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ABSTRACT The rapid advancements in electric vehicle technology have elevated the lithium-ion battery
to the forefront as the paramount energy storage solution. The battery’s health tends to deteriorate gradually
as it ages. Due to the inevitable physiochemical reactions that take place inside the battery, it undergoes
degradation and at a certain point, it becomes unserviceable. The battery degradation can be estimated using
state of health (SOH). This paper employs data-driven techniques to estimate the state of health (SOH) of
a battery. To estimate health parameters, a vast quantity of data, such as voltage, current, and temperature,
is gathered from the NASA Prognostics Center of Excellence. The data is resampled using the superior
Fourier Resampling method and then fed to a machine-learning algorithm. In this study, SOH estimation
is carried out using three different machine-learning techniques i.e. Long Short Term Memory (LSTM),
Deep Neural Networks (DNN), and Gated Recurrent Unit (GRU). However, the performance and accuracy
of SOH estimation using these algorithms are highly dependent on hyperparameter tuning. Therefore, the
optimal hyperparameter tuning has been adopted in the present work to reduce the time and complexity of the
estimation. Further, the performance of various proposed techniques has been compared against each other
using different performance indices such as root mean square error (RMSE), mean absolute error (MAE),
and R-square error. GRU technique proved to be excelling with RMSE of 0.003, MAE of 0.003, and R-square
error of 0.004 while estimating the SOH of various samples of batteries. This detailed analysis will be helpful
for users to evaluate the performance of a battery and plan for maintenance accurately and effectively with
minimum downtime.

INDEX TERMS Gated recurrent unit, lithium-ion battery, state of health, battery management system.

I. INTRODUCTION

Lithium-ion batteries are considered the main energy storage
systems (ESS) in Electric Vehicles (EVs). These batteries
are mainly used because of their high performance, energy
density, high thermal tolerance and capacity, etc. However,
Lithium-ion batteries (LIBs) are prone to the phenomenon
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called aging. The battery’s performance or health decreases
due to the repeated usage of the battery. Eventually, at a
certain point in time, the battery becomes unserviceable. This
is due to the inevitable physiochemical reactions taking place
inside the battery [1]. These LIBs are subjected to harsh
working environments that decrease the battery capacity and
increase the internal resistance due to which there is a need
to measure the battery’s lifetime [2]. To protect the LIB,
a Battery Management System (BMS) is required. A BMS
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enables the real-time monitoring of LIBs and protects them
from unsafe conditions. A BMS is mainly used to measure
the State of Charge (SOC) and state of health (SOH) of LIBs.

Moreover, it also provides temperature control and per-
forms cell balancing across the cells [3], [4]. Among these
factors, the State of Health (SOH) is the primary parameter
defining battery degradation and influencing its performance.
Therefore, accurate SOH estimation is a necessary factor to
keep EVs safe and reliable [5]. From the definition of SOH,
it can be said that the SOH value of a fresh battery is assumed
to be 100%. When the battery is completely drained in an
EV during discharging, the SOH value drops to about [70 —
80]% and therefore the battery capacity is nullified, making
the battery unserviceable. Upon the State of Health (SOH)
of the battery declining to the range of 70-80%, the battery
undergoes degradation and ultimately reaches the End of Life
(EOL) phase. The [70-80] % threshold limit is set based on
the battery capacity.

Therefore, the EVs will not be able to meet the required
power demand and further vehicle propulsion is not possible.
Thus, the battery operating conditions should be maintained
between [80-100] % SOH [6]. SOH estimation techniques
are broadly categorized into direct measuring, model-based
methods, and data-driven techniques. Each of these meth-
ods has its drawbacks as compared with the others [7], [8].
The direct measurement techniques are easy to evaluate and
implement but the obtained value is less accurate as it is in
an open loop configuration and based on the precision of
the sensors [9]. The model-based methods and filter-based
methods are easier to implement and give relatively high
accuracy estimation of SOH but the computational time and
complexity of these methods are high [10], [11], [12]. Lastly,
data-driven methods, also known as machine-learning meth-
ods are currently in the spotlight. These methods make use
of large amounts of data obtained through continuous experi-
mentation of LIBs. These methods provide high accuracy and
efficacy [13], [14].

