
Received 22 March 2024, accepted 14 April 2024, date of publication 22 April 2024, date of current version 29 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3391889

GenericSNN: A Framework for Easy Development
of Spiking Neural Networks
ALBERTO MARTIN-MARTIN 1,2, MARTA VERONA-ALMEIDA 1, RUBÉN PADIAL-ALLUÉ2,
JAVIER MENDEZ 1, ENCARNACIÓN CASTILLO 2,
AND LUIS PARRILLA 2, (Member, IEEE)
1eesy-Innovation, 82008 Unterhaching, Germany
2Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, Granada, 18071 Andalusia, Spain

Corresponding author: Alberto Martin-Martin (alberto.martin@eesy-innovation.com)

This work is part of the project TED2021-129938B-I00, funded by MCIN/AEI/10.13039/501100011033 and by the European Union
NextGenerationEU/ PRTR. At the same time, part of this work has been developed in the context of the project ‘‘ANDANTE’’ (European
project number 876925) as part of the European call H2020-ECSEL-2019-2-RIA and also partially financed by the German Federal
Ministry of Education and Research (BMBF).

ABSTRACT Spiking Neural Networks (SNNs) have emerged as a prominent paradigm for brain-inspired
computing, capable of processing temporal information and event-driven data in an efficient and biologically
plausible manner. However, their revolutionary and complex nature is one of the key reasons why SNNs
are not yet a widely used approach in contrast to traditional Artificial Neural Networks (ANNs). In this
paper, we present a comprehensive SNN framework that offers user-friendly implementation. It has been
designed so that it is compatible with other well-known software tools for data science, being easy to
integrate with them. We showcase the versatility of the framework by applying it to various well-known
benchmarking datasets, including image processing of handwritten numbers, time-series forecasting and
an advance use case for speech recognition, achieving competitive results compared to traditional ANNs.
Our SNN framework aims to bridge the gap between neuroscience and artificial intelligence, empowering
researchers and practitioners with an accessible tool to explore the potential of neuro-inspired computing in
advancing the field of AI.

INDEX TERMS Deep neural networks, edge computing, framework