IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 26 March 2024, accepted 11 April 2024, date of publication 22 April 2024, date of current version 1 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3392251

== RESEARCH ARTICLE

MalSSL-Self-Supervised Learning for Accurate
and Label-Efficient Malware Classification

SETIA JULI IRZAL ISMAIL"“''2, HENDRAWAN!', (Member, IEEE),
BUDI RAHARDJO', (Member, IEEE), TUTUN JUHANA 1, (Member, IEEE),
AND YASUO MUSASHI“3, (Member, IEEE)

!School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, West Java 40132, Indonesia
2School of Applied Science, Telkom University, Bandung, West Java 40257, Indonesia
3Research and Education Institute for Semiconductors and Informatics, Kumamoto University, Kumamoto 860-0862, Japan

Corresponding authors: Hendrawan (hend @itb.ac.id) and Setia Juli Irzal Ismail (33220007 @ mahasiswa.itb.ac.id)

This work was supported in part by the Institut Teknologi Bandung (ITB) International Research Program [Grant number
37/1T1.B07.1/SPP-LPPM/1/2024] and in part by Japanese Student Service Organization (JASSO) Scholarship.

ABSTRACT Malware classification with supervised learning requires a large dataset, which needs an
expensive and time-consuming labeling process. In this paper, we explore the efficacy of self-supervised
learning techniques for malware classification. We propose MalSSL, a self-supervised learning-based
method utilizing image representation to classify malware. MalSSL classifies unlabeled malware images
using contrastive learning and data augmentation. The model is initially trained on an unlabeled Imagenette
dataset as a pretext task and subsequently retrained on an unlabeled malware dataset in downstream
tasks. Two downstream tasks were employed to evaluate the system: 1) malware family classification and
2) malware benign classification. The obtained results include an accuracy of 98.4% for the malware family
classification experiment on the Malimg dataset and an accuracy of 96.2% for the malware and benign dataset
(Maldeb dataset). Our findings suggest that the proposed system accurately classifies malware without the
need for labeled data, displaying higher accuracy compared to other self-supervised methods. This research
not only contributes to advancing the state-of-the-art in malware classification but also underscores the
potential of self-supervised learning methods as a viable solution for addressing the dynamic landscape
of malware threats.

INDEX TERMS Image representation, malware, malware classification, self-supervised learning.

I. INTRODUCTION analysts, demanding both time and specialized expertise [6].

Malware poses a significant threat to the Internet, with an
average of 588 malware attacks occurring every minute,
as reported by the antimalware company McAfee [1].
WannaCry ransomware infected 200,000 computers across
150 countries within just 3 days in 2017, resulting in millions
of dollars in losses [2]. Apart from causing economic impacts,
the Mirai botnet paralyzed internet networks in Europe and
North America [3], whereas the Stuxnet malware success-
fully sabotaged the Natanz nuclear installation in Iran [4].
Traditionally, antivirus solutions have relied on signature-
based and heuristic-based detection techniques [5]. Although
effective, these methods involve manual compilation of
malware signatures and heuristic rules by skilled malware

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan

In response to the growing volume of malware, an automated
malware detection process using machine learning has been
implemented [7].

Despite the advantages, the integration of machine learn-
ing in malware detection faces two key challenges. Firstly,
it necessitates a large dataset [5]. Secondly, the dataset
labeling process is time-consuming [8]. The largest labeled
malware dataset to date is Ember, comprising 1.1 million
samples [9]. However, this remains relatively small compared
to the staggering 1.2 trillion malware samples reported by
AV-Test [10].

One of the challenges in implementing machine learning
for malware detection is the expensive dataset labeling pro-
cess [11]. The process of labeling malware datasets begins
with malware analysis. For known malware, the analysis pro-
cess can be carried out using tools like Virustotal [12], with

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

58823

https://orcid.org/0000-0002-4092-2857
https://orcid.org/0000-0002-0469-6848
https://orcid.org/0000-0002-1934-6912
https://orcid.org/0000-0002-9352-0237

IEEE Access

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

a maximum analysis time of 1 hour per sample. However,
for new malware, manual analysis becomes imperative. This
process demands time and expertise from malware analysts.
The complexity of the malware affects the time needed to
perform malware analysis. Manual malware analysis can span
between 4 hours to 6 weeks per sample [13]. Hence, if we
have 1000 malware samples, it will take quite a while to carry
out the dataset labeling process.

In response to this challenge, we propose MalSSL, a self-
supervised learning (SSL)-based malware detection system
with image representation, to classify malware without the
need to label the dataset. Leveraging self-supervised learning,
MalSSL processes unlabeled data to learn representations
and construct a model [14]. MalSSL involves contrastive
learning, and the resulting model can be effectively utilized
in downstream tasks for malware classification. Our contri-
butions are:

1) We introduce MalSSL, an SSL-based malware detec-
tion system with image representation. MalSSL
achieves precise malware classification without depen-
dency on labeled data. MalSSL is capable of accurately
classifying malware using a single GPU (Graphics
Processing Unit) with a high accuracy of 98.4%.

2) We have developed models for classifying malware
using advanced SSL methods such as MoCo (Momen-
tum Contrast), SimCLR (Simple Framework for Con-
trastive Learning of Visual Representation), SimSiam
(Simple Siamese), and SWAV (Swapping Assignments
between Views). These models serve as benchmarks for
evaluating the performance of MalSSL.

3) We curated a malware and benign dataset named
Maldeb. Maldeb serves as an evaluation platform for
malware-benign classification tasks. MalSSL achieves
96.2% accuracy in classifying the Maldeb dataset.

This paper is structured as follows: Section II presents
related works on malware detection and SSL. Section III
describes our proposed method. Section IV explains the
results of our experiments. Section V consists of a discussion,
and Section VI summarizes the conclusions.

Il. RELATED WORKS
A. MALWARE DETECTION WITH IMAGE REPRESENTATION
Nataraj et al. [15] attempted to transform malware samples
into a grayscale image representation. The binary sequence
of the sample is organized into an 8-bit vector and then
converted to decimal. Subsequently, the decimal value is
translated into grayscale, where O corresponds to black and
255 to white. Machine learning is then employed to classify
the malware family based on the similarity of the visual
pattern of the image with k-nearest neighbors (k-NN).
Another methodology involves examining texture and
intensity features, utilizing the support vector machine
(SVM) algorithm [16]. Luo and Lo [17] explored the use of
local binary pattern features in images trained with SVM and
k-NN. Kalash et al. [18] used a convolutional neural network

58824

(CNN) for image classification with global image descriptor
(GIST) features.

Not only grayscale, but representations in the form of RGB
(Red, Green, and Blue) also have been investigated using
Random Forest, k-NN, and SVM algorithms [19]. A CNN
classification algorithm for RGB images has also been devel-
oped by [20]. Verma et al. [21] utilized binary textures from
grayscale images with GLCM (Grey Level Co-occurrence
Matrix) for multiclass malware classification. Makandar and
Patrot proposed the Gabor wavelet as a feature with the SVM
algorithm [22]. Nisa et al. used fused SFTA (Segmentation-
based Fractal Texture Analysis) with DCNN (Deep CNN)
[23].

Guo et al. introduced the Malware Entropy Sequences
Reflect the Family (MESRF) with the discrete wavelet
decomposition algorithm [24]. Bensaoud and Kalita applied
a multi-task learning approach with PReLU (Parametric Rec-
tifier Linear Unit) to detect obfuscation methods [25]. In our
work, we adopt GIST image representation, differing from all
previous approaches by utilizing unlabeled datasets.

Aslan and Yilmaz proposes the integration of two
pre-trained network models, ResNet-50 and AlexNet. The
features obtained from these models were combined to gen-
erate a feature vector of 4096 dimensions, which was then
passed through the SoftMax layer and fully connected layers
for normalization [26].

Al-Khater and Al-Madeed addresses the problem of imbal-
anced and inadequate malware datasets using the Fast and
Adaptive Bi-dimensional Empirical Mode Decomposition
(FABEMD) technique [27]. FABEMD extracts different
intrinsic mode function (IMF) images to increase the training
dataset.

AlGarni et al. proposes the use of transfer learning
with pre-trained EfficientNet models on the ImageNet
dataset [28]. Alam et al. introduces SREMIC: Spatial Rela-
tion Extraction-based Malware Image Classification. They
extract spatial relations as features from images, utilize image
augmentation, and propose a spatial convolutional network
to classify malware [29]. Mitsuhashi and Shinagawa stud-
ied 120 different deep learning models with 5 levels of
fine-tuning parameters to classify malware image representa-
tion and concluded that EfficientNetB4 finetuned by freezing
had the best performance [30].