Although it is easy to implement, the training of data
requires more time. It also varies based on the battery data
given as input, which has been considered under different
operating conditions. Estimation of battery SOH and RUL
using SVM, a powerful machine learning technique has been
investigated in [15], in which the pre-processing of data has
been done using the Fisher ratio. Here, for optimal param-
eter determination, a linear SVR kernel was used. In [16],
a comprehensive deep-learning approach was showcased,
which illustrated its suitability in accurately estimating the
remaining useful life (RUL) of a battery. To assess the aging
characteristics of the battery, a model has been created that
focuses on the degradation of battery capacity. This model
employs the Support Vector Regression (SVR) technique to
estimate the Remaining Useful Life (RUL) of the battery.

To optimize the parameters of the Support Vector Regres-
sion (SVR), the Artificial Bee Colony (ABC) algorithm is
utilized. This particular approach has been proven to yield
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higher levels of accuracy when compared to the Particle
Swarm Optimization (PSO) method, as stated in [17]. In [18],
using maximum available capacity, a back propagation neural
network technique is used to calculate battery health. A three-
layer Backpropagation (BP) neural network is employed for
the training and testing of data. Subsequently, dynamic and
static current profile tests are conducted to assess the model’s
accuracy. Further, an online LIB capacity estimation using
deep convolutional neural networks (DCNN) model has been
discussed [19], which automates feature learning from exten-
sive charge data. The datasets required for SOH prediction in
this paper were obtained from the Centre for Advanced Life
Cycle Engineering (CALCE) and the National Aeronautics
and Space Administration (NASA) [20]. The estimation of
the battery State of Health (SOH) is accomplished through
a fusion of the Markov Chain and Prior Knowledge Neural
Network (PKNN). A PKNN model, enhanced with a Markov
correction algorithm, was developed for accurate estima-
tion. PKNN exhibits effective fitting for complex nonlinear
problems, and the Markov correction minimizes prediction
errors [21].

In [22], an autoencoder model was introduced for
multi-dimensional feature extraction. For the estimation of
the battery’s State of Health (SOH), a multi-input Long
Short-Term Memory (LSTM) model was employed. Addi-
tionally, various sequence lengths of input data were scru-
tinized to identify the optimal sequence length through a
feedback process. In [23], a new auto LSTM-based method
was implemented. A new method for tuning the hyperparam-
eters of a neural network which involves hyper parameter
reduction algorithm (HRA) is discussed. LSTM neural net-
work with attention mechanism (ALSTM) has been proposed
in [24] which uses an attention mechanism to select the proper
LSTM hidden layer output states to improve the training
efficiency. In addition to traditional methods, recently hybrid
methods have shown more accurate results [25], a hybrid
method consisting of DNN, LSTM, and CNN is utilized
to predict the battery’s remaining useful life (RUL). This
method showed improved accuracy within an acceptable exe-
cution time. A typical LSTM model was developed in [26],
which simultaneously predicts the values of the state of
energy (SOE) and state of charge (SOC) of the battery at the
same time.

Recently, gated recurrent unit (GRU) networks have
proved to give superior results over other methods, SOH
estimation was performed using the GRU-RNN model which
gave more accuracy when compared to RNN [27]. In [28],
a different method consisting of GRU and CNN which is
called convolution-gated recurrent unit (CNN-GRU) showed
relatively accurate estimations of the SOH of the battery
when compared to CNN and RNN alone. In the expan-
sive duration, the assessment of the State of Health (SOH)
and Remaining Useful Life (RUL) for Lithium-Ion Batteries
(LIBs) was meticulously examined. This thorough evaluation
encompassed the utilization of a Time Delay Neural Net-
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FIGURE 1. Machine learning-based SOH estimation steps for lithium-ion battery.

