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ABSTRACT According to the International Diabetes Federation (IDF), roughly 33% of individuals affected
by diabetes exhibit diagnoses encompassing diverse severity of diabetic retinopathy. In the year 2020,
approximately 463million adults within the age bracket of 20 to 79 were documented as diabetes sufferers on
a global scale. Projections suggest a rise to 700million by 2045. The proposed automated diabetic retinopathy
detection methods aim to reduce the workload of ophthalmologists. The study presents the Robust Fuzzy
Local Information K-Means Clustering algorithm, an advanced iteration of the classical K-means clustering
approach, integrating localized information parameters tailored to individual clusters. Comparative analysis
is conducted between the performance of Robust Fuzzy Local InformationK-Means Clustering andModified
Fuzzy C Means clustering, which incorporates a median adjustment parameter to augment Fuzzy C Means
for diabetic retinopathy detection. The results are evaluated on three datasets: IDRiD, Kaggle, and fundus
images collected from Shiva Netralaya Center, India. Achieving a 94.4% accuracy rate and an average
execution time of 17.11 seconds, the proposed algorithm aims to categorize a substantial volume of retinal
images, thereby improving performance and meeting the crucial demand for prompt and precise diagnoses
in diabetic retinopathy healthcare.

INDEX TERMS Diabetic retinopathy detection, unsupervised learning, Fuzzy C Means, clustering,
healthcare.

I. INTRODUCTION
Diabetic retinopathy (D.R.), the predominant ocular compli-
cation associated with diabetes, impacts roughly one-third
of the global diabetic population. Its prevalence is notably
higher in regions where diabetes is more widespread.
Approximately 60 million individuals are living with dia-
betes, with diabetic retinopathy impacting around 12% to
18% of diabetes patients in India [1]. Therefore, developing
countries like India face a shortage of eye care facilities due
to the substantial diabetic patient population. D.R. screening
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lacks a coordinated national strategy and is instead conducted
sporadically. Challenges for hospital-based or outreach
screening camps involve patient awareness, accessibility, and
the scarcity of adequately trained ophthalmologists and clin-
ical teams. If left untreated, this condition poses a substantial
risk of vision loss, making it a leading cause of blindness
among working-age adults in many developed nations. Reg-
ular eye exams are essential for detecting D.R. in its early
stages [2]. The American Diabetes Association recommends
annual dilated eye exams for people with diabetes. Ongo-
ing research seeks to improve the understanding of D.R.
and develop more effective treatments and early detection
methods [3].
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The identification of D.R. involves the observation of
various lesions, such as microaneurysms (M.A.) [4], hard
exudates (EX) [5], and hemorrhages (H.M.) [6]. Red lesions
are typically associated with M.A. and H.M. within this
context, while bright lesions indicate soft and hard exudates.
D.R. is categorized into five stages based on these lesions:
no D.R., mild D.R., moderate D.R., severe D.R., and pro-
liferative D.R., as shown in Figure 1. Deep learning excels
in various domains but heavily relies on labeled data for
supervised learning [7]. Collecting and labeling such data is
costly and time-consuming, presenting a significant research
opportunity to address the challenge of reducing this labeling
burden for real-time applications [8].

The central challenge in Deep Neural Networks (DNN)
is the issue of overfitting, even when clustering algorithms
demonstrate excellent performance [9]. To mitigate this,
feature selection can be employed to extract relevant infor-
mation from the dataset, aligning with the application’s
requirements. These selected features offer valuable insights,
allowing for a deeper exploration of possibilities [10], [11].
This research aims to enhance the synergy between deep
learning methods and clustering algorithms, enabling the
implementation of unsupervised learning techniques for effi-
cient Dimensionality Reduction classification.

FIGURE 1. Diverse stages of D.R. [12].

The conventional k-means algorithm, a fundamental tech-
nique for vector quantization, exhibits certain limitations
that impact its efficacy. Firstly, it operates linearly, implying
that data elements assigned to one cluster are not consid-
ered for others [12]. In real-world scenarios, however, it is
common for data points to have shared attributes across
clusters. Secondly, the algorithm tends to converge towards
local minima rather than the global minima due to its reliance
on initial random centroid selection. This can adversely
affect the final cluster configuration. Lastly, the k-means
algorithm exhibits minimal adjustments toward cluster cen-
ters during each iteration, leading to extended convergence
times. Thus, the proposed work combines k-means clustering
with local cluster information, calculated using the inverse
Euclidean distance and cluster centre. This function con-
verges the cost function in local minima and provides better

results (equation1).

ObjMdkm =

∑nc

i=1

∑nx

j
M f id ij + linji (1)

The proposed algorithm is evaluated using fundus images
related to D.R. detection, and a comparative analysis was
conducted against the Modified Fuzzy C Means (MaFCM)
algorithm [13]. This analysis also included Fuzzy C-Means
(FCM), K-Means, and Autoencoder-based Deep Embedded
Clustering (DEC) [14]. The outcomes of this comparison
aim to validate the model’s generalizability. Significantly, the
performance of the proposedmodel exceeded that of the other
algorithms.

