, which can be stated as follows:

Open Question 5: How can learning from experience be
transferred from smaller to larger instances?
In other words, ‘Is it possible to learn small-scale coor-
dination patterns for large-scale systems?’ [145]. Denser
environments often exhibit behaviors not observed in settings
with fewer agents, potentially leading to significant data
distribution shifts. This shift can challenge ML models in
adapting to such environments.

Furthermore, the enhancement of existing algorithms
frequently raises the following question:

Open Question 6: How can we identify and extract effec-
tive features to maximize the performance of ML-assisted
MAPF algorithms?
Hand-crafted features [60], [61], [62], [134] offer
human-understandable insights and are preferred from an
explainability perspective. However, this approach might
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limit the exploration of other potentially valuable features.
Several studies [63], [142] avoid the explicit use of hand-
crafted features. However, finding the optimal feature
extraction method often involves a process of trial and error.

B. LEARNING DECENTRALIZED POLICIES
In practical MAPF applications, the implementation of a
centralized controller often faces significant challenges.
These include unstable network environments, restricted
network coverage, and dynamic environmental conditions
that require robots to adapt based on sensory inputs. Although
robust planning methodologies to tackle these issues are
a focus of ongoing research, as will be elaborated in
the upcoming section on execution, decentralized planning
presents itself as a viable and promising solution. Under this
approach, agents autonomously decide their actions, relying
on local observations, improving adaptability and resilience
in varying conditions.

Traditional decentralized approaches, akin to those out-
lined in works by [118] and [119], typically utilize com-
plex, ad-hoc rules for action determination. This approach
often makes them overly sensitive to specific problem
formulations. In contrast, learning-based strategies offer
a robust alternative. These involve the formulation of
decentralized policies wherein each agent independently
learns to execute actions that collaboratively steer the system
toward the desired objective more efficiently. Modern edge
devices’ enhanced computational capabilities have made
these learning-based methods increasingly feasible for real-
world deployment.

This section thus explores diverse learning strategies that
utilizeML to tackle theMAPF challenge from a decentralized
perspective — specifically, the discussion centers on the
advancements detailed in Table 1. We note that learning
policies in continuous domains are out-of-scope of this
review, i.e., studies where agents’ actions are not restricted
to graph structures such as [146], [147], and [148].

1) OVERVIEW
Generally, decentralized, learning-based approaches are
structured to develop a policy that interprets surrounding
information as input, typically represented as a field-of-
view (FOV). This policy then decides the action for the
next timestep in a grid-world context, which could include:
{UP, DOWN, LEFT, RIGHT, or WAIT}. Figure 6 illustrates
this concept. These learning methodologies encompass the
following paradigms:

• Imitation learning (IL) mimics ideal agents’ behavior
modeled by centralized MAPF algorithms. Optimal
algorithms are often employed for demonstration pur-
poses, but near-optimal and sub-optimal algorithms can
also be utilized.

• Reinforcement learning (RL) develops a policy maxi-
mizing expected rewards. The reward structure typically
includes objectives like collision avoidance and goal
achievement with minimal actions. RL for MAPF is

viewed as a decentralized partially observable Markov
decision process [158].

The IL approach aids in stabilizing the learning process,
whereas RL has the potential to discover more effective
policies, potentially surpassing biases in existingMAPF algo-
rithms. These approaches are not mutually exclusive; in fact,
many studies integrate IL and RL in a hybrid fashion [67],
[151], [154], [157]. In addition, some approaches employ
curriculum learning (CL) [149], [153], [156], which feeds
learning instances to IL/RL algorithms while gradually
increasing the difficulty of the instances. This contributes to
stabilizing the learning process.

The core perspective for these learning-based decentral-
ized methods is aggregating information from the environ-
ment and other agents to achieve coordinated behaviors.
Some methods are observation-only, in which each agents
only see the locations of other agents within the FOV. This
approach is attractive for deployments due to its minimal
sensing assumptions. Meanwhile, other studies explicitly
assume communication between agents to facilitate more
sophisticated coordinated behaviors. When incorporating
communication assumptions, three critical aspects must be
considered: when to communicate, whom to communicate
with, and what to communicate. Regarding the ‘when,’ all
the studies we have reviewed employ communication at
each timestep. Meanwhile, the ‘whom’ and ‘what’ vary
significantly across different methods. Deterministic rules
can be utilized for these purposes, but incorporating learning
approaches, such as learning the contents of communication
or identifying the optimal communication partners, also
offers sensible options.