B. SELF-SUPERVISED LEARNING
The self-supervised learning method can be divided into two
stages [31]. The initial stage is the pretext task, wherein the
dataset’s representation of the dataset is studied from the
unlabeled dataset, and subsequently, a model is constructed.
This model is designed to recognize the relationship between
the data and remain resilient to nuisance factors. The model
is then deployed in the downstream task stage, which in this
study is to classify malware.

In the Natural Language Processing (NLP) domain,
the SSL method has demonstrated successful implementa-
tion. Pretext tasks involve training models such as BERT

VOLUME 12, 2024

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

IEEE Access

(Bidirectional Encoder Representations from Transformers)
[32], RoBERTa (Robustly Optimized BERT Approach) [33],
and XLM-R (Cross-lingual Language Model-Robust) [34] on
unlabeled datasets. The resultant model is then applied to
downstream tasks. For instance, in NLP, the SSL model can
proficiently complete some missing words in a sentence.

In the field of computer vision, numerous studies have
explored the application of the SSL method. The SSL meth-
ods for image representation can be categorized into two
main groups: 1) similarity maximization and 2) redundancy
reduction [31]. In similarity maximization, input images
undergo augmentation through two different data augmenta-
tion techniques. These augmented images are then fed into
the encoder, and the similarity between the two inputs is
calculated [35]. The network is trained to maximize this sim-
ilarity and produce a feature model that effectively represents
the images. On the other hand, the redundancy reduction
method involves calculating the cross-correlation matrix of
the two embeddings. Subsequently, the matrices of the two
embeddings are optimized to be as close as possible to the
identity matrix [36].

Similarity maximization can be divided into three dis-
tinct approaches: 1) contrastive learning; 2) Clustering; and
3) Distillation. Contrastive learning aims to learn the dataset
feature from the embedding of the corresponding image [37].
In this method, embeddings from related images (positive)
should be closer than embeddings from unrelated images
(negative). The primary objective of contrastive learning is to
bring together positive embeddings while pushing apart nega-
tive embeddings. However, a notable challenge of contrastive
learning is preventing a trivial solution, which occurs when
the system produces the same feature for all input images.

Several implementations of contrastive learning include
PIRL (Pretext-Invariant Representation Learning) [38], Sim-
CLR [39], and MoCo [40]. PIRL aims to achieve invariance
over data augmentations rather than predicting data augmen-
tation [38]. SImCLR used a contrastive loss to maximize
agreement between different augmented views [39]. MoCo
utilizes a memory bank and employs two forward passes
to prevent trivial solutions [40]. In our work, we modified
SimCLR and MoCo and implemented them in the context of
malware classification problems.

Clustering takes a different approach to grouping sam-
ples than contrastive learning, creating groups in the feature
space [41]. SWAV is a clustering method that uses equipar-
tition constraint and soft assignment to prevent a trivial
solution [42]. AVID-CMA (Audio Visual Instance Discrim-
ination with Cross-Modal Agreement) combines contrastive
learning and clustering techniques [43].

The distillation method involves naming the neural net-
work as the student-teacher network. It prevents triv-
ial solutions by employing an asymmetric learning rule
and an asymmetric architecture between the student and
teacher [44]. BYOL (Bootstrap Your Own Latent) is a distil-
lation technique with an additional predictor on the student

VOLUME 12, 2024

network [44]. SimSiam employs the same set of weights
between the student and teacher networks [45]. Barlow Twins
implements the efficient coding hypothesis and measures the
cross-correlation matrix between the outputs of two identical
networks [46].

Recent studies have explored SSL applications across var-
ious domains, including biomedicine. Del Pup and Atzori
conducted a comprehensive survey on the applications of
SSL to biomedical signals, highlighting its potential for
extracting meaningful representations from diverse biomedi-
cal data sources [47]. This is particularly relevant considering
the inherent challenge faced by both the biomedical and
cybersecurity domains in acquiring labeled data at scale,
owing to factors such as privacy concerns, data scarcity,
and the need for domain expertise. As such, leveraging SSL
techniques becomes imperative for effectively learning from
unlabeled data in scenarios where labeled data is limited,
a challenge shared by both biomedical research and malware
classification.

C. SELF-SUPERVISED LEARNING ON MALWARE
CLASSIFICATION

Dib et al. proposed EVOLI0OT, a self-supervised con-
trastive learning framework for detecting and character-
izing IoT malware variants [48]. Our work differs from
EVOLIot in two ways: 1) EVOLIoT focuses on IoT
(Internet of Things) malware, and 2) they extract fea-
tures from assembly instructions and utilize pre-trained
language models BERT. Seneviratne et al. presented Sher-
lock, a self-supervised model with a Vision Transformer
architecture [49]. Sherlock focuses on Android malware
using the Vision Transformer architecture. In contrast, our
work is centered around PE (Portable Executables) malware.

lll. MATERIAL AND METHOD
A. DESIGN

The approach employed in this study is to design a mal-
ware classification system with a self-supervised learning
approach named MalSSL. There are two stages in our pro-
posed system, namely the pretext task and the downstream
task, as illustrated in Fig. 1.

In the downstream task stage, the model is further trained
to recognize the image representations of malware families
using the Malimg dataset [15]. Once the training process is
completed, the system is tested to classify unknown input
files into malware families. Additionally, we trained and
tested the system with another downstream task, classifying
inputs into malware and benign classes using the Maldeb
Dataset [50].

B. DATASET

In this paper, we utilize the Imagenette [51], Malimg [15],
and Maldeb Dataset [50]. Imagenette is a subset of the larger
ImageNet dataset [52]. ImageNet consists of millions of
labeled images across thousands of categories. In contrast,

58825

IEEE Access

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

Pretext Task

Imagenette Classification _‘_»
Unlabeled Model P

Downstream Task

unknown
Malware ;
Classifi
Malware Benign

FIGURE 1. Proposed model of MalSSL: In the pretext task, MalSSL is trained on the unlabeled Imagenette
dataset; the resulting model is then further trained on a malware dataset and tested for malware
classification.

Yuner
Family

S e e

W32/Yuner.B W32/Yuner-A ‘W32/YahLover.worm

Alueron.gen!
J Family

Win32/Alureon.gen!J W32 . Alureon.Rootkit Win32.Alureon.jaa (v)

FIGURE 2. Malware family image representation of six different malware
samples belonging to the malware families Yuner and Alueron.gen!J. Each
family has a similar visual representation.

Imagenette is a curated subset consisting of ten classes, for
faster image classification models. We use the 160-pixel ver-
sion of the Imagenette dataset. Imagenette is chosen for more
efficient SSL training with a single GPU.

The Malimg dataset [15] is a collection of malware images
representing 25 malware family classes. A malware family
is a group of malwares that share similar program codes.
Malware within the same family is considered a variant of
a single malware. Often, malware authors share or sell their
code on the dark web [53], leading to the development of
malware variants by other parties.

The Malimg dataset is widely employed for constructing
a malware classification system. Within the Malimg dataset,
image representations of malware within the same class
exhibit visual similarity, as depicted in Fig. 2.

The image representation of six distinct malware sam-
ples from two malware families, Yuner and Alueron.gen!J,
illustrates this visual similarity. Each malware family com-
prises three different samples with comparable visual
representations.

We collected our dataset, the Maldeb dataset, specifically
for the testing phase [50]. This dataset differs from Malimg as
it comprises only two classes: malware and benign. The pur-
pose of gathering the Maldeb dataset is to evaluate the system
with newer malware samples, considering that Malimg was
published around 2011. We intend to test the system not only

58826

Maldeb
Dataset

Public [| _[Convert into
. » Virustotal
Repositories \ [\ Image

FIGURE 3. Maldeb dataset collection process: samples were collected
from various malware repositories, validated using Virustotal, and then
converted into images.

Binary to 8 bit vector to
Malware 8 bit vector Grey-scale image
Binary » 10110011, 0-255 —
10110011... 01010110, 0O=black
255=white

FIGURE 4. Conversion of malware binary to image: Malware binary is
grouped into an 8-bit vector. Each vector is converted into grayscale.

for classifying malware families but also for distinguishing
between malware and benign samples.