The contributions of this research could be summarized as
follows:

• The foundational k-means clustering algorithm is
enhanced by incorporating local information parameters
for specific clusters. This augmentation calculates the
inverse Euclidean distance between data points and clus-
ter centers. It serves as an adjustment factor, expediting
the convergence of cluster centers and diminishing the
iteration count needed.

• The proposed algorithm is compared with the modified
Fuzzy C-means (FCM) algorithm, which is known for its
ability to optimize global optimawithin the conventional
FCM framework. This modified algorithm includes an
additional median adjustment parameter in the objective
function to enhance solution optimality further.

• The algorithms are assessed using the D.R. fundus
dataset to evaluate the model’s performance. Fur-
thermore, the proposed models are compared with
state-of-the-art methods to demonstrate the model’s
generalizability.

The remaining paper is organized as follows: The second
section presents recent work on unsupervised deep learning
methodologies. The next section of the paper discusses the
proposed work in detail. The fourth section discusses the
results, and the paper concludes with the fifth section.

II. LITERATURE REVIEW
Supervised learning methods offer great potential for solv-
ing various problems [15]. However, unsupervised learning
methods can uncover many new opportunities [16]. Specif-
ically, data mining techniques for clustering can organize
unfamiliar data into meaningful structures without explicit
guidance. Many of these clustering methods use distance
measurements to do this. When you combine deep learning
and clustering, you get what is known as deep clustering
algorithms [17].
DEC is a method that excels in unsupervised learning

because it is good at clustering data [18]. It can assign data
points to clusters and learn valuable features from the data,
which fills in gaps that cannot be done with supervised learn-
ing [7]. Several algorithms have evolved to improve DEC.
During DEC, a spatial space for features is created using

Autoencoders. These Autoencoders transform the actual data
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into different features in a hidden space [14]. The cluster-
ing process also affects how the Autoencoder training is
performed by setting rules for clustering. DEC works in
two steps: first, there is a pre-training phase where initial
parameters like cluster centres and stopping criteria are set up.
Then, in the fine-tuning phase, feature learning and clustering
are combined. DEC prefers to apply Autoencoders because
they are simple, reliable, and work well for reconstructing
data [11].

However, the Discriminately Boosted Clustering (DBC)
algorithm closely matches the procedures of DEC, encom-
passing the training approach, clustering methodology, uti-
lization of K.L. divergence, and the distribution of soft
cluster assignments. The primary distinction lies in adopting
a Convolutional Neural Network (CNN) based Autoencoder
instead of a conventional Autoencoder (typically Feedfor-
ward). This alteration significantly enhances accuracy in
the DEC algorithm, mainly when dealing with image-based
datasets. [19].

Then, the Deep Clustering Network (DCN) approach
tackles the challenge of integrating unsupervised learning
into deep learning by creating a unified process. Instead
of working with the more intricate latent feature space,
DCN leverages the learned weights (typically denoted
as ‘‘w’’) acquired after each training session for the cluster-
ing task [20]. This approach advocates a joint operation of
dimensionality reduction and clustering, specifically employ-
ing k-means clustering assignment to achieve its objective.
The optimization criteria employed in this process involve
three practical steps: (1) reducing dimensionality, (2) recon-
structing data, and (3) enhancing cluster-based regularization,
as proposed by Min et al. in 2018. The latent representation
that is clustering-friendly w is used instead of the latent
feature space, as discussed below (equation 2).

hi = f (xi;w) , f (.;w) : RM → RR where f (, ;w) (2)

Here, equation (3) indicates the function of mapping the w
weights associated with the particular input x in the respective
hidden layer hi.
While prior algorithms like DEC, DBC, and DCN have

addressed specific problems, they exhibit limitations in
terms of scalability and efficiency, particularly when han-
dling extensive datasets. Deep Embedded Regularised Clus-
tering (DEPICT) distinguishes itself through its unique
approach [20]. Instead of following the conventional meth-
ods, DEPICT utilizes a multi-layer convolutional autoen-
coder and introduces a relative entropy-based objective
function to regulate cluster assignments. DEPICT employs a
data-dependent regularization strategy to enhance its robust-
ness in computing the reconstruction loss, thereby guard-
ing against overfitting during network training. This study
presents a joint learning framework, which efficiently min-
imizes both the clustering loss and the reconstruction loss
while concurrently training the network [20]. The initial stage
of this combined process involves computing the probabilistic

cluster assignment, as outlined in equation (3).

pik =
exp

(
θTk Zi

)∑k
k ′=1 exp

(
θTk ′Zi

) (3)

The above equation can also be defined as the Here,
2 = [] represents the SoftMax function, which indicates the
data point’s current probability distribution. Further, pik it
represents the probability calculation of data points in kth the
cluster (Maria Hauser).

Continuing with exploring unsupervised deep learning,
researchers have delved into a novel approach, VaDE, which
utilizes the Variational Autoencoder (VAE). Within VaDE,
an unsupervised generative clustering method combines the
Gaussian Mixture Model (GMM) and the Deep Neural Net-
work (DNN). VaDE allows for interpolation within the latent
representation space and the generation of new samples that
adhere to the data distribution [21].