2) THE FIRST STUDY – PRIMAL
To provide a concrete example of learning-based decentral-
ized approaches, we first illustrate a pioneering work named
PRIMAL [67], which employs a decentralized policy for
MAPF with the following technical components:

• Observation: The agent observation in PRIMAL con-
sists of a square field-of-view (FOV) with four channels,
representing binary maps of static obstacles (occupancy
grid), positions of all agents, goals of neighboring
agents, and the ego agent’s own goal. These are depicted
in Figure 7. Additionally, as input to its architecture,
PRIMAL utilizes a vector directed from the ego agent
to its goal, functioning essentially as a compass to help
steer the agent towards its goal.

• Aggregation of Other Agents’ Information: While
PRIMAL is explained as a method without explicit
communication, it implicitly assumes access to other
agents’ goal information, potentially through some
oracle entity.

• Action: Agents execute discrete actions within the grid
world: moving one cell in one of four directions or
remaining in the current cell.

• Learning Paradigm: PRIMAL employs a dual
approach combining imitation learning (IL) and
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FIGURE 6. Generic view of learning-based decentralized approaches without communication.

TABLE 1. Overview of representative learning-based decentralized approaches. The existing studies rely on imitation learning (IL), reinforcement learning
(RL), curriculum learning (CL), or a combination of these, as indicated in the learning column. These methods typically assume communication between
agents, implicitly or explicitly, so that they can coordinate. The table summarizes ‘what’ to communicate with ‘whom,’ while in some methods, the agents
rely on local observations only. Each method targets one-shot MAPF, lifelong variants, or both. In RL methods, reward design is critical to induce effective
policies, and various schemes have been tested as summarized. The table uses ‘↓’ for negative reward, ‘↑’ for positive, ‘→’ for the zero. Each method has
typically been evaluated in terms of ‘success rate’ and ‘path length’ (i.e., flowtime), while some studies evaluate how many agents reach the goal without
colliding. The table was partially inspired by [80].

reinforcement learning (RL). During training, the model
alternates between IL and RL for each step to refine
the agent policy. IL is conducted through behavior
cloning from an expert algorithm [18]. RL is performed
with the Asynchronous Advantage Actor-Critic (A3C)
method [159].

• Reward: In the RL phase, a substantial reward is
given when all agents reach their goals, and a penalty
is applied for each action taken other than staying
in place. The reward structure also includes penalties
for collisions and obstructing other agents’ paths,
thereby incentivizing agents to avoid hindering others’
progress.

Following this seminal work, numerous learning-based
MAPF methods have emerged. Most work uses the same
action space as PRIMAL, but other technical components
have variations. The subsequent sections discuss several
distinctive approaches.

3) METHODOLOGY DETAILS
PRIMAL underwent further development in [151], leading to
an evolved version named PRIMAL2. This iteration not only
builds upon the foundational principles of PRIMAL but also
introduces enhancements such as an enriched observation
space. Moreover, PRIMAL2 has been specifically adapted
for lifelongMAPF [2], an essential variant of MAPF in real-
world settings. In lifelong MAPF, agents are immediately
assigned new goals upon reaching their current ones,
requiring uninterrupted, continuous navigation.

Communication-less approaches provide attractive alter-
natives for real-world deployment. Examples include MAP-
PER [149] and G2RL [150], which consider other agents
as dynamic obstacles. Similar to PRIMAL, they incorporate
an FOV in their observation space, but here, the locations
of other agents are treated as dynamic obstacles. These
methods predominantly rely on RL for training. In addition,
MAPPER integrates an evolutionary algorithm to enhance
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FIGURE 7. PRIMAL [67] observation representation considering a
3 × 3 agent FOV.

the refinement of agent policies. Another example of
communication-free approaches can be seen in studies by
Skrynnik et al. [69], [160], [161].

The application of graph neural networks (GNNs) in devel-
oping adaptive multi-robot systems represents an emerging
and rapidly growing field of research. The application of
GNNs to MAPF was first explored by Li et al. [68], [152]
(i.e., GNN and MAGAT in Table 1). In their research,
GNNs are employed to aggregate the intentions of other
agents, supporting decision making. The inter-agent commu-
nications, learned through neural networks, involve encoded
observations within the agents’ FOV. It is noteworthy that
these studies exclusively utilize IL as their learning strategy.