work (TDNN) and a Recurrent Neural Network (specifically,
nonlinear autoregressive with external input, NARXRNN) to
construct an advanced prognostic model that could accurately
forecast the SOH for up to 30 cycles ahead. This model,
as demonstrated in [29], demonstrated significant potential
for improving the understanding and prediction of the health
and longevity of LIBs. This method proved to be more accu-
rate and yielded better results [30]. The SOH estimation
approach which makes use of real-time driving patterns in
a more practical environment has been done in [31], from a
data-driven technique using sensible data about current, volt-
age, and temperature obtained from the Battery Management
System (BMS). Offline learning on a server and real-time
estimation of SOH on BMS is done.

From the above-discussed literature, it has been observed
that many data-driven has been techniques employed in
SOH estimation but very few papers only focused on
accuracy and computation burden simultaneously. To over-
come the above issue, the fourier transform-based GRU
machine learning technique has been proposed and com-
pared with other widely used machine learning techniques
(long short-term memory (LSTM), deep neural networks
(DNN)). To obtain the best results in terms of computational
complexity and also to enhance precision, the present work
incorporates an optimally tuned hyperparameter-based GRU
technique. Different GRU hyperparameters such as layers
and units, learning rate, dropout rate, batch size, and acti-
vation function has been tuned using GridSearchCV from
scikit-learn.
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From the comparative analysis, it has been observed that
the proposed optimally tuned GRU technique provides better
results in terms of accuracy and computation burden. This
proposed technique further enhances the suitability of the
real-time estimation of the SOH of any battery chemistry. The
paper’s primary contributions can be succinctly summarized
as follows:

o The Fourier transform-based GRU technique has been
adopted to estimate the health of the battery.

« Incremental capacity-based input datasets have been
considered as input to GRU which mimics the realistic
battery internal degradation factor such as battery chem-
istry and working conditions.

o An optimal hyperparameter tuning-based GRU tech-
nique has been proposed for accurate SOH estimation
of the battery.

o The proposed battery health estimation technique has
been tested and validated under different charging and
discharging profiles.

The subsequent sections of the paper are structured as
outlined below: Sections II and III delve into the discussion
of feature extraction and machine learning-based techniques
for State of Health (SOH) estimation. Section IV discusses
the analysis and discussion of the results. Final section V
highlights the conclusion of the work.

Il. FEATURE EXTRACTION AND ESTIMATION STEPS
Raw data cannot be given as input data to a neural network.
This is because raw data usually consists of noises, duplicate
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or missing values, and is generally inconsistent. The data
usually comes from unknown heterogeneous origins so it
needs to be formatted. In this regard, the first step in creating
a machine-learning model is the preprocessing of data. Pre-
processing of data is essential for cleaning and filtering data
before feeding it to a machine-learning model. If we do not
apply to preprocess and feed the raw data directly, then the
estimated result quality is poor. Therefore, to obtain good-
quality results, a better preprocessing technique is required.

In this regard, a well-defined resampling using the Fourier
Transforms (FT) technique is used. This technique works
faster and more efficiently than traditional techniques. As we
know, the input data is inconsistent and consists of different
sampling lengths. The sampling size of the data may differ.
Hence, to decrease the data sampling size, the FT method is
employed. The FT resampling technique has certain merits,
in which, flexibility is the main advantage. One more merit is
that the neural network made with this method can be used to
find the SOH of all kinds of batteries.

The Fourier transforms function x (N ) can be represented as

N—-1
—j2mkn
XNMp) = ane B (1)
n=0

wherep =0, 1,2,.....,N-1

Therefore, the input data consisting of voltage, current, and
temperature values first undergo the FT preprocessing. This
enables faster sampling of data given to the neural network.