Data clustering in VaDE initially involves the applica-
tion of the GMM, followed by generating latent embedding
features denoted as ‘‘z.’’ Subsequently, these features are
directed towards the DNN for decoding into observable data.
The joint operation of the VAE and the GMM is governed by
the Evidence Lower Bound (ELBO), as demonstrated in the
work [22].

The Joint Unsupervised Learning (JULE) approach’s
data processing encompasses deep learning and clustering.
Through the utilization of a stacked Convolutional Neural
Network (CNN), this method proves particularly well-suited
for image datasets. A recurrent structure is employed within
this framework, wherein agglomerative clustering is executed
during the forward pass, while CNN-based learning occurs
during the backward pass [22], [23]. In contrast to alternative
approaches, JULE introduces a singular loss function aimed
at optimizing the recurrent framework, which encompasses
both CNN and agglomerative clustering components [18].

The data dimension is considered a critical factor that
outlines the limitations and advantages of clustering algo-
rithms [24]. In most cases, the distance between data points is
measured by clustering algorithms to assess similarities, but
this approach is less effective as data dimensionality increases
in complexity. The utilization of deep learning algorithms
can ameliorate this issue, but dimension reduction remains
necessary, even in spectral clustering methods [25]. The deep
clustering algorithm performance on high-dimensional data
can be improved by establishing a well-defined objective
function for training the deep learning model.

III. METHODOLOGY
The recent advancements in automated disease detection have
been a tremendous help to society and overloaded medical
and healthcare facilities. Many factors have contributed to
this progress, such as high image acquisition quality, machine
learning and artificial intelligence utilization, immense stor-
age capacity, and improved computing facilities.

In this era, entities focused on development are increas-
ingly demanding information and analytics to enhance their
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outcomes, efficiency, and performance [26]. The importance
of analytics and learning is increasing significantly in the
context of progress, yielding promising results to generate
highly efficient solutions for the betterment of the future.
Despite utilizing traditional algorithms and their variations
to advance outcomes, the emphasis on creating more optimal
solutions is rising [27].

Based on previous research, it is evident that modifications
are required in the processing methods of clustering/deep
learning algorithms due to their limitations. The issue of over-
fitting is regarded as a central concern in the context of DNN,
causing challenges even when the clustering algorithm’s per-
formance is exceptional [9]. Nevertheless, selecting features
relevant to the application’s requirements can be carried out
to address the processing of irrelevant information in the
dataset. Furthermore, the chosen features offer crucial data
that enables a more profound understanding to explore addi-
tional possibilities [10], [11].

FIGURE 2. Proposed methodology.

This approach constructs an automated D.R. detection sys-
tem, employing fuzzy information in conjunction with the
K-means (FIKM) algorithm. The model is then compared
with the MaFCM algorithm to demonstrate its generalizabil-
ity. Statistical features are generated or recognized in this
process to produce a distinctive combination of independent
attributes. The proposed methodology includes a discussion
of dataset description, preprocessing, and algorithm details,
shown in Figure 2.

A. DATASET DESCRIPTION
In the study context, the utilized datasets include IDRiD,Kag-
gle dataset, and fundus images obtained from Shiva Netralaya
in Uttar Pradesh, India. The fundus images, collected from
Shiva Netralaya in Uttar Pradesh, India, were taken from
50-60 patients diagnosed with moderate to severe Diabetic
Retinopathy (D.R.) affecting both eyes and captured using
a Zeiss tabletop fundus camera with a 35mm focal length.
The statistics of the dataset are shown in Table 1. The Indian
diabetic retinopathy image (IDRiD) dataset was created using
actual clinical eye exams from a clinic in Nanded, India.
The IDRiD dataset focuses on individuals with diabetes. The
captured images have a 50◦ field of view resolution of 4288×

2848 pixels. They are stored in jpg format with a 50-degree
field of view. They are categorized into five D.R. classes with

TABLE 1. Statistics of fundus images from shiva netralaya center (primary
dataset).

severity levels from 0 to 4 and three Diabetic Macular Edema
(DME) with severity levels from 0-2, as shown in Table 2.

The Kowa VX-10α fundus camera captures retinal images
after dilating subjects’ pupils with tropicamide. The dataset
consists of 516 high-resolution (4288 × 2848 pixels) JPEG
images following international clinical standards. Expert
annotations for D.R. lesions, typical retinal structures, and
severity levels for D.R. and DME are provided, making it a
valuable resource for diabetic eye disease research [28].

In this study, alongside the fundus images obtained from
Shiva Netralaya Center and IDRiD, the dataset from the
Kaggle competition titled ‘‘Diabetic Retinopathy Detection’’

FIGURE 3. Retinal fundus images (A) Sample images from the primary
dataset collected from the shiva netralaya center (B) Samples from IDRiD
datasets showing dark, differently illuminated images (C) Kaggle dataset
sample images.
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is also incorporated. This Kaggle competition represented a
significant milestone inmedical image analysis and computer
vision, focusing on the development of algorithms that can
automatically detect and categorize D.R. in retinal images.
The sample images of all applied datasets are shown in
Figure 3.