Not limited to GNNs, various techniques have been
explored to integrate the intentions of other agents.
SACHA [156] incorporates a cost-to-go map of other agents
within the FOV, which extends beyond the single shortest
path guidance employed in methods like MAPPER [149]
or G2RL [150]. DHC [153] employs an attention-based
architecture to learn communication strategies with agents
within the FOV. Subsequent work [153] introduces selective
communication, focusing on learning which agents to
communicate with. PICO [154] also learns whom to
communicate with, taking the form of communication
topology, drawing inspiration from prioritized planning [6]
for effective communication. In contrast, SCRIMP [157]
assumes global communication among all agents, enabling

successive planning while minimizing the FOV size to a
3 × 3 grid.

Policy learning in these systems predominantly employs
RL. Techniques vary, with some using independent
Q-learning (IQL), while others find success with soft actor-
critic (SAC) or proximal policy optimization (PPO) [162].

a: REWARD SHAPING
The essence of RL is optimizing a policy through rewards as a
response to agent actions. Table 1 presents the various reward
schemes used in RL-based methods. These schemes typically
include penalties for movement actions and collisions. While
some methods provide rewards for achieving sub-goals,
which are determined using heuristic search strategies, others
introduce penalties for actions that hinder the progress of
other agents (i.e., blocking), actions that lead to oscillatory
behaviors (i.e., livelock), or actions that stray from the
optimal path for a single agent (i.e., off-route). Notably,
FOLLOWER [69] implements a straightforward reward
structure, successfully avoiding complex reward shaping
while achieving efficient agent coordination. This is a
consequence of the effective utilization of planning with
heuristic search.

4) EVALUATION METRICS
As we have seen, the attractiveness of learning-based MAPF
methods is evident. However, there is a significant difference
in the evaluation metrics used in various studies. Table 1
outlines how each study evaluates its respective method.
The most commonly used metric is the success rate of
the planning, which measures how frequently the solver
can completely resolve the problem without any collisions.
Quality of solutions is evaluated using metrics such as path
length (i.e., flowtime), makespan, or throughput in lifelong
MAPF, paralleling metrics used in traditional, non-learning-
based MAPF methods. Additionally, some studies consider
the maximum number of goals agents can reach within a
given time limit, while others assess the collision rate, which
quantifies the number of collisions with static obstacles
or other agents. These criteria are particularly relevant to
learning-based MAPF, as they are inherently inapplicable to
centralized MAPF methods.

5) SIMULATOR ENVIRONMENTS
Learning paradigms heavily rely on simulated environments,
and several factors should be given special attention,
as described below:

• Behavior upon reaching the goal: Various approaches
exist in handling agents’ behavior upon reaching
their goals. Some studies assume agents vanish upon
arrival [151], others continually assign new targets [69],
or the agent remains as a physical entity, capable of
moving again to assist in unblocking other agents [67].

• Agent’s Possible Actions: In certain studies, the ML
models must choose from a list of actions, including
invalid options such as actions that lead to collisionswith
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static obstacles [151], [153]. Conversely, other studies
present the ML models only with a list of valid actions
to choose from [67].

• Field-of-ViewConstruction:Decentralized approaches
typically emphasize partial observability, where each
agent possesses a limited FOV surrounding its position.
This assumption is driven by the aim to enable a more
realistic and decentralized deployment in real-world
scenarios. Agents’ observations are usually categorized
as either a bird’s-eye-view (BEV) of the agent’s
surroundings [67], [151], [153], [155], [156], [157] or
a first-person-view (FPV) based on sensor data [149],
[163]. In a BEV setup, agents are obscured by obstacles
like walls, but they would still be visible within the
agent’s FOV.

• Synchrony of agent movement: Most MAPF research
assumes synchronous actions for each agent at every
timestep. However, this assumption can be challenging
for robot deployments. Therefore, the consideration of
asynchronous movements may be beneficial.

These details significantly impact learning performance
and benchmarking reliability, making the learning environ-
ment’s uniformity crucial. While the MAPF benchmark [10]
is commonly used for performance assessment, each study
often relies on its unique environment to simulate agent
dynamics, leading to varied underlying assumptions.