The fundamental steps to estimate the SOH of the battery
are elucidated in Fig. 1. The first phase is to gather informa-
tion or dataset collection. However, sometimes the collected
datasets may not be relevant to provide cell aging informa-
tion. In this regard, the second phase demonstrates the feature
extraction technique (Fourier transform) to monitor the aging
mechanism of the battery exactly. In the third phase, the pro-
posed machine learning models undergo training to extract
features of LIB. After the training of the developed machine-
learning model, in the final phase, it has been implemented
for online BMS applications. Further, accurate and reliable
feature extraction plays a pivotal role in SOH estimation.
The provision of more meaningful and accurate input training
data for training the developed machine learning models
will yield more relevant predictions for the State of Health
(SOH). Under the real-time setting, the voltage, current, and
temperature data (depicted in Fig.2) have been recorded at
NASA Ames Center during the charging and discharging of
LIB and used as inputs for machine learning-based model
training [20].

Initially, the battery cell was subjected to the process of
charging in the mode of constant current (CC) at a rate of
1.5 A until the battery voltage had reached the threshold
value of 4.2 V. Following this initial charging phase, the
process transitioned smoothly into the mode of constant volt-
age (CV), where it continued until the charge current had
gradually diminished to a significantly lower value of 20 mA.
In order to provide a visual representation of the charging
process, Fig. 2 was included, which showcases the curves
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depicting the changes in terminal voltage, temperature, and
current throughout the entire charging process. Additionally,
in order to provide further insight into the behavior of the
battery during the discharging process, Fig. 3 was included,
which illustrates the curves representing the variations in
current, terminal voltage, and temperature at different levels
of State of Health (SOH). It is important to note that the
ICA technique, which stands for independent component
analysis, proves to be an exceedingly effective tool for the
purpose of analyzing the electrochemical dynamical behavior
of LIB, otherwise known as Lithium-Ion Batteries [ 10]. Espe-
cially more focused on analyzing the lithium intercalation
process and staging phenomena. In this regard, Capacity
fade was observed by ICA curves. Further, the ICA curves
have been obtained using (2). Differentiating the battery
charging/discharging capacity by voltage leads to the ICA
approach. Mathematically, ICA is denoted as

dQ [Ah
K“—dw[v} @
To obtain the ICA curves to study the degradation process
in battery, information about battery charging/discharging
voltage, current, and time is required. The ICA curves during
charging and discharging (Fig. 2(d) and Fig. 3(d)) have been
used as one of the input features for training the proposed
neural network technique. The value of the IC peaks will
decrease with respect to the loss of active material (LAM).
The occurrence of chemistry change (CC) may affect the
intensity of the IC peaks and accordingly, new peaks may
enter. When a battery is under-discharged (UD) or under-
charged (UC), the IC peak will move to a broader range
during battery degradation.

In the range of 3-3.2 V and 3.3-3.6 V (Fig. 2(d)), the
intensity of IC peaks decreases as the degradation of SOH
increases. This signifies that loss of active material (LAM)
occurs during aging. The IC peaks between 3-3.2 V and
3.3-3.6 V move toward the right with the battery aging. The
increase of polarization, or simply the increase of impedance,
results in this phenomenon.

IIl. GATED RECURRENT UNIT MODEL FOR SOH
ESTIMATION

In this section, the GRU technique has been formulated and
discussed in detail.

A. GATED RECURRENT UNIT

Gated Recurrent Unit (GRU) networks are proposed to over-
come the problem of long-term dependencies in RNNs.
In terms of training, GRUs are rather faster to train. GRU is
considered an improved version of RNN and LSTMs. GRU
uses gates similar to an LSTM to control the stream or flow of
information [32]. Unlike LSTM, a GRU typically consists of
only two gates. The Gated Recurrent Unit (GRU) comprises
an update gate, which governs the extent of information to
be transmitted, and a reset gate, responsible for identifying
information that can be omitted or forgotten. The eq. (3) and
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eq. (4) represent the update gate and reset gate respectively.

rr=0X; x U +Hi—1 W) 3)
u =0X; x Uy +H; 1 % Wy) 4
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The functioning of the Gated Recurrent Unit (GRU) com-
prises two steps, as illustrated in Figure 4. In the initial step,
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FIGURE 4. Architecture of a typical GRU.

a candidate hidden state H, is generated. This is achieved by
multiplying the input and the hidden state from the previous
time instance with the output of the reset gate Rt. then, it is
passed through the tanh layer. This can be observed from the
equation (5).