TABLE 2. Statistics of kaggle IDRiD dataset.

The Kaggle competition generously provided a substantial
dataset comprising 88,702 retinal images [29]. These images
were meticulously gathered and annotated by EyePACS, with
35,126 images designated for training and 53,576 for test-
ing, as clearly outlined in Table 3. Each retinal image was
subjected to expert annotations, indicating the severity levels
of D.R., which ranged from 0 to 4. Notably, the dataset
encompassed images of varying dimensions, ranging from
320 × 211 pixels to 5184 × 3456 pixels. These images were
captured under diverse imaging conditions, thereby adding
complexity and diversity to the dataset. Notably, the dataset
comprised images representing both left and right eyes,

TABLE 3. Statistics of kaggle DR dataset.

further enhancing its utility for developing and evaluating
algorithms in the domain of D.R. detection and classification.

B. PREPROCESSING
Preprocessing plays a pivotal role in optimizing image qual-
ity and facilitating accurate analysis. These images often
suffer from challenges like noise, inconsistent lighting, and
artifacts like reflections or dust spots. Preprocessing steps,
including noise reduction, contrast enhancement, and arti-
fact removal, ensure clear visualization of critical anatomical
structures like blood vessels, optic disc, and macula. Nor-
malization of pixel values helps maintain consistency across
images. At the same time, segmentation techniques enabled
by preprocessing are vital for delineating specific structures
relevant to D.R. diagnosis, such as abnormalities in blood
vessels [30]. Additionally, data augmentation during prepro-
cessing enhances the robustness of machine learning models
by introducing variations to the training dataset, ultimately
improving the efficacy of automated analysis and detection of
D.R. [31]. The preprocessed fundus images, obtained through
circle cropping and Ben Graham’s technique, are illustrated
in Figure 4.

FIGURE 4. Preprocessed retinal fundus images (A) Circle-cropped and
contrast-enhanced images from kaggle, IDRiD, and the primary dataset.
(B) Clipped preprocessed fundus images.
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C. FUZZY INFORMATION K-MEANS
The traditional k-means vector quantization approach stands
out as an efficient clustering technique within the data mining
realm. It employs a recursive technique to determine conver-
gence, randomly selecting cluster centers and manipulating
distances. The iterative process involves recalculating cluster
centers by taking the mean of clusters from the previous
iteration. This process repeats until convergence is achieved,
gradually bringing the k centers closer to the converged
state. The classic k-means algorithm is defined as follows:
(1) Convergence function, (2) Cluster Centre computations,
and (3) Cluster bin.

Cf =

∑nc

i=1

(
∥Cci− NCci∥2

)
(4)

NCci =
(

1
ndci

) ∑ndci

j=1
Cbini (5)

Cbini = (Cbini |Xsi) (6)

Xsi = lim
j=1tonx

xj; if dist of xj is min to Cci (7)

dist =
∥∥xj − Cci

∥∥2 ; j = 1 to nx, i = 1 to nc (8)

The Convergence function, denoted Cf ,, calculates the varia-
tion between the cluster centers of the previous and current
iterations (equation 4). Determining the stopping criterion
and controlling recursive stages relies on the desired pre-
cision level specified by the user. The variable nc signifies
the user-specified number of clusters, either existing or
requested. Within this context, the variables CciNCci are
provided (equation 5). The calculation of the present cluster
center, denoted asCci, and the new cluster center, represented
by NCci, is executed by leveraging the cluster bin (Cbini)
construction (equation 6).

The number of Cluster bins available for use is denoted
as ndci equivalent to the user-specified number of clusters
(nc), as the generated bins align with the required number
of clusters. The Cbini algorithm is developed utilizing a
set of selected data points, denoted as Xsi, which represent
the minimal distant points or elements between xj and Cci
(equation 7). These data points are crucial in determining
the cluster center during clustering. The variable nx indicates
the dataset’s cardinality, signifying the total number of ele-
ments within the dataset. The traditional k-Means algorithm
exhibits several limits in properly handling data. One such
restriction is its reliance on linear processing, whereby data
elements contained inside one cluster are not accessible in
another. However, in real-time, the likelihood of mutual
occurrences is significant. The k-means method often con-
verges to local minima rather than global minima, influencing
the final cluster by the initial random selection. The mini-
mal migration of data points towards the cluster centers in
each iteration directly impacts the time complexity of the
entire process [32]. However, by incorporating local informa-
tion through fuzzy clustering, k-means can capture complex
cluster structures and accurately identify clusters even in
overlapping or irregularly shaped clusters. The proposed

method, Fuzzy Informative k-means, is presented as follows.

linji =
1
dij

(Max (x) − Cci)f (9)

The equation (9) denotes the Local Information parameter
linji of a specific cluster. The calculation involves utilizing
the inverse Euclidean distance between the data points and
the cluster centers. The primary purpose of this function is to
address the global optimum issue. It is additionally utilized
as an adjustment factor to facilitate the movement of clus-
ter centers, hence reducing the overall number of iterations
required.