Open Question 7: Which benchmarking suite of envi-
ronments and evaluation metrics would best reflect the
performance of different techniques?
Considering all the differences in simulation environments
and the diverse set of evaluation metrics, fairly comparing
different techniques is challenging. Unifying those aspects
would make benchmarking reliable and reproducible, helping
faster progress in the field.

To support the development of learning-based MAPF
methods, Figure 8 illustrates a brief list of open-source
simulators that can serve as a reliable foundation. It is
important to recognize that learning-basedMAPF approaches
necessitate scalable simulation environments, especially
when simulating scenarios with hundreds or more agents.
This requirement often excludes general-purpose environ-
ments like Unity, which facilitate 3D ML agents [164], due
to their high resource demands.

• MiniGrid and MiniWorld [165] are efficient and
user-friendly simulators initially developed for the
BabyAI challenge. This challenge emphasizes grounded
language learning through human interaction [166].
MiniWorld, in particular, allows for trainingmodels with
reduced complexity while still offering the first-person
view (FPV) observation for specific research. Both
simulators can be slightly modified to accommodate
MAPF tasks, enabling multi-agent simulation.

• Flatland [4] specifically addresses train pathfinding
challenges, including situations involving train mal-
functions. It achieves a performance of 156 FPS with
80 agents [167].

• RWARE [168] is designed for warehouse applications,
tackling the Multi-Agent Pickup-and-Delivery prob-
lem [36]. It supports partial observability and has been
reported to operate at approximately 1, 255 FPS in
smaller settings with four agents.

• VMAS [169] distinguishes itself as the only vec-
torized framework for general-purpose Multi-Agent
Reinforcement Learning (MARL) tasks featuring GPU
acceleration.

• POGEMA [167] is purpose-built for addressing
partially-observable MAPF challenges. It showcases
an impressive capability of 83,000 FPS in scenarios
with 80 agents. Moreover, POGEMA integrates with
various MARL frameworks like PettingZoo [170],
PyMARL [171], and SampleFactory [172]. This
integration greatly lowers the barrier to entry for
researchers and offers broad customization options.

6) CHALLENGES AND OPEN QUESTIONS
a: COMMUNICATION
The essence of solving MAPF involves integrating other
agents’ intentions into the ego-agent’s decision-making
process. Some methods employ implicit communication,
depending solely on observing other agents’ relative posi-
tions. Conversely, explicit communication strategies involve
agents communicating at each timestep to coordinate their
actions better.

Open Question 8: Which communication strategy is
most effective in real-world environments with their inherent
challenges?
Real-world applications often encounter limitations due to
the communication medium’s speed, range, synchronicity,
and vulnerability to external interference. These limitations
may make certain learning-based methods impractical for
real-world deployment. Therefore, it is crucial to consider
these constraints when choosing a communication strategy
for MAPF scenarios in real-life settings.

Implicit communication methods are appealing for these
reasons, though mastering complex coordination remains
a challenge. Moreover, communication might be restricted
or prohibited in specific real-world situations for security
reasons. This necessitates reliance solely on implicit commu-
nication for agent coordination.

Open Question 9: How can effectively learned implicit
communication minimize the need and overhead of explicit
communication while achieving comparable outcomes?
Studies such as [69] and [161] demonstrate that state-of-
the-art decentralized behavior can be achieved by utilizing
only local observations per agent without the need for explicit
communication.

b: IMITATION LEARNING (IL)
While most approaches utilize IL, they are often confined to
merely naive behavior cloning. In contrast, the ML literature
presents more advanced methods, e.g., [173] and [174].
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FIGURE 8. Snapshots of open-source simulation environments.

Open Question 10: How could more advanced IL
methods improve the performance of agent-based approaches
beyond naive behavior cloning (BC)?
BC is commonly employed due to its straightforward imple-
mentation. However, it shows a slight boost in performance
compared to RL alone. Would more advanced techniques
demonstrate a significant advantage over BC in MAPF
scenarios?

c: REINFORCEMENT LEARNING (RL)
As shown in Table 1, most RL-based approaches depend
on complex reward shaping schemes currently necessary for
stable learning. However, it is also appealing to learn effective
policies using a simple reward structure, like AlphaZero [51]
and its adaptation to decentralization MAPF [161], eliminat-
ing manual parameter tuning.