Hl :tanh(X, *Up—‘f_(rl OHZ—I)*W])) (5)
H =UoH_1+(1-U)oH, (©6)

The candidate’s hidden state, as derived from equation (5),
is employed for computing the present hidden state Ht.
The advantage of Gated Recurrent Unit (GRU) over Long
Short-Term Memory (LSTM) lies in the utilization of a sin-
gular gate, specifically the update gate, which controls the
information flow from both the previous hidden state and the
candidate hidden state. This observation is reflected in the
corresponding equation (6) [28].

IV. RESULT ANALYSIS AND DISCUSSION

A. DATA COLLECTION

The dataset required for the machine-learning model is
obtained from the NASA Ames Prognostics Centre of Excel-
lence. The battery used is 18,650 LIB’s. In this process,
a set of four lithium batteries 5, 6, 7, and 18 were taken.
The data acquisition involved subjecting these batteries to
two distinct operational profiles, encompassing discharge
and charge cycles, under ambient temperature conditions.
The charging of these batteries was carried under constant
current (CC) mode at 1.5A until the voltage of the battery
reached 4.2V. Subsequently, it proceeded in the constant
voltage (CV) mode until the charge current descended to
approximately 20 mA. The discharge test was conducted
in Constant Current (CC) mode at a rate of 2A, persist-
ing until the battery voltage reached 2.7V, 2.5V, 2.2V, and
2.5V for batteries 5, 6, 7, and 18, respectively. The exper-
iments concluded upon reaching the End-of-Life (EOL)
condition of the batteries. This is the condition when their
capacities faded by 30% of the rated capacity (2 Ahr
to 1.4 Ahr).
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B. EVALUATION CRITERIA

The GRU-based technique (discussed in section III) is used
to evaluate the SOH of the battery and compared with wisely
used techniques. To quantify the performance of the proposed
technique error analysis has been carried out. The perfor-
mance indications are provided using the below techniques:
Root Mean Square Error (RMSE): It is employed to provide
insight into the error analysis of the SOH estimation. This can
be obtained from the below formula

1 s
RMSE = |~ (SOHesiimaied = SOHacuar?  (7)

i=1

Estimated SOH error value: The variance between the
actual State of Health (SOH) value and the predicted SOH
value can be calculated using the following formula (8)

SOHerrors = |S0Hestimated - SOHactuall (8)

Coefficient of determination (R?) error: This is used to mea-
sure the extent to which the estimated value matches the
actual value and is obtained using (9).

n
> (SOH ueruat (i) — SOH estimared (i)

i=1

n
Z (SOHactual(i) - SOI_Iestimatea’(l.))2
i=1

RP=1- )

C. RESULTS DISCUSSION
The raw data, which is distinguished by its unequal lengths,
is not appropriate for being directly inputted into the neu-
ral network model. Consequently, to address this issue, the
input data is subjected to resampling using the Fast Fourier
resampling method (discussed in section II), which has been
extensively described in the preceding section. To demon-
strate the effectiveness of utilizing the Fourier resampling
method, the eight battery datasets obtained from NASA are
thoroughly examined. This evaluation aims to highlight the
superiority of the Fourier resampling method when applied
to the DNN, LSTM, and GRU models. Several hyperparam-
eters have been tuned to enhance the model’s performance,
including the number of GRU layers and units, learning rate,
dropout rate, batch size, and activation function. Hyperpa-
rameter tuning using GridSearchCV from scikit-learn.