NCci =
(

1
ndci

) ∑ndci

j=1
M f i+linji (10)

The center of the previous membership function in FIKM,
represented by equation (10), aligns with the standard
k-means algorithm mentioned in equation (4). The algorithm
introduces the parameter to enhance the selection of cluster
centres and prevent entrapment in local optima.

M f k = Xsk ∀ Wk (11)

where Wij = [0| 1
nc |

2
nc |

3
nc |

4
nc , . . .

n−1
nc ], n and nc represent,

the number of clusters determined by the user’s request. The
weight, denoted as W, is assigned to each cluster member
to quantify the distinction between individual elements. Fur-
thermore, equation 11 represents the membership function
in FIKM, encompassing clusters categorized by the pre-
determined Cci. Furthermore, the computation NCci relies
on Cci. An inherent deviation from the conventional k-means
algorithm lies in the fuzzy attribute incorporated into the
FIKM framework. The membership functionM f k represents
a cluster containing members, some of which might have
mutual membership with other clusters. In the given model,
each element within a cluster holds the potential to be a
member of multiple clusters.

Xsk = lim
j=1tonx

xj; if dij of xj is min to Cck (12)

dij =
∥∥xj − Cci

∥∥2 ; j = 1 to nx, i = 1 to nc (13)

Equations (12) and (13) are employed to determine the data
selection process within each cluster. This involves measur-
ing the distance between the data elements and the cluster
centers. Once the data is identified as belonging to a specific
cluster, it is highly prioritized. Conversely, non-members are
assigned a lower priority.

Objfiter =

∑nc

i=1

∑nx

j=1
M f id ij + linji (14)

Equation (14) represents the objective function, assessing the
degree of convergence attained through the recursive process.
This function employs the current membership functions and
the local information parameter to forecast the convergence
state. Hence, the fuzzy approach is executed on the k-means
algorithm, demonstrating the algorithm’s systematic proce-
dure below.
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1. Initialize the required operative inputs, such as the
number of clusters c, convergence criteria, and data
elements.

2. The cluster centers are randomly from the data points
for the first iteration. These cluster centers are indicated
usingCi = [C1,C2,C3 . . . .Cnc]. Once the random clus-
ter centers are chosen from the data vector xj, they will
be utilized to calculate the dij distance, where measuring
methods vary depending on the precision and type of the
cluster.

3. The membership data, denoted as M f k and con-
taining fuzzy weights, is constructed using random
clusters from preceding iterations. The cluster prior-
ity influences the determination of (fuzzy weights).
The algorithm yields only one output- the membership
function- specifically when it reaches the convergence
stage.

4. Assess convergence after each iteration to compute the
objective function using equation 15.

Objfiter − Objfiter−1 < Cgnccri (15)

whereCgnccri shows the convergence criteria for the D.R.
detection.

5. Conclude the iteration upon reaching the convergence
state and choose the final membership function from the
clusters. Alternatively, if convergence is not achieved,
repeat the iteration from Step 2.

The reason for choosing the Fuzzy InformationK-Means over
alternativemethods is its capacity to effectivelymanage noisy
and high-dimensional data while offering robustness against
outliers. Its resilience to outliers ensures that noisy data points
do not disproportionately impact clustering outcomes. More-
over, this method balances the interpretability of traditional
k-means and the flexibility of fuzzy clustering, rendering it
suitable for diverse real-world applications where data often
demonstrates intricate patterns and noise.

D. MODIFIED FUZZY C-MEANS
The FCM method employs a soft clustering approach, dis-
tinguishing itself from k-means by its capability to identify
mutual clusters where data points may belong to more than
one cluster. FCM is an iterative process aimed at minimizing
the objective function. Convergence is assessed by analyzing
the reduction in mean square error. As FCM operates under
the unsupervised learning paradigm, it initiates the clustering
process with random selections [33], [34]. The FCM process
involves three stages: (i) Cluster Centre, (ii) Membership
Function, and (iii) Objective Function shown below. The
objective function of the FCM is given by equation 16.

Jiter =

∑N

i=1

∑nc

j=1

[
M f ∥∥Dxi−cj∥∥]

(16)

whereN is the number of data points in the data vector and nc
the number of clusters (the user can specify this)?M f denotes

a membership function provided using equation 17.

M f
(
dji
dki

)
= Miter =

1[∑nc
k=1 (

dji
dki
)

2
f−1

] (17)

where dji and dki represent the distance measurements
between the data point Dxi and the cluster center Cj, which
can be represented explicitly using the Euclidean distance
method. The fuzzification factor f is a parameter used in the
process of fuzzification. The cluster center Cj (equation 18)
is often obtained from theM f , which represents the specified
cluster.