The datasets were collected from several malware reposito-
ries, including TekDefense [54], TheZoo [55], The-Malware-
Repo [56], Malware Database [57] and Malware Bazaar [58].
The benign samples were collected from Microsoft Windows
10 and 11 system apps and several open-source software
repositories, including CNET [59], Sourceforge [60], File-
forum [61], and PortableFreeware [62]. The process of
collecting is detailed in Fig. 3. Validation of the collected
samples was performed by scanning them using the Virustotal
malware scan service [63]. Samples that received validation
confirming their status as malware were included in the
dataset and categorized under the malware class.

The samples underwent pre-processing by converting the
malware binary into grayscale images. For benign samples
(not malware), they were grouped under the benign class.
After validation, we classified 20,854 samples into two
classes: malware (10,427 samples) and benign (10,427 sam-
ples). The conversion of benign samples into images follows
the method proposed by Nataraj et al. [15], as depicted in
Fig. 4.

Initially, the binary data is organized into an 8-bit vector.
These vectors are then converted into grayscale within a range
of [0-255], with O representing black and 255 representing
white pixels. The image dimensions vary according to the
Nataraj et al. method [15]. Depending on the size of the
benign sample, the width of the image representation ranges
from 32 to 1,024. Samples of the Maldeb dataset can be seen
in Fig. 5.

VOLUME 12, 2024

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

IEEE Access

Malware

Cryptolocker L NotPetya L Trojan.Stuxnet L

Benign

Mspaint L Wordpad_L Ieexplorer L

FIGURE 5. Maldeb dataset samples. The Maldeb dataset consists of two
classes: malware and benign. Each class has a broad diversity of image
representations.

TABLE 1. Malimg and maldeb dataset comparison.

Dataset Name Malimg Dataset Maldeb Dataset

Classes Malware Family Malware and Benign
Number of Classes 25 2
Number of samples 9548 1905

(1033 Malware; 872 benign)

Table. 1 present a comparison between the Malimg dataset
and the Maldeb dataset. Notably, Maldeb does not share any
common samples with the Malimg dataset.

C. PRETEXT-TASK

The pretext task aimed to construct a classifier model for
use in the downstream task. In this phase, machine learn-
ing was trained on the unlabeled Imagenette dataset, which
initially underwent random crop augmentation. The purpose
of augmentation was to train the system to recognize image
representations under various transformations.

Each input underwent two augmentations to create two cor-
responding images. The unlabeled augmented data were then
trained on a dual Siamese Convolution Network (encoder)
ResNet-18 [64]. The resulting encoder produced a general
representation. A non-linear projection from the image rep-
resentation was computed using a fully connected network
in the projection head, which is a Multi-Layer Percep-
tron (MLP). The projection head helps aid the network in
identifying invariant features and recognizing different trans-
formations of the same image.

For the contrastive learning task, a contrastive loss function
was implemented. The loss function for the two images on
different networks was calculated, and a stochastic gradient
descent calculation was performed to update the Convolu-
tional Neural Network (CNN) and MLP. The goal was to
minimize the loss function. In this process, the network
learned to identify correlated images (from the same image
groups) and distinguish them from non-correlated images.
The outcome was a model capable of recognizing images
by maximizing the level of similarity between augmented
images.

From Fig. 6, the input x is augmented into two different
images, x; and x;, which form a positive pair (correlated).

VOLUME 12, 2024

A negative pair consists of images that are not from the same
image (not correlated). A neural network base encoder f(-),
extracts the representation vector from augmented images to
obtain h; = f (x;) = ResNet(x;), where h; is the output from
the average pooling layer. A neural network projection head
g(+), maps the image representation to space.

Then we added a multi-layer perceptron and one hidden
layer, to obtain z; = g(h;) = W(Z)G(W(l)hi), where o is a
rectified linear unit (ReLU). For a given set xz, where x; and
x; are also part of it, the loss function calculation is:

(zi-7))
fy=—log et) ()
2 k1 EXp(-)
With the following parameters:
o i,j = augmented samples
o k = positive + negative samples
e 7 = temperature parameter = 0.5
o N = Total Samples
and
zi = gh) = WPoWDhy 2

The structure of the model follows the ResNet-18 architec-
ture, which consists of 18 layers [64]. We modify the standard
first layer of the 7 x 7 kernel to 3 x 3 with no stride and
no MaxPool2d to make the model faster. We did not split
the dataset for the pretext task; instead, we utilized the entire
unlabeled dataset for training. The training was carried out
on a PC server with the following specifications: Intel Core
i9-11900K x 16; GPU NVIDIA (RTX3060 10GB); Disk
3TB; Operating System Ubuntu 23.10 LTS. The average
training time required for the pretext task is three hours. The
resulting model is deployed to perform downstream tasks.

D. DOWNSTREAM TASK

The trained model from the pretext task process, is employed
for malware classification training using the transfer learning
method. From the pretext task model in Fig. 6, we remove the
projection head and extract the representation for the down-
stream task. The projection head is only used to calculate the
contrastive loss in the pretext task. In the downstream task
stage, the model is trained to classify malware families from
the Malimg dataset. The downstream task employs a similar
method to the pretext task, with the distinction of employing a
classification head instead of a projection head, as illustrated
in Fig. 7. First, the input Malimg dataset is augmented with a
random crop, as illustrated in Fig. 8.

In the downstream task, we replace the projection head
with a classification head. The classification head encoded
the representation (features) from the encoder network into
specific categories, such as malware and benign or malware
families. The classification head is a simple linear layer,
followed by the SoftMax activation function.

We conducted two different downstream tasks to adapt to
two distinct malware classification machine learning tasks:
a) malware family classification with the Malimg dataset and

58827

IEEE Access

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

encoder

Input Image

Image Augmentation

Random cropping
Brightness
Gaussian blur

Projection head
Maps representation to space/matriks

Loss function :

ij

Representation

Vector from data ResNet
h; = f(x;) = ResNet(x;)

£
]

Compare the Images representation
7z = g(h) = WBowWWh)
o =ReLU

FIGURE 6. Illustration of the pretext task: The unlabeled dataset is augmented twice and trained on a
dual-Siamese convolution network. The encoder maps the augmented images into a high-dimensional
feature space. A projection head then maps the high-dimensional feature vectors into a projection space.
The contrastive loss is computed, and the model minimizes this loss to learn the feature representations of

the input images.

encoder

classification Head

g0)

Input Image Image Augmentation

Random cropping

Representation

Vector from pretext-task

h; = f(x;) = ResNet(x;)

Images Classification
$=a(W.h+b)

o = softmax
W=weight matrix
b= bias vector

FIGURE 7. The illustration of the downstream task. The model from the pretext task is
trained with a malware dataset and classified into malware benign or malware families.

Original twain_32 L. Random Crop Random Crop

FIGURE 8. The augmentation example of image representation from
malware twain32L. From left to right: 1) original image representation of
twain_32_L; 2-3) random crop example.

b) malware benign classification with the Maldeb dataset.
In each experiment, we modify the classification head accord-
ing to the number of classes in the classification task.
In the first experiment, the system is tasked with classifying
the input into 25 classes of malware families. We adjust
the classification head into 25 classes. In the second exper-
iment, malware benign classification, the classification head
is adjusted into two classes.

After the downstream task had been successfully executed,
a malware classification test was conducted. We performed

58828

several tests with different batch sizes (8, 16, 32, 64, 128,
256, and 512) and different epoch sizes (10, 50, 100, 200,
and 300). We split the dataset into three sets randomly:
training 80%, validation 10%, and testing 10%. The system
is built using the PyTorch Lightly platform [65]. The fol-
lowing hyperparameters were used for training: a) optimizer:
stochastic gradient descent (SGD); b) learning rate: 0.06;
¢) momentum: 0.9; d) regularization: weight decay = 0.0005;
e) loss function: cross-entropy loss; f) model architecture:
ResNet-18; g) learning rate schedule: cosine annealing;
h) metrics: accuracy, false positive rate, and false negative
rate. We share the code and dataset from our experiment on
the GitHub repository [66].

E. COMPARISON WITH OTHER SSL METHOD

We have conducted an evaluation of MalSSL using four
advanced self-supervised learning techniques for images,
namely MoCo [40], SimCLR [39], SimSiam [45], and
SwAV [42]. The reason why these four methods were chosen
is that they share a common objective with MalSSL, which
is to maximize similarity between the original image and the

VOLUME 12, 2024

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

IEEE Access

Maldeb
Dataset

Binary

Audio Signal (WAV)

MalSSL

Spectrogram

FIGURE 9. Testing MalSSL with audio representation. Maldeb datasets were preprocessed into audio representations and Spectrograms, trained with

MalSSL, and tested to classify malware and benign.

augmented one. We have studied MoCo, SimCLR, SimSiam,
and SwAV methods and developed four models for malware
classification. The models were developed using PyTorch
and Lightly [65]. Each model underwent hyperparameter
fine-tuning to achieve the best possible results. Our malware
classification models might differ from the original works as
we have adapted them to a single GPU environment.