GridSearchCV is a function that exhaustively searches over
a given parameter space to find the optimal set of hyper-
parameters for a given estimator. A comparative analysis
between these methods has been carried out and evaluated
using different performance indices such as RMSE MAE
and R square errors. Fig. 5(a) gives the analysis of different
methods of DNN, LSTM, and GRU for battery 5. It can be
seen that the results provide an accurate estimated value of
SOH. The figure clearly illustrates the improved consistency
of the estimated value when compared to the actual State of
Health (SOH) value.

To study the robustness and efficacy of the proposed GRU
technique, a comparative study among different machine
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TABLE 1. Various performance indices (DNN, LSTM, and GRU) in the case of batteries #5, #6, #7, #18.

Battery #5 Battery #6 Battery #7 Battery #18
Method RMSE MAE R? RMSE MAE R?> | RMSE MAE R? RMSE MAE R?
DNN 0.006 0.004 0.999 | 0.007 0.005 10.999 0.006 0.004 | 0.999 0.008 0.006 [0.998
LSTM 0.007 0.005 {0.999 0.007 0.005 10.999 0.006 0.004 | 0.998 0.006 0.004 [0.998
GRU 0.004 0.004 {0.999 0.005 0.004 |1.000 0.004 0.003 | 0.999 0.003 0.003 [1.000
TABLE 2. Various performance indices (DNN, LSTM, and GRU) in the case of batteries #53, #54, #55, #56.
Battery #53 Battery #54 Battery #55 Battery #56

Method RMSE MAE R? RMSE | MAE R? RMSE | MAE R? RMSE | MAE R?
DNN 0.011 0.009 0.928 | 0.013 | 0.009 | 0.966 0.008 | 0.006 | 0.988 0.012 0.01 {0.967
LSTM 0.015 0.013 | 0.859 0.011 0.008 | 0.978 0.008 | 0.006 | 0.987 0.012 0.01 ]0.961
GRU 0.013 0.010 0.902 | 0.010 | 0.007 | 0.982 | 0.008 | 0.006 | 0.988 | 0.009 | 0.008 | 0.98

learning techniques, namely the DNN, GRU, and LSTM
models, in estimating the SOH for various batteries (B6, B7,
B18 B53, B54, B55, and B56) has been carried out. Table 1
presents the findings that can be derived from the examination
of various machine learning models. According to the results,
the deep neural network (DNN) model yielded a root mean
square error (RMSE) value of 0.006. On the other hand, the
gated recurrent unit (GRU) model demonstrated a smaller
RMSE value of 0.004. Lastly, the long short-term memory
(LSTM) model produced an RMSE value of 0.007 for battery
5. For the same battery, the error analysis has been carried out
using other error indices such as MAE and R? as depicted in
Table 1. From error analysis, it has been observed that GRU
provides the best results as compared to other widely used
machine learning techniques.

Further, to verify the efficacy of the proposed technique
(GRU), the error analysis has been carried out for various
battery sets and it has been observed that the proposed tech-
nique outperforms well. One important factor that contributed
to the reduction of error values in the GRU model was the
implementation of local normalization. This technique played
a significant role in enhancing the accuracy of the estimated
value. Figure 6(a-d) and Table 1, it can be observed that the
low value of error indices indicates that the proposed Gated
Recurrent Unit (GRU) technique performs significantly bet-
ter when compared to other techniques such as Deep Neural
Network (DNN) and Long Short-Term Memory (LSTM).
To validate the effectiveness of the proposed techniques,
they have been thoroughly tested and evaluated on additional
batteries, namely batteries B6, B7, B18, B53, B54, B55,
and B56.