Open Question 11: How can we avoid reward shaping to
eliminate human bias in the learning process?
Avoiding reward shaping allows the learning process
to autonomously determine agents’ behaviors, potentially
leading to the discovery of innovative problem-solving
strategies. Future methodologies could significantly benefit
from incorporating such unbiased reward strategies.

d: CURRICULUM LEARNING (CL)
Considering that CL has often been employed to stabilize
the learning process, it becomes clear that assessing the
difficulty of MAPF instances and creating a dataset with
progressively increasing difficulty levels would benefit the
research community. Figure 9 displays three environments
with identical obstacle densities, illustrating that Figure 9b,
with its narrow corridors, may lead to unsolvable instances.
In contrast, Figure 9a and 9c pose less significant challenges
to MAPF algorithms. This indicates that simply generating

FIGURE 9. Environments with the same 25% obstacle density, but with
different difficulty levels of the resulting MAPF instances.

random environments with varied obstacle densities does
not guarantee the production of more challenging instances.
Consequently, this raises the question of what factors truly
determine the difficulty of a MAPF instance. The differences
in environments, their impact on benchmarking, and the
importance of diverse datasets are crucial challenges that
hinder the development of more reliable and practical
research in agent-based approaches.

Open Question 12: How can one construct a dataset of
MAPF instances that progressively increases in difficulty?
By generating new datasets specifically designed for learn-
ing, we can develop highly adaptable models suitable for any
given instance. This methodology was applied in the bipedal-
walking-obstacle-course domain [175], where the generation
of environmental challenges and the optimization of agents to
overcome these challenges were successfully demonstrated.
Such an approach facilitates the transfer of solutions across
different problems, leading to more efficient problem-solving
techniques. We argue that similar strategies could be effec-
tively implemented for learning-based MAPF approaches.
Ewing et al. [176] provide intriguing insights, suggesting
that betweenness centrality can enhance optimal algorithms’
performance prediction in specific MAPF instances. Another
insight can be gained from [177], which suggests adjusting
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the difficulty of MAPF instances by changing the maximum
start-goal distance.

IV. EXECUTION
Once a MAPF solution is derived from the planning phase,
applying this plan to real-world scenarios involves several
challenges. These challenges partly stem from the need
to establish a robust system capable of operating reliably
amidst external disturbances or environmental uncertainties.
Concurrently, there is a necessity for a resilient system
that can restore its functionalities after encountering disrup-
tions [49]. System disturbances manifest in various forms,
including delays or inconsistencies in robot movements
when executing the plan, kinodynamic constraints of robotic
systems, random robot malfunctions, imperfect knowledge
about the environment, road congestion caused by external
agents like humans, and potential collisions or blockages due
to unmodeled factors such as slips or friction, among others.

Researchers have tackled these challenges by creating
two distinct approaches to execution strategies. The first
type encompasses offline robust, proactive planning methods
designed to handle uncertainty during execution. As a
result, their solutions are almost deployment-ready, with
minimal gaps between the planned outcome and real-world
application. This direction includes MAPF formulations that
allow agents to be delayed by a specific duration [178], or by
any possible duration [45], agents-fault-ready planning [109],
and multi-agent planning that assumes imperfect knowledge
of the workspace [179], to name just a few. The second
category is online replanning-based reactive methods for
addressing unforeseen issues during execution. This encom-
passes methods for continuously synthesizing deadlock-free
scheduling, assuming feedback-control mechanisms [42],
[43], [44], [180], reactive planning that is tolerant to timing
uncertainties [181], and minimum-effort replanning method
from the original plan [182], among others.
While the aforementioned execution-related studies do

not involve ML, the following discussion explores how ML
can enhance them in several respects, including potential
challenges. It is noteworthy that just a few ML approaches in
MAPF specifically address the execution phase, highlighting
a significant opportunity for development and improvement
in this area.