MoCo [40], short for Momentum Contrast, is a contrastive
method that utilizes a memory bank to maintain activity
momentum. This method employs two encoders. The main
advantage of MoCo is that it does not require storing the entire
dataset, making memory usage management easier. However,
MoCo has some drawbacks, such as requiring two forward
passes and additional memory to store parameters or features.
MalSSL and MoCo are two different technologies. The main
distinction between them is that MalSSL does not require a
memory bank, whereas MoCo does.

SimCLR [39] is a method that learns a general representa-
tion by maximizing the similarity between transformed views
of the same image and minimizing the similarity of different
images. MalSSL differs from SimCLR in the augmentation
techniques used as well as the simpler ResNet architecture of
ResNet-18. MalSSL does not use color jitter augmentation,
as SimCLR does. We employ a simpler contrastive loss cal-
culation adapted from MoCo.

The Swapping Assignments between Views (SwAV)
algorithm is a clustering method that operates online. Its main
objective is to increase the similarity between an image and
its augmentation. This ensures that both the original image
and its augmentation are placed in the same cluster. The main
difference between SwAV and MalSSL is that SWAV uses
the Sinkhorn-Knopp algorithm to calculate the similarity of
embeddings.

SimSiam uses a distillation approach with the concept of
the student-teacher network. The architecture used for the
student and the teacher is asymmetrical. In this approach,
the embedding of the student is calculated for the original
image, and the embedding of the teacher is calculated for the
augmented image. The similarity of the two embeddings is
forced. Additionally, a prediction head is added to the stu-
dent network. On the other hand, MalSSL uses a symmetric
network and does not add a prediction head.

F. TESTING WITH AUDIO REPRESENTATION
We are expanding our approach to include different types
of malware representations beyond image-based formats.

VOLUME 12, 2024

Diversifying the representations used in our approach could
offer valuable insights and potentially enhance the robustness
and effectiveness of our model. Previously, we studied the
possibility of utilizing the BERT (Bidirectional Encoder Rep-
resentations) language model, SSL, and text representation
to classify malware [67]. In this section, we are conducting
experiments with audio representations, specifically using
spectrograms, as illustrated in Fig. 9. Spectrograms provide a
visual representation of the frequency content of audio signals
over time and have been successfully utilized in various
machine-learning tasks, including audio classification.

The dataset used in this experiment is the binary form of
the Maldeb dataset. To enable audio-based analysis, we pre-
processed the dataset by converting the malware and benign
binaries into an audio signal. The audio signal was then
converted to spectrogram representations to capture the fre-
quency content of the audio data over time. Subsequently,
we employed MalSSL to classify the spectrograms as mal-
ware or benign.

The malware and benign samples were converted to audio
signals with PCM (pulse code modulation) and the follow-
ing parameters: sample rate 44100 Hz, sample size 16-bit,
mono channel, without compression, and WAV file format.
The spectrogram representations were generated following
the Mel Spectrogram method with the following parameters:
sample rate = 16000 Hz, STFT (short-time Fourier trans-
form), n_fft = 400, hop length = 160, and n_mels = 128.
The MalSSL model was trained using a batch size of 256,
a learning rate of 0.06, and 300 epochs.

IV. RESULT
A. PERFORMANCE OF MALSSL
We conducted a comprehensive set of experiments on a
diverse malware dataset to evaluate the effectiveness of the
proposed MalSSL methods for malware classification. The
primary evaluation metric used in this study is accuracy,
reflecting the models’ ability to correctly classify malware
samples into their respective families in the malware family
classification task, or the models’ ability to correctly classify
samples into malware and benign in the malware-benign
classification task. We conducted tests on the Malimg dataset
to classify malware families, and the results are presented in
Fig. 10.

During our experiments, we systematically varied the batch
sizes for training the MalSSL model, spanning a range
from 8 to 512. This exploration aimed to discern the impact

58829

IEEE Access

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

Classification Accuracy

—— MalSSL 98.4
98 4

Accuracy (%)
©O ©
o ~
) N

o
vl
L

94 4

0 100 200 300 400 500
Batch Size
FIGURE 10. MalSSL accuracy and batch size performance in classifying

the Malimg dataset. The highest accuracy of 98.4% is achieved with a
batch size of 512.

Classification Accuracy

100 A
—— MalSSL 98.4
90 4

80 -

704

Accuracy (%)

60

50 A

40

T T T T T T
50 100 150 200 250 300
Epoch

o4

FIGURE 11. MalSSL performance accuracy at different epochs. The
highest accuracy is 98.4% at epoch 300.

of batch size on the accuracy of the self-supervised learning
approach for malware classification. We observed a positive
correlation between batch size and classification accuracy.
As the batch size increased from 8 to 512, the accuracy also
increased, indicating a consistent improvement in the model’s
performance with larger batches. To comprehensively explore
the impact of training duration on the performance of our
MalSSL model, experiments were conducted by varying the
number of epochs from 10 to 300. This investigation aimed
to discern the relationship between training duration and the
model’s ability to capture intricate patterns within the unla-
beled malware dataset. The results are presented in Fig. 11.
The highest accuracy of 98.4% was attained at epoch
300. This finding suggests that extended training duration
fosters a more comprehensive understanding of the inherent
characteristics of malware, resulting in good classification
performance. The best result of our experimentation occurred
at a batch size of 512, where the MalSSL model achieved
an accuracy of 98.4%. The observed trend prompts a closer
examination of the dynamics associated with varying batch
sizes. Larger batch sizes likely facilitate a more comprehen-
sive exploration of the feature space, enabling the model to
discern intricate patterns in the unlabeled malware data.

58830

TABLE 2. MalSSL performance compared with other SSL methods on
malware family classification with unlabeled malimg dataset.

Method Accuracy (%) FPR (%) FNR (%) Training time
(minutes)
MoCo 61.5 10.9 27.1 12
SimCLR 89.9 2.6 7.4 13
SWaV 86.3 5.8 7.9 20
SimSiam 97.3 1.0 1.6 42
MalSSL 98.4 0.6 0.9 39

B. MALWARE FAMILY CLASSIFICATION RESULTS

In Table. 2, we present a comprehensive comparison of var-
ious self-supervised (SSL) methods applied to the task of
malware family classification with the Malimg dataset.

We build malware classification models with different SSL
methods, including MoCo, SimCLR, SwAV, SimSiam, and
MalSSL. The comparison is based on classification accu-
racy and training time running on the same machine. The
training time in question is the duration required to perform
training on downstream tasks. MalSSL outperforms other
methods with an accuracy of 98.4% in a training time of
39 minutes. MoCo exhibits the lowest accuracy at 61.5%.
SimSiam achieves a high accuracy of 97.3% but at the cost of
alonger training time of 42 minutes. MalSSL demonstrates its
ability to capture patterns within unlabeled malware datasets
and its efficiency in training time. MalSSL has produced a
low false positive rate (FPR) of 0.6% and a false negative
rate of 0.9%. A low FPR and FNR rate in these experiments
indicates that MalSSL accurately classifies malware samples
into their respective families with minimal errors.

C. MALWARE BENIGN CLASSIFICATION RESULTS

We present the results of our experiments comparing
different self-supervised (SSL) methods for the task of
malware-benign classification in Table. 3. We build malware
classification models with MoCo, SimCLR, SwAV, SimSiam,
and our proposed MalSSL. The evaluation metrics are accu-
racy and training time, and the models were tested using the
unlabeled Maldeb dataset.

Malware-benign classification poses a significant chal-
lenge compared to malware family classification. This
increased difficulty is attributed to the diversity and vari-
ability within the malware and benign classes, as we can
see in Fig. 5. Unlike the distinct and well-defined patterns
found in malware families, benign samples cover a wide
spectrum of legitimate software, making it more challenging
to distinguish differences.