The graphical representation in Fig. 5(b) to Fig. 5(h)
demonstrates that GRU surpasses DNN and LSTM in terms
of accuracy by closely tracking the actual State of Health
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(SOH). Furthermore, the insightful analysis provided by
Table 1 and Table 2 clearly shows that the SOH error indices
(RMSE and R2) are significantly lower in the case of GRU
as compared to the widely used techniques, namely DNN
and LSTM, when applied to different batteries (BS, B6, B7,
B18, B53, B54, B55, and B56). Further, the Fig. 6(e to h),
it becomes evident that the GRU exhibits the minimum error
and is remarkably close to a value of zero. It can be noted
that the training time for the GRU is the shortest, as men-
tioned earlier. This showcases that the overall computational
burden of the proposed GRU is significantly low. Based on
the aforementioned analysis, a keen observation can be made
that the accuracy of State of Health (SOH) estimation is
superior for each battery when compared to other widely
utilized techniques. The amalgamation of the GRU method
with the Fourier resampling technique has proven to be highly
efficient and effective, surpassing the majority of existing
hybrid models that require extensive training times. Upon
further analysis, it has been observed that for real-time SOH
estimation, the GRU model utilizing the Fourier resampling
technique would be both cost-effective and impactful for
Electric Vehicles (EVs) powered by lithium-ion batteries.
Finally, consideration of hyperparameter tuning of the pro-
posed technique reduces the time and complexity of the
estimation as depicted in Table 3.

To assess computation cost and performance, two com-
monly employed metrics, namely floating-point operations
per second (FLOPs) and run-time for all models, are
employed. FLOPs, which gauge the number of operations
executed per second for a trained model, serve as a reli-
able indicator that showcases the intricacy of a model.
The lesser number of FLOPS in the proposed technique
depicts that the proposed GRU technique is computationally
efficient.
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TABLE 3. Computation costs for different techniques.

Model Run Time (s) FLOPs
GRU 0.0589 1297
LSTM 0.10680 1344
DNN 0.2087 1378

V. CONCLUSION
State of health estimation of battery is a challenging part and

currently, there are no existing real-time meters for measuring
SOH. This paper introduces a novel state-of-the-art technique
employing a Gated Recurrent Unit (GRU) in conjunction
with the Fourier resampling technique for the estimation of
the State of Health (SOH) in lithium-ion batteries. Further,
hyperparameters of the proposed GRU model have been
tuned to enhance overall prediction accuracy. Three distinct
methodologies (GRU, LSTM and DNN) were assessed for the
estimation SOH of the battery. Based on the results, it is evi-
dent that among the three methods, the Gated Recurrent Unit
(GRU) method exhibits superiority, delivering more accurate
results. Due to insufficient data for batteries 53 and 54, the
results gave more error values and showed less accuracy.
Due to the usage of Fourier resampling and the addition of
local normalization, the accuracy increased. Batteries BS,
B6, B7, B18, B53, B54, B55, and B56 gave almost close to
actual values with a minimum error of RMSE of 0.003, MAE
of 0.003, and R-square error of 0.004. Thus, for practical
purposes, optimally tuned GRU gives more efficacy than the
LSTM and DNN methods. The real-time data captured from
the Battery Management System (BMS) has been validated
using the proposed technique due to its less computational
time. The lesser computational time and higher accuracy
depict that the proposed GRU-based technique is highly rec-
ommended for real-time health indication of battery. The
limitation of the present work may include that the perfor-
mance of GRU-based models can be sensitive to the choice of
Hyperparameters. Suboptimal hyperparameter selection may
lead to subpar model performance or increased vulnerability
to overfitting. Also, the proposed model lacks the inclusion
of physics-informed machine learning models to enhance the
efficacy of health prediction. To overcome the above limita-
tions, future work includes exploring the fusion of multiple
modalities of data, including electrical, electrochemical, and
physical data, to capture a more comprehensive understand-
ing of battery behavior. This can involve combining data
from multiple sensors and sources to improve the accuracy
and robustness of SoH estimation. Also, one can focus on
developing the techniques for online learning and adaptation
that allow the model to continuously update and improve its
predictions as new data becomes available. This would enable
real-time monitoring and proactive maintenance.
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