A. TRAVEL AND ACTION TIME MODELING
ML can significantly benefit the execution phase by provid-
ing reasonable prediction models for robot motion time based
on real-world environments. Such prediction models allow
for the implicit incorporation of unknown complex real-world
dynamics directly into the planning phase, facilitating a more
dynamic and responsive strategy in handling potential con-
flicts and ensuring smoother, safer navigation of agents. For
example, models predicting the expected delays in execution
and movement for each robot type, based on historical data,
can be incorporated during the planning phase. A notable

study by Yu et al. [183] developed a deep learning model
to predict potential delays each agent might face due to
congestion along their designated routes, considering both
historical congestion data and the pre-planned paths of agents
for its forecasts. Another study by Ling et al. [184] employed
reinforcement learning to plan drone paths in scenarios
with uncertain travel times, addressing execution challenges
during the planning phase. Kita et al. [185] proposed a CBS
variant that updates the uncertainty model and adapts to
the stochastic travel time, which is initially unknown, from
collected data during execution. These studies demonstrate
that traffic forecasting models can reduce the likelihood of
unexpected deviations from planned paths, contributing to
more reliable systems.

Not limited to these examples, ML techniques have proven
to be useful in diverse forecasting tasks, such as reliably
forecasting highway traffic [186], predicting short-term train
delays [187], learning to estimate package pick-up arrival
time [188], predicting the estimated time of arrival (ETA)
in Google Maps [189], to name just a few. We anticipate
that such ML techniques can be applied in the context
of MAPF challenges to improve the solution execution
efficiency and reliability. Meanwhile, this ML adaptation
requires the following aspect.

Open Question 13: To what extent should the real-world
agent dynamics captured by ML be reflected in MAPF?
Incorporating the full dynamics of real robots interacting
with their environment, such as the friction of ground
robots or the downwash effect of drones [9], enables us to
derive solutions grounding to the environment. Such solutions
minimize reality gaps, hence making them execution-ready.
Meanwhile, this makes MAPF significantly more challenging
because these environmental factors escalate MAPF to
more multi-robot motion planning, which is a tremendously
difficult problem even if we limit the scope of finding
feasible solutions [190], [191]. Consequently, attempting to
represent the comprehensive dynamics seems implausible
for obtaining a scalable solution in MAPF. Instead, a more
pragmatic approach is to adopt certain levels of abstraction.
For example, building uncertainty models of the travel time
between two locations may be more effective. This balances
the need for realism in representing agent dynamics with the
practical constraints of MAPF algorithms.

B. FAILURE PREDICTION
Forecasting potential failures by ML, as seen in failure
prediction for railway rolling stock equipment [192], allows
for preemptive adjustments to the paths of agents, thereby
reducing the likelihood of collisions and disruptions. For
example, we can consider combining fault prediction models
with agent fault-tolerant MAPF plans [109] to prevent
cascade crashes in advance, where a set of paths for each
agent is precomputed for each potential failure. Another
potential application of failure predictionmodels is the design
of a fault-tolerant environment that minimizes the possibility
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of agent failures in MAPF systems, which is achieved in
combination with the environment optimization methods
discussed in Section II-B.

Open Question 14: How can ML enhance the fault
tolerance of MAPF systems?
Exploring the enhancement of fault tolerance in Multi-Agent
Path Finding (MAPF) systems through machine learning is
vital, particularly for the future of automation infrastructure.
Machine learning’s role in predicting failures is a starting
point, but broader attention is needed to bolster MAPF
systems’ resilience and dependability.

V. CONCLUSION
This paper presented a comprehensive overview of how
machine learning (ML) techniques can enhance Multi-Agent
Path Finding (MAPF), a pivotal technology in the modern
and forthcoming era of automation. Our review catego-
rizes MAPF-related technologies into three dimensions:
(i) representation, which involves modeling the workspace;
(ii) planning, the process of determining agents’ actions;
and (iii) execution, the implementation of the planned
outcomes. In each area, we discussed how ML can help
MAPF become more practical, scalable, and robust for
deployment beyond the current limitations of non-learning-
based methods. We revisit the structure of our work, men-
tioning the leaner assortment of studies in the representation
and execution sections, which reflects the current scope of
research in these areas. This detail, while subtle, underscores
our commitment to presenting a well-rounded and thoroughly
curated overview of the field, aligning with the evolving
dynamics of current research trends.

By detailing current ML-based approaches for solving
MAPF problems, this review enables researchers to rapidly
assess their potential strengths and weaknesses. It also
highlights new research avenues through the open ques-
tions we propose. Although this is an emerging field,
we envision and look forward to MAPF, supported by ML,
shaping the future infrastructure of large-scale automated
systems.
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