The challenge in malware-benign classification is reflected
in the varied accuracies observed across SSL methods.
Whereas SimCLR and SimSiam exhibit notable accura-
cies of 90.8% and 88.5%, respectively, MoCo and SwAV
encounter difficulties, achieving accuracies of 69.2% and
74.3%, respectively. MalSSL attains the highest accuracy
of 96.2% with a training time of 35 minutes. In contrast,
MoCo requires an extended training time of 73 minutes,
whereas SimSiam achieves a notably shorter training time of

VOLUME 12, 2024

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

IEEE Access

TABLE 3. MalSSL accuracy and training time compared with other SSL
methods on unlabeled Maldeb dataset.

TABLE 5. MalSSL classification accuracy comparison with and without
data augmentation (%).

Method Accuracy (%) FPR (%) FNR (%) Training time
(minutes)
MoCo 69.2 14.1 16.7 73
SimCLR 90.8 3.9 5.2 41
SWaV 74.3 12.5 13.2 39
SimSiam 88.5 3.7 7.6 20
MalSSL 96.2 1.4 2.2 35

TABLE 4. MalSSL K-Fold cross-validation testing result.

Dataset Average Accuracy (%) Standard Deviation (%)
Malimg 98.1 1.3
Maldeb 95.5 2.6

20 minutes. MalSSL achieved a low false positive rate (FPR)
of 1.4% and a false negative rate of 2.2%. In these experi-
ments, the false positive rate (FPR) represents the percentage
of benign files incorrectly identified as malware by MalSSL.
The false negative rate (FNR) shows the proportion of actual
malware samples mistakenly labeled as benign. A low FPR
and FNR rate signify that MalSSL can effectively distinguish
between malware and benign with minimal error.

D. K-FOLD CROSS-VALIDATION TESTING

We evaluated the performance of MalSSL using k-fold cross-
validation (k = 5). The dataset was split into training (80%)
and testing (20%) in each fold. The model was trained on the
training set and evaluated on the testing set. This process was
repeated five times, and the results were averaged.

Table. 4 displays the outcome of the K-fold cross-
validation testing. MalSSL attained an average accuracy of
95.5% on the Maldeb dataset and 98.1% on the Malimg
dataset. These findings reveal a high accuracy and mini-
mal standard deviation, indicating that MalSSL demonstrates
strong performance and consistency across folds.

E. AUGMENTATION EXPERIMENTS

In this section, we present the results of experiments con-
ducted to evaluate the impact of data augmentation on the
performance of our malware classification model. Specif-
ically, we compare the classification accuracy achieved
with and without data augmentation on the Malimg and
Maldeb datasets. For the experiments with data augmenta-
tion, we employed random cropping as the primary augmen-
tation technique. Random cropping was applied to the input
images during training to introduce variability and improve
the robustness of the classifier. The results of our experiments
are summarized in Table. 5.

As shown in Table. 5, the classification accuracy achieved
with data augmentation is substantially higher compared to
the results obtained without augmentation. Specifically, the
model trained with augmentation achieves an accuracy of
98.4% in the Malimg dataset and 96.2% in the Maldeb
dataset. In contrast, the model trained without augmentation

VOLUME 12, 2024

Dataset With Augmentation Without Augmentation
Malimg 98.4 79.3
Maldeb 96.2 74.7

TABLE 6. MalSSL classification result of Maldeb dataset audio
representation.

Epoch Batch Accuracy With Time
Size (%) Augmentation? (m)
100 256 85.9 v 45
100 256 81.2 X 39
300 512 82.7 \4 58
300 512 81.6 X 47

exhibits a drastic drop in accuracy, achieving only 79.3% in
the Malimg dataset and 74.7% in the Maldeb dataset. The
results demonstrate the critical role of data augmentation
in enhancing the performance of our malware classification
model. Augmentation techniques such as random cropping
enable the model to learn more robust and generalizable
features from malware image representation.

F. AUDIO REPRESENTATION EXPERIMENTS

The classification of malware-benign samples using audio
representation with MalSSL yielded promising results. The
results of the classification experiment are summarized in
Table. 6.

We conducted experiments using varying numbers of
epochs (100, 300) and batch sizes (256, 512), with and with-
out augmentation. The highest accuracy achieved is 85.9%
with 100 epochs, a batch size of 256, and with augmentation.
These results suggest that augmentation may not significantly
impact the classification of malware audio representations.
Despite the better performance of image representation in
classification compared to audio representation, our results
indicate the potential of MalSSL in classifying the audio
representation of malware and benign samples.

V. DISCUSSION

Our proposed method, MalSSL, has a different approach
compared to state-of-the-art malware detection systems.
Most papers on malware detection systems with image rep-
resentation utilize supervised learning with labeled datasets.
In Table. 7, we compare our results with the state-of-the-art
malware family classification system on the Malimg dataset.
Table. 7 reveals that our proposed method (98.4%) outper-
forms the original work by Nataraj et al. (97.2%) [15]. We are
not far from the best performance method from Guo et al.
(99.9%) [24]. The detailed approach of supervised methods
listed in Table. 7 is explained in Section II.

The Maldeb dataset is a new dataset that consists of
newer malware samples than Malimg, which was published
in 2011. In Table. 8, we compare our proposed method’s
performance on the Maldeb dataset with the experiment con-
ducted by our lab member Khairul for his thesis project [69]

58831

IEEE Access

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

TABLE 7. Accuracy comparison on the Malimg dataset.

Method Algorithm/Feature Labeled Accuracy (%)
[15] kNN % 97.2
[18] M-CNN v 98.2
[20] IMFCN v 98.8
[22] Gabor Wavelett+SVM v 98.9
[23] SFTA+DCNN v 99.3
[24] MESRF v 99.9
[25] MTL+PReLU v 97.8
[26] SVM-+hybrid feature v 97.8
[27] FABEMD v 99.6
[28] CNN-+Transfer Learning A 99.9
[29] SREMIC v 99.8
[30] EfficientNetB4 v 98.9
[68] GIST+Deep Learning \ 98.0
MalSSL SSL X 98.4

TABLE 8. Accuracy comparison on the Maldeb dataset.

Method Algorithm/Feature labeled Accuracy (%)

[69] CNN v 95.0

LinearSVC SVM v 90.2

MalSSL SSL X 96.2

and our experiment with LinearSVC. The results showed
that MalSSL could detect the Maldeb dataset with good
performance. This experiment proved that MalSSL can be
employed on two different malware classification tasks:
1) malware family classification and 2) malware benign
classification.

Malware-benign classification, characterized by a more
diverse malware-benign class, presents different challenges
compared to malware family classification. MalSSL’s consis-
tent performance across these tasks underscores its versatility
and capacity in different malware classification scenarios.

The observed trade-offs between accuracy and training
time (from Tables. 2 - 4) underscore the importance of balanc-
ing efficiency and performance in practical deployment sce-
narios. MalSSL achieves high accuracy (over 90%) on three
different malware classification scenarios with an efficient
training time, making it a practical and resource-efficient
solution for real-world deployment scenarios.

We opt for contrastive learning as it can learn the repre-
sentation of data points by discovering their similarity. Our
proposed model reduces the dependency on large volumes
of labeled data traditionally required for supervised learning
approaches. Whereas access to larger datasets could enhance
the model’s capability to classify a wider range of malware
and improve overall performance, the primary advantage of
our approach lies in its ability to effectively utilize unlabeled
data for training.

While acknowledging the diverse conditions and train-
ing datasets across different SSL methods, it is important
to highlight that MalSSL demonstrated competitive perfor-
mance despite being executed on a single GPU. For example,
SimCLR utilized 128-core TPUs [37], MoCo was trained
on 64 GPUs [38], SWAV on 4 GPUs [40], and SimSiam was
trained on 8 GPUs. Despite these variations’ conditions, our

58832

comparison highlights the efficiency of MalSSL in achiev-
ing strong performance with relatively modest computational
resources, indicating its potential practical ability. The possi-
ble cause is that we utilize a smaller architecture, ResNet-18
compared to the ResNet-50 architecture of SimCLR, MoCo,
SwAYV, and SimSiam.

A test conducted with malware audio representations
demonstrates the potential of implementing MalSSL with
various other malware representations, which warrants fur-
ther investigation. Present Antivirus solutions utilize various
machine learning methodologies, including Random For-
est [70], Support Vector Machines [71], Decision Tree [72],
LSTM [73], Deep Learning [74], [75], Clustering [76], [77],
and Ensemble learning [78], among others. The implemen-
tation of MalSSL has the potential to advance Antivirus
technology by reducing the need for huge, labeled datasets.
MalSSL could be deployed in the real world by integrating
into existing antivirus systems or as an additional layer of
protection alongside antivirus solutions. In the future, we will
explore collaborations with industry partners or cybersecurity
organizations to further test and validate MalSSL in real-
world scenarios.