Cj =

∑N
i=1M

fDxi∑N
i=1M

f
(18)

Despite FCM yielding better results, the limitation arising
from local optima amplifies the time complexity required to
achieve convergence. In certain instances, convergence may
not be attained. Given the nature of the problem, numerous
algorithms have been proposed based on FCM to achieve
global optima with improved time complexity. In order
to improve the robustness of the clustering method, vari-
ous improvements have been proposed for existing versions
of FCM. These improvements include facilitation techniques
such as fuzzification, local optima minimization, contour
region similarity assessment, noise tolerance, reduction in
execution time, and enhanced parameter selection. The pro-
posedMaFCMalgorithm incorporates themedian adjustment
parameter. Adding a median adjustment parameter can help
achieve the global optima by introducing a penalty term Fmmfi
that encourages cluster centroids to move towards the median
of the cluster instead of being strictly determined by the
data points. Moreover, incorporating the median adjustment
parameter influences the centroids by the cluster median
rather than just the mean. Thus, adding the median adjust-
ment parameter in the FCM objective function enhances the
algorithm’s robustness, stability, and convergence properties,
ultimately leading to better clustering results, especially in
noisy or sparse data scenarios.

Jiter =

∑N

i=1

∑nc

j=1

[
M f ∥∥Dxi − Cj

∥∥2 + Fmmfi
]

(19)

Fmmfi =

∑
i∈Ni

Med(Wij)

Med
(
Wij

)
+ 1

∥∥Dxi − Cj
∥∥2 (20)

Cprej =

∑N
i=1M

fDxi∑N
i=1M

f
(21)

CadjM = Med(
∥∥∥Cold j − Cprej

∥∥∥) (22)

Cadj =
CadjM
Max(Pv)

(23)

Cj = (Cprej )
1

Cadj (24)

Miter =
1∑nc

k=1

(
dji+Fmmfi
dki+Fmmfi

) 1
f−1

(25)
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As demonstrated in equations (19)-(25), the Median adjust-
ment parameter modifies the derivative form of an objective
function, cluster center, and membership function Fmmfi. This
Fmmfi is the only factor accountable for making the algorithm
optimal and effective. The following are the steps for running
this algorithm.

1. The FCM algorithm begins by initializing parameters,
such as the desired number of clusters, the fuzzy factor,
convergence criteria (indicating the convergence status),
and the maximum allowable iterations.

2. In order to streamline the clustering process, the data
utilized is referred to as the Data vector Dxi . This vector
is subjected to fuzzification and afterward reorganized
according to a random membership function.

3. The dimension Nxnc is utilized to generate random
memberships, and its variants exhibit a soft clustering
nature, implying the mutual association of data points in
two or more clusters. Here, N the total number of data
points available is represented, and the user-determined
number of clusters is utilized.

4. As the procedure is iterative, the membership function
M f is calculated at each iteration using the latest cluster
center Cj. A new is computed if the convergence state is
not achieved based on this calculation.

5. The proposed version of the FCM algorithm distin-
guishes itself from other iterations by employing a
distinct method for calculating its cluster center Cj in
contrast to Cprej wherein the membership function M f

is a crucial factor. One of the primary objectives of this
approach is tominimize iterations, thereby achieving the
shortest possible convergence time.

6. The distance between the prior cluster center and the
present cluster is computed as CadjM per equation (18)
to promote better parameter selection and faster
convergence.

7. The Cprej is then rectified to generate the final clus-
ter center Cj. The Fmmfi article is updated with new
information, stimulating the nature of the ideal result.
The procedure is repeated until the convergence state is
attained.

IV. RESULT AND DISCUSSION
In this research, the focus is given to the improvements of
existing clustering algorithms to find a perfect match for
unsupervisedmethodology. The results section showcases the
performance evaluation of the proposed clustering algorithms
and provides a comparative analysis among them. Moreover,
these algorithms (MaFCM and FIKM) are compared with
existing clustering algorithms or older versions of FCM and
K-Means to stimulate the results better. The findings are eval-
uated using standard IDRiD, Kaggle competition dataset, and
primary dataset fundus images obtained fromShivaNetralaya
Centre Saharanpur, India.

The available techniques are compared by presenting
numerical results with varying noise levels. Traditional
algorithms such as k-means, FCM, EnFCM (Enhanced Fuzzy

C-Means), FGFCM (Fast Generalised Fuzzy C-means), and
FLICM (Fuzzy Local Information C Means) are tested in
this part under noisy and original conditions to evaluate the
proposed approach. The parameter for analysis is chosen
based on the limitations of existing clustering algorithms.
Parameters such as accuracy and time complexity are the
main constraints necessary for the decision to enhance the
proposed algorithm in the context of achieving better segmen-
tation and efficiently reaching global optima.
The proposed algorithms can extract maximum informa-

tion from fundus images as per the results. This examination
is tailored for around 850 fundus Images sourced from diverse
databases. Figure 3 shows the input fundus images from the
functional dataset, as illustrated in the description. The eval-
uation is conducted on original fundus images. The results
indicate that MaFCM, followed by EnFCM and FIKM, can
extract maximum information from the fundus image. This
assessment was conducted on 25% of the medical images
from various databases. A subset of the results (S1-S15) is
presented in Table 4, and a graphical representation of the
performance analysis is shown in Figure 5.

TABLE 4. Comparison of clustering algorithms for accuracy under
noiseless condition.