We also recognized that the Malimg and Maldeb datasets
may not reflect real-world malware. Thus, in the future,
we want to test the system with other datasets and assess its
resistance to other adversarial attacks. Further work could
focus on fine-tuning different hyperparameters to enhance
the performance of each SSL method in diverse classifi-
cation scenarios. Additionally, investigating the interplay
between epochs, batch size, and accuracy could provide
deeper insights into optimizing the model.

VI. CONCLUSION

In this study, we explored the application of self-supervised
learning methods in the domain of malware classification,
addressing the challenges posed by diverse classification
tasks. The proposed malware classification system with
self-supervised learning (MalSSL) does not require dataset
labeling and avoids the need for large computations.

It is tested on two different machine learning tasks:
a) malware family classification and b) malware and benign
classification. For the malware family classification task,
it achieved a good accuracy result of 98.4% on the Malimg
dataset. In the malware and benign classification task, we col-
lected a new malware and benign dataset named the Maldeb
dataset, consisting of two classes: malware and benign sam-
ples. MalSSL achieved an accuracy of 96.2% for classifying
malware and benign tasks with the Maldeb dataset. MalSSL
consistently outperformed other SSL methods: MoCo, Sim-
CLR, SwAV, and SimSiam, achieving high accuracy with
efficient training times.

Our research contributes to advancing the state-of-the-art
in malware classification, demonstrating effective classi-
fication without the need for labeling the dataset first.
We anticipate that this approach will accelerate and reduce
the cost of malware classification.

VOLUME 12, 2024

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

IEEE Access

ACKNOWLEDGMENT

Debi Amalia Septiyani collected malware and benign sam-
ples and validated the malware dataset. Halimul Hakim
Khairul tested the Maldeb dataset with the CNN algorithm.
Dani Agung Prastiyo collected benign samples and tested the
malware audio representation.

REFERENCES

(1]

[2]

[3]

[4]
[51

[6]

[71
[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Beek. (2021). McAfee Labs Threat Report 2021. [Online]. Available:
https://www.hsdf.org/wp-content/uploads/2021/06/rp-quarterly-threats-
apr-2021.pdf

S. Ghafur, S. Kristensen, K. Honeyford, G. Martin, A. Darzi, and
P. Aylin, “A retrospective impact analysis of the WannaCry cyberattack
on the NHS,” NPJ Digit. Med., vol. 2, no. 1, p.98, Oct. 2019, doi:
10.1038/s41746-019-0161-6.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai botnet,”
in Proc. USENIX Secur., 2017, pp. 1093—-1110. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 1 7/technical-sessions/
presentation/antonakakis

R. Langner, ““Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Secur.
Privacy, vol. 9, no. 3, pp. 49-51, May 2011, doi: 10.1109/MSP.2011.67.
M. Al-Asli and T. A. Ghaleb, “Review of signature-based techniques
in antivirus products,” in Proc. Int. Conf. Comput. Inf. Sci. (ICCIS),
Apr. 2019, pp. 1-6, doi: 10.1109/ICCISci.2019.8716381.

J. Scott. (2017). Signature Based Malware Detection is Dead.
[Online]. Available: https://informationsecurity.report/Resources/
‘Whitepapers/920fbb41-8dc9-4053-bd01-72f961db24d9_ICIT-Analysis-
Signature-Based-Malware-Detection-is-Dead.pdf

E. Raff and C. Nicholas, “A survey of machine learning methods and
challenges for windows malware classification,” 2020, arXiv:2006.09271.
B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in Proc. 26th Eur.
Signal Process. Conf. (EUSIPCO), Sep. 2018, pp.533-537, doi:
10.23919/EUSIPCO.2018.8553214.

H. S. Anderson and P. Roth, “EMBER: An open dataset for training static
PE malware machine learning models,” 2018, arXiv:1804.04637.

A. Marx and M. Morgenstern. (2023). Malware Statistics. [Online]. Avail-
able: https://www.av-test.org/en/statistics/malware/

D. Gibert, C. Mateu, and J. Planes, ‘“The rise of machine learning for detec-
tion and classification of malware: Research developments, trends and
challenges,” J. Netw. Comput. Appl., vol. 153, Mar. 2020, Art. no. 102526,
doi: 10.1016/j.jnca.2019.102526.

B. Quintero. (2004). VirusTotal—Analyse
Chronicle Secur. Accessed: Apr. 17, 2024.
https://www.virustotal.com/

K. Zetter, Countdown to Zero Day. New York, NY, USA: Crown,
Sep. 2014.

R. Balestriero, M. Ibrahim, V. Sobal, A. Morcos, S. Shekhar, T. Goldstein,
F. Bordes, A. Bardes, G. Mialon, Y. Tian, A. Schwarzschild, A. G. Wilson,
J. Geiping, Q. Garrido, P. Fernandez, A. Bar, H. Pirsiavash, Y. LeCun,
and M. Goldblum, “A cookbook of self-supervised learning,” 2023,
arXiv:2304.12210.

L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images,” in Proc. 8th Int. Symp. Visualizat. Cyber Secur., Jul. 2011,
pp. 1-7, doi: 10.1145/2016904.2016908.

K. Kancherla and S. Mukkamala, “Image visualization based malware
detection,” in Proc. IEEE Symp. Comput. Intell. Cyber Secur. (CICS),
Apr. 2013, pp. 4044, doi: 10.1109/CICYBS.2013.6597204.

J.-S. Luo and D. C. Lo, “Binary malware image classification using
machine learning with local binary pattern,” in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2017, pp.4664-4667, doi: 10.1109/BIG-
DATA.2017.8258512.

M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and
F. Igbal, “Malware classification with deep convolutional neural net-
works,” in Proc. 9th IFIP Int. Conf. New Technol., Mobility Secur. (NTMS),
Feb. 2018, pp. 1-5, doi: 10.1109/NTMS.2018.8328749.

J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan, “Malware visualization for
fine-grained classification,” IEEE Access, vol. 6, pp. 14510-14523, 2018,
doi: 10.1109/ACCESS.2018.2805301.

Suspicious Files.
[Online]. Available:

VOLUME 12, 2024

(20]

[21]

[22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng,
“IMCEFN: Image-based malware classification using fine-tuned convolu-
tional neural network architecture,” Comput. Netw., vol. 171, Apr. 2020,
Art. no. 107138, doi: 10.1016/j.comnet.2020.107138.

V. Verma, S. K. Muttoo, and V. B. Singh, “Multiclass malware classifica-
tion via first- and second-order texture statistics,” Comput. Secur., vol. 97,
Oct. 2020, Art. no. 101895, doi: 10.1016/j.cose.2020.101895.

A. Makandar and A. Patrot, “Malware class recognition using image
processing techniques,” in Proc. Int. Conf. Data Manage., Analytics Innov.
(ICDMAI), Feb. 2017, pp. 76-80, doi: 10.1109/ICDMAIL.2017.8073489.
M. Nisa, J. H. Shah, S. Kanwal, M. Raza, M. A. Khan, R. Damasevicius,
and T. Blazauskas, “Hybrid malware classification method using
segmentation-based fractal texture analysis and deep convolution neural
network features,” Appl. Sci., vol. 10, no. 14, p. 4966, Jul. 2020, doi:
10.3390/app10144966.

H. Guo, S. Huang, C. Huang, Z. Pan, M. Zhang, and F. Shi, “File
entropy signal analysis combined with wavelet decomposition for mal-
ware classification,” IEEE Access, vol. 8, pp. 158961-158971, 2020, doi:
10.1109/ACCESS.2020.3020330.

A. Bensaoud and J. Kalita, “Deep multi-task learning for malware image
classification,” J. Inf. Secur. Appl., vol. 64, Feb. 2022, Art. no. 103057, doi:
10.1016/j.jisa.2021.103057.

O. Aslan and A. A. Yilmaz, “A new malware classification frame-
work based on deep learning algorithms,” IEEE Access, vol. 9,
pp. 8793687951, 2021, doi: 10.1109/ACCESS.2021.3089586.

W. Al-Khater and S. Al-Madeed, “Using 3D-VGG-16 and 3D-Resnet-
18 deep learning models and FABEMD techniques in the detection
of malware,” Alexandria Eng. J., vol. 89, pp.39-52, Feb. 2024, doi:
10.1016/j.aej.2023.12.061.

M. D. AlGarni, R. AIRoobaea, J. Almotiri, S. S. Ullah, S. Hussain, and
F. Umar, “An efficient convolutional neural network with transfer learning
for malware classification,” Wireless Commun. Mobile Comput., vol. 2022,
pp. 1-8, Oct. 2022, doi: 10.1155/2022/4841741.

I. Alam, M. Samiullah, U. Kabir, S. Woo, C. K. Leung, and
H. H. Nguyen, “SREMIC: Spatial relation extraction-based
malware image classification,” in Proc. 18th Int. Conf. Ubiquitous
Inf. Manage. Commun. (IMCOM), Jan. 2024, pp.1-8, doi:
10.1109/IMCOM60618.2024.10418339.

R. Mitsuhashi and T. Shinagawa, “Deriving optimal deep learn-
ing models for image-based malware classification,” in Proc. 37th
ACM/SIGAPP Symp. Appl. Comput., Apr. 2022, pp. 1727-1731, doi:
10.1145/3477314.3507242.

Y. LeCun and I. Misra. (2021). Self-Supervised Learning: The Dark Matter
of Intelligence. [Online]. Available: https://ai.facebook.com/blog/self-
supervised-learning-the-dark-matter-of-intelligence/

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North, vol. 1, Oct. 2019, pp. 4171-4186, doi: 10.18653/v1/n19-
1423.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “‘RoBERTa: A robustly optimized BERT
pretraining approach,” 2019, arXiv:1907.11692.

S. Ruder, A. Sggaard, and 1. Vuli¢, “Unsupervised cross-lingual rep-
resentation learning,” in Proc. 57th Annu. Meeting Assoc. Comput.
Linguistics, Tutorial Abstr., 2019, vol. 1911, no. 02116, pp. 31-38, doi:
10.18653/v1/p19-4007.

C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representa-
tion learning by context prediction,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1422-1430, doi: 10.1109/ICCV.2015.167.

H. Barlow, “Redundancy reduction revisited,” Network: Comput. Neural
Syst., vol. 12, no. 3, pp.241-253, Mar. 2001, doi: 10.1088/0954-
898x/12/3/301.

D.-H. Lee, ‘““Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Proc. ICML Workshop
Challenges Represent. Learn., 2013, pp.1-6. [Online]. Available:
https://www.kaggle.com/blobs/download/forum-message-attachment-
files/746/pseudo_label_final.pdf

I. Misra and L. van der Maaten, “Self-supervised learning of pretext-
invariant representations,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp.6706-6716, doi:
10.1109/CVPR42600.2020.00674.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” 2020,
arXiv:2002.05709.

58833

http://dx.doi.org/10.1038/s41746-019-0161-6
http://dx.doi.org/10.1109/MSP.2011.67
http://dx.doi.org/10.1109/ICCISci.2019.8716381
http://dx.doi.org/10.23919/EUSIPCO.2018.8553214
http://dx.doi.org/10.1016/j.jnca.2019.102526
http://dx.doi.org/10.1145/2016904.2016908
http://dx.doi.org/10.1109/CICYBS.2013.6597204
http://dx.doi.org/10.1109/BIGDATA.2017.8258512
http://dx.doi.org/10.1109/BIGDATA.2017.8258512
http://dx.doi.org/10.1109/NTMS.2018.8328749
http://dx.doi.org/10.1109/ACCESS.2018.2805301
http://dx.doi.org/10.1016/j.comnet.2020.107138
http://dx.doi.org/10.1016/j.cose.2020.101895
http://dx.doi.org/10.1109/ICDMAI.2017.8073489
http://dx.doi.org/10.3390/app10144966
http://dx.doi.org/10.1109/ACCESS.2020.3020330
http://dx.doi.org/10.1016/j.jisa.2021.103057
http://dx.doi.org/10.1109/ACCESS.2021.3089586
http://dx.doi.org/10.1016/j.aej.2023.12.061
http://dx.doi.org/10.1155/2022/4841741
http://dx.doi.org/10.1109/IMCOM60618.2024.10418339
http://dx.doi.org/10.1145/3477314.3507242
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.18653/v1/p19-4007
http://dx.doi.org/10.1109/ICCV.2015.167
http://dx.doi.org/10.1088/0954-898x/12/3/301
http://dx.doi.org/10.1088/0954-898x/12/3/301
http://dx.doi.org/10.1109/CVPR42600.2020.00674

IEEE Access

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]
[59]
[60]
[61]
[62]
[63]

[64]

[65]

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9726-9735, doi:
10.1109/CVPR42600.2020.00975.

M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features,” in Computer Vision—
ECCV (Lecture Notes in Computer Science, Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 11218. Cham,
Switzerland: Springer, 2018, pp. 139-156, doi: 10.1007/978-3-030-01264-
9.09.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” 2020, arXiv:2006.09882.

P. Morgado, I. Misra, and N. Vasconcelos, “Robust audio-visual
instance discrimination,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp.12929-12940, doi:
10.1109/CVPR46437.2021.01274.

J. B. Grill, E. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya,
C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu,
R. Munos, and M. Valko, “Bootstrap your own latent a new approach to
self-supervised learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 21271-21284, doi: 10.48550/arXiv.2006.07733goo.

X. Chen and K. He, “Exploring simple Siamese representation learn-
ing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 15745-15753, doi: 10.1109/CVPR46437.2021.01549.

J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, ‘“Barlow twins: Self-
supervised learning via redundancy reduction,” 2021, arXiv:2103.03230.
F. Del Pup and M. Atzori, “Applications of self-supervised
learning to biomedical signals: A survey,” IEEE Access, vol. 11,
pp. 144180-144203, 2023, doi: 10.1109/ACCESS.2023.3344531.

M. Dib, S. Torabi, E. Bou-Harb, N. Bouguila, and C. Assi, “EVOLI0T,” in
Proc. ACM Asia Conf. Comput. Commun. Secur., May 2022, pp. 452-466,
doi: 10.1145/3488932.3517393.

S. Seneviratne, R. Shariffdeen, S. Rasnayaka, and N. Kasthuriarachchi,
“Self-supervised vision transformers for malware detection,”
IEEE Access, vol. 10, pp.- 103121-103135, 2022, doi:
10.1109/ACCESS.2022.3206445.

S.J. I. Ismail. (2024). Maldeb Dataset. Accessed: Apr. 17,2024. [Online].
Auvailable: https://ieee-dataport.org/documents/maldeb-dataset

J. Howard. (2019). Imagenette Dataset. Accessed: Jan. 2, 2024. [Online].
Auvailable: https://github.com/fastai/imagenette

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
geNet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp.248-255, doi:
10.1109/CVPR.2009.5206848.

M. Mirea, V. Wang, and J. Jung, “The not so dark side of the darknet:
A qualitative study,” Secur. J., vol. 32, no. 2, pp. 102-118, Jun. 2019, doi:
10.1057/s41284-018-0150-5.

I. Ahl. (2011). TekDefense Malware Samples. Accessed: Jun. 11, 2023.
[Online]. Available: http://www.tekdefense.com/downloads/malware-
samples/

Y. Nativ and S. Shalev. (2015). The Zoo—A Live Malware Repository.
Accessed: Jun. 11, 2023. [Online]. Available: https://thezoo.morirt.com
D. Vito and Aymen. (2021). The Malware Repo. Accessed: Jun. 11, 2023.
[Online]. Available: https://github.com/Da2dalus/The-MALWARE-Repo
Endermanch and Andrew. (2022). Malware Database. Accessed:
Jun. 11, 2023. [Online]. Available: https://github.com/Endermanch/
MalwareDatabase

Spamhaus Technology. (2007). The Malware Bazaar.
Jun. 11, 2023. [Online]. Available: https://bazaar.abuse.ch/
Red Ventures. (2024). CNET. Accessed: Mar. 18, 2024. [Online]. Avail-
able: https://download.cnet.com/windows/

S. Media. (1999). Sourceforge. Accessed: Mar. 18, 2024. [Online]. Avail-
able: https://sourceforge.net/

BetaNews. (1998). Fileforum. Accessed: Mar. 18, 2024. [Online]. Avail-
able: https://fileforum.com

A. Lee. (2004). The Portable Freeware Collection (TPFC). Accessed:
Mar. 18, 2024. [Online]. Available: https://www.portablefreeware.com
Virustotal. (2024). VirusTotal—How It Works. Accessed: Apr. 14, 2024.
[Online]. Available: https://docs.virustotal.com/docs/how-it-works

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

I. Susmelj and M. Heller. (2019). Lightly. Lightly AG. Accessed:
Jun. 13, 2023. [Online]. Available: https://www.lightly.ai/

Accessed:

58834

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

(74]

(751

[76]

(77]

(78]

S. Ismail. (2023). Malware Detection System With Self Supervised
Learning—Repository. Accessed: Jun. 19, 2023. [Online]. Available:
https://github.com/julismail/Self-Supervised

S. J. 1. Ismail, H. P. Gemilang, B. Rahardjo, and Hendrawan, “Self-
supervised learning implementation for malware detection,” in Proc.
8th Int. Conf. Wireless Telematics (ICWT), Jul. 2022, pp. 1-6, doi:
10.1109/ICWT55831.2022.9935463.