FIGURE 5. Graphical representation of performance analysis of clustering
algorithms under noiseless conditions, indicating that MaFCM
outperforms other state-of-the-art algorithms.
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The k-means algorithm is excluded from the compari-
son because it performs hard clustering, unlike the fuzzy
version (FCM). The FIKM, incorporating a fuzzy median
strategy, stands out for its unique ability to obtain a median
value from neighboring pixels, improving average accuracy.
Table 5 compares various clustering algorithms in terms of
accuracy under noisy conditions. To assess algorithm charac-
teristics, [35] manipulated the image’s noise level (variance),
denoted as σ , representing the intensity of noise affect-
ing the data. Handling pixel contamination in an image
poses a challenge for categorizing or clustering intricate
data, as noises can manifest at different frequencies—high
or low—impacting real-time data. This experiment focuses
on analyzing high-frequency noise. The study includes four
adjustable noise levels from 0 to 1: 0.2, indicating a 20%
infection rate of information; 0.4, indicating a 40% infec-
tion rate; 0.6, indicating a 60% infection rate; and 0.8,
indicating an 80% infection rate. The graphical representa-
tion of performance analysis with noise variance is shown
in Figure 6.

TABLE 5. Comparison of clustering algorithms for accuracy under noisy
condition.

FIGURE 6. Graphical representation of performance analysis of clustering
algorithms under noisy conditions, indicating that MaFCM outperforms
other state-of-the-art algorithms.

In the given configuration featuring an Intel i7 fifth-
generation processor with a 32GB VRAM GPU and 49GB
RAM, it is crucial to consider the computational resources
available for efficient deep learning algorithm simula-
tions. Deep learning algorithms rely heavily on GPUs or
high-computation facilities to expedite learning. Given this

context, it becomes imperative that the clustering algorithm
employed for data processing operates within acceptable
time constraints. Table 6 provides insights into the average
time taken by the algorithm during the simulation. Typically,
clustering algorithms make critical decisions in the first iter-
ation, such as selecting their initial points. It is paramount
that the processing time of the clustering algorithm aligns
with the system’s capacity, ensuring that the overall learn-
ing process remains within acceptable time limits. Conse-
quently, a comparative analysis of these metrics becomes
essential to establish a standardized measure, as shown
in Figure 7.

TABLE 6. Average time taken by clustering algorithms.

FIGURE 7. Graphical representation of comparative analysis of time
complexities for clustering algorithms, indicating that MaFCM followed by
FLICM outperforms other state-of-the-art algorithms.

The primary objective of this study is to enhance the
capabilities of unsupervised learning methodologies. Several
challenges include feature corruption due to the insecurity of
clustering loss, model complexity leading to implementation
and training issues, hyper-parameter tuning, and overlapping
clusters.

The comparison focuses on the accuracy of unsupervised
clustering, denoted as ACC and expressed by equation (26).
Additionally, the discussion involves the Normalized Mutual
Information (NMI), represented by equation (27), and
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the utilization of the Adjusted Rand Index (ARI) as per
equation (28). This approach facilitates a robust evalua-
tion framework, enabling conclusive findings in pursuing
improved unsupervised learning outcomes.

A. UNSUPERVISED LEARNING ACCURACY
Unsupervised clustering accuracy (ACC) is a measure that
assesses the performance of clustering algorithms by compar-
ing the obtained clusters with the ground truth without using
any labeled information. The ACC is calculated using the
following equation (26). The ACC ranges from 0 to 1, where
1 indicates a perfect clustering, meaning all data points are
correctly assigned to their respective clusters. A lower ACC
value suggests a less accurate clustering.

ACC =
Number of correctly clustered data points

Total number of data points
(26)

In the given equation (26), ‘‘Number of correctly clustered
data points’’ refers to the count of data points that are assigned
to the correct clusters based on the ground truth, and ‘‘Total
number of data points’’ is the overall number of data points
in the dataset.

B. NORMALIZED MUTUAL INFORMATION (NMI)
Normalized Mutual Information (NMI) is a measure that
quantifies the similarity between two clustering’s while con-
sidering the entropy of the clusters [36]. It is often used in
unsupervised learning to evaluate the quality of a clustering
algorithm. TheNMI is calculated using the equation (27). The
NMI ranges from 0 to 1, where 0 indicates no mutual infor-
mation (no similarity between the clustering), and 1 indicates
perfect agreement between the clustering. A higher NMI
value implies a better agreement between the algorithm’s
clustering and the ground truth.

NMI =
2×I (C,K )

H (C) + H (K )
(27)

The given equation (27) represents the mutual information
between the two clustering’s K . It measures the amount of
information shared between the two clustering’s.
H (C) and H (K ) are the entropies of clustering C K used

to quantify the uncertainty or disorder within each clustering.

C. UNSUPERVISED LEARNING ACCURACY
Adjusted Rand Index (ARI) is another measure to assess
the similarity between two clustering’s. It considers pairs of
samples and measures the agreement between the actual and
predicted cluster assignments, correcting for chance [37]. The
ARI is calculated using the equation (28). The ARI ranges
from −1 to 1, where −1 indicates perfect disagreement
between the clustering’s, 0 indicates the agreement expected
by chance, and 1 indicates perfect agreement between the
clustering’s.