S. Yajamanam, V. R. S. Selvin, F. Di Troia, and M. Stamp, “Deep learn-
ing versus gist descriptors for image-based malware classification,” in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, Jan. 2018, pp. 553-561, doi:
10.5220/0006685805530561.

H. H. Khairul, “Design and implementation of images dataset
malware generating system based on deep learning,” Institut
Teknologi Bandung, Bandung, Indonesia, Tech. Rep. 18118033, 2022.
[Online]. Available: https://digilib.itb.ac.id/gdl/view/67891/DETEKSI-
MALWARE-MENGGUNAKAN-ARSITEKTUR-CNN-DENGAN-
HYPERPARAMETER-TUNING

Avira Operation GmBH. (2017). NightVision-Using Machine Learning
to Defeat Malware. [Online]. Available: https://www.webassetscdn.com
/avira/prod/cache-buster-1598423379/assets/oem.avira.com/resources/tod
elete/whitepaper_NightVision_EN_20170704.pdf

Bitdefender. (2017). Bitdefender Machine Learning Technical Brief.
[Online]. Available: https://explore.bitdefender.com/business-security
/machine-learning-technical-brief

S. Afroz and R. Gupta, “AVAST-AI and machine learning,” in Proc.
Enigma Usenix, 2020, pp. 1-94. Accessed: Mar. 22, 2024. [Online]. Avail-
able: https://www.usenix.org/sites/default/files/conference/protected-
files/enigma2020_slides_afroz.pdf

T. Micro. (2024). Machine Learning Masters. [Online]. Available:
https://www.trendmicro.com/content/dam/trendmicro/global/en/global/do
cs/infographic/ifg-machine-learning-masters.pdf

J. Saxe and K. Berlin, “Deep neural network based malware detec-
tion using two dimensional binary program features,” in Proc. 10th Int.
Conf. Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11-20, doi:
10.1109/MALWARE.2015.7413680.

C. Huang and A. Karnik. (2021). McAfee Labs: The Rise of
Deep Learning for Detection and Classification of Malware.
McAfee Labs. Accessed: Mar. 23, 2024. [Online]. Available:
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/the-rise-of-
deep-learning-for-detection-and-classification-of-malware/

A. Patel. (2020). F-Secure: Detection of Anomalous Process Cre-
ation Chains Using Word Vectorization, Normalization, and an Autoen-
coder. Accessed: Mar. 22, 2024. [Online]. Available: https://blog.f-
secure.com/process-creation-chains/

S. O’sullivan, D. Vangel, and Y. Rhee. (2024). Advanced Technologies
At the Core of Microsoft Defender Antivirus. [Online]. Available:
https://learn.microsoft.com/en-us/microsoft-365/security/defender-
endpoint/adv-tech-of-mdav?view=0365-worldwide

E. Raff and C. K. Nicholas. (2021). Machine Learning for
Malware Detection. Accessed: Mar. 22, 2024. [Online]. Available:
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-
Whitepaper-Machine-Learning.pdf

SETIA JULI IRZAL ISMAIL received the
bachelor’s degree in electrical engineering from
STT Telkom, Bandung, Indonesia, in 2003, and the
master’s degree in computer science from Institut
Teknologi Bandung, Indonesia, in 2014, where he
is currently pursuing the Ph.D. degree in electrical
engineering.

He was a Malware Analyst with Indonesia Com-
puter Emergency Response Team (ID-CERT),
Bandung, from 2012 to 2019. Since 2009, he has

been a Lecturer with Telkom University, Bandung. In 2016, he received a
grant from Asia Pacific Computer Emergency Response Team (AP-CERT)
to present his research at the AP-CERT AGM Annual Meeting, Tokyo,
Japan. He delivered guest lectures on malware, cryptography, and security at
Universitat Autonoma de Barcelona, Spain, in 2018, funded by Erasmus.
From 2022 to 2023, he conducted research with Kumamoto University,
Japan, funded by Jasso. He is a member of the Honeynet Indonesia Chap-
ter and Indonesia Academic Computer Security Incident Response Team
(ACAD-CSIRT). His current research interests include malware detection,
machine learning, and computer security.

VOLUME 12, 2024

http://dx.doi.org/10.1109/CVPR42600.2020.00975
http://dx.doi.org/10.1007/978-3-030-01264-9_9
http://dx.doi.org/10.1007/978-3-030-01264-9_9
http://dx.doi.org/10.1109/CVPR46437.2021.01274
http://dx.doi.org/10.48550/arXiv.2006.07733goo
http://dx.doi.org/10.1109/CVPR46437.2021.01549
http://dx.doi.org/10.1109/ACCESS.2023.3344531
http://dx.doi.org/10.1145/3488932.3517393
http://dx.doi.org/10.1109/ACCESS.2022.3206445
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1057/s41284-018-0150-5
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICWT55831.2022.9935463
http://dx.doi.org/10.5220/0006685805530561
http://dx.doi.org/10.1109/MALWARE.2015.7413680

S. J. I. Ismail et al.: MalSSL—SSL for Accurate and Label-Efficient Malware Classification

IEEE Access

HENDRAWAN (Member, IEEE) received the
B.S. degree in electrical engineering from Institut
Teknologi Bandung, Bandung, Indonesia, in 1985,
the M.S. degree in telecommunication engineering
and the Ph.D. degree in electrical engineering from
the University of Essex, Essex, in 1990 and 1995,
respectively. He has been a Full Professor with
Institut Teknologi Bandung, since 2023. He is cur-
rently a Researcher and a Lecturer with the School

Ao of Electrical and Informatics, Institut Teknologi
Bandung. He is also the Head of the Telecommunication Engineering
Research Group. His research interests include wireless technology and
machine learning.

BUDI RAHARDIJO (Member, IEEE) received the
B.S. degree in electrical engineering from Institut
Teknologi Bandung, Bandung, Indonesia, in 1986,
the M.S. and Ph.D. degrees in computer sci-
ence from the University of Manitoba, Manitoba,
Canada, in 1990 and 1997, respectively. He is cur-
rently a Researcher and a Lecturer with the School
of Electrical Engineering and Informatics, Institut
Teknologi Bandung. His current research inter-

5 ests include computer security and cryptography.
He is the Founder and the Chairperson of Indonesia Computer Emergency
Response Team (ID-CERT). He is one of the founders of Asia Pacific
Computer Emergency Response Team (AP-CERT).

VOLUME 12, 2024

TUTUN JUHANA (Member, IEEE) received the
bachelor’s degree in electrical engineering, the
master’s degree in telecommunication engineer-
ing, and the Ph.D. degree from Institut Teknologi
Bandung (ITB), Indonesia, in 1995, 1999, and
2011, respectively. He is currently an Associate
Professor of telecommunication engineering with
the School of Electrical Engineering and Infor-
matics (SEEI), ITB. He is also the Dean of SEEI,
ITB, and a member of the National Center for Sus-
tainable Transportation Technology. His research interests include wireless
ad-hoc networking, vehicular ad-hoc networks, the Internet of Things, and
ambient assisted living.

YASUO MUSASHI (Member, IEEE) has been
with the Information Processing Center, Kumamoto
University, as a Cooperative Researcher and an
Assistant Professor, since 1997. Since 2002,
he has been an Associate Professor with the
Center for Multimedia and Information Technolo-
gies. He was a Guest Scientist with the Johann
Wolfgang Goethe Universitit Frankfurt am Main,
from January 2005 to July 2005. Since May 2014,

he has been with the Center for Management and
Information Technologies (CMIT), Kumamoto University. He has been a
Full Professor with CMIT, since 2015, and the Research Education Institute
for Semiconductors and Informatics (REISI), since 2023. His research
interests include computer network security and developing security incident
detection and prevention systems.

58835