ARI =
RI − Expected_RI

max (RI − ExpectedRI ) − Expected_RI
(28)

The given equation (28) stands for the Rand Index, which
is the ratio of the number of samples Expected_RI to the
expected value of the Rand Index under a null hypothesis
of random cluster assignments and max (RI − ExpectedRI )
shows the maximum possible value of the ARI.

The MaFCM stands out due to its incorporation of a fuzzy
median technique, providing a unique capability to derive a
median value from a window of neighboring pixels, thereby
achieving superior average accuracy. The proposed technique
is designed to extract information even from minor changes
in the data neighborhood, enabling the efficient construc-
tion of clusters. Moreover, the FIKM algorithm demonstrates
resistance to segmentation and is primarily focused on global
optima. Thus, as time progresses, the significance of these
diverse approaches becomes evident.

Compared to existing methods such as K-Means, FCM,
EnFCM, and FLICM, the proposed algorithms are evaluated
as shown in Table 4 and Table 5. The findings indicate that
these algorithms specialize in various areas and operations;
some excel in rapid clustering, while others excel in cluster
deletion, addressing noise during their processes.

Tables 7,8, and 9 present detailed results generated
parameter-wise (i.e., ACC, NMI, and ARI). The findings
consistently favor the proposed methods, with MaFCM
demonstrating promising results: ACC = 94.4, NMI = 92.7,
and ARI = 91.9. MaFCM outperforms FIKM in clustering
data points and achieves a convergence state faster, as shown
in Table 6.

TABLE 7. Comparative analysis of clustering algorithms for unsupervised
learning accuracy on functional dataset.

TABLE 8. Comparative analysis of clustering algorithms for NMI on
functional dataset.

TABLE 9. Comparative analysis of clustering algorithms for ARI on
functional dataset.
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FIGURE 8. Graphical representation of comparative analysis of ACC, NMI,
and ARI indicating that FIKM outperforms the MaFCM for D.R. detection.

The Kaggle dataset, a well-known dataset with many
data points, demonstrates the highest performance for both
algorithms. Additionally, the primary dataset yields superior
results for both proposed methods. Figure 8 presents the
graphical comparison of proposed methods for ACC, NMI,
and ARI performance measures.

During experimentation with the proposed algorithms,
several outcomes and potential limitations emerge. The
algorithm typically yields more flexible and accommodating
clusters to complex data structures, especially in scenarios
with noisy or high-dimensional data. However, challenges
may arise in determining the optimal number of clusters
and selecting appropriate fuzzification parameters, which can
significantly impact the clustering results. Additionally, the
algorithm’s performance may be sensitive to the initialization
of cluster centers and the choice of distance metric, requir-
ing careful tuning for optimal outcomes. Furthermore, while
the algorithm offers robustness against outliers, excessively
skewed distributions or heavily overlapping clusters may
pose challenges. Addressing these limitations often involves
iterative experimentation, parameter tuning, and robust val-
idation techniques to ensure the algorithm’s effectiveness
across diverse datasets and scenarios.

V. CONCLUSION
DR is a severe chronic disease affecting approximately
one-third of diabetic patients worldwide. Developing an auto-
matic D.R. detection system based on retinal fundus images
is imperative to address this widespread concern. However,
labeling data for processing through supervised learning
methods in medical imaging can be time-consuming. Conse-
quently, unsupervised clustering methods offer an alternative,
revealing hidden patterns and relationships in the data. The
proposed work introduces an optimized clustering algorithm
by incorporating fuzzy local parameters into K-Means algo-
rithms to enhance performance and achieve global optima.
The proposed algorithm demonstrates an accuracy rate of
94.4% and an average execution time of 17.11 seconds.
Evaluation under noisy and noiseless conditions on different
image samples indicates superior performance in noisy con-
ditions, achieving 97% accuracy.

FUTURE SCOPE AND OPEN CHALLENGES
There is still a need for improvement in the existing approach
to enhance performance in the field of D.R. detection. Thus,
this section addresses the future scope and open challenges
researchers should focus on to enhance D.R. classifica-
tion performance. The challenges that need to be addressed
include-

1. Real-time ImageAnalysis: Developing algorithms capa-
ble of analyzing retinal images in real-time, allowing
for faster diagnosis and intervention, particularly in
telemedicine and remote healthcare settings.

2. Automated Screening in Primary Care: Implementing
automated D.R. screening tools in primary care settings
to improve access to early detection and intervention,
especially in underserved communities with limited
access to eye care specialists.

3. Deep Learning on Small Datasets: Addressing the
challenge of developing accurate deep learning mod-
els for D.R. detection with limited data availability
by exploring transfer learning, data augmentation, and
semi-supervised learning techniques.

4. Ethical A.I. Deployment: Ensuring ethical deploy-
ment of AI-based DR detection systems by addressing
bias, fairness, privacy, and transparency in algorithmic
decision-making processes to maintain trust and equity
in healthcare delivery.

5. Mobile Health Solutions: Leveraging mobile technolo-
gies, such as smartphone-based retinal imaging devices
and mobile apps, for scalable and cost-effective D.R.
screening and monitoring, enabling early detection and
timely intervention in resource-constrained settings.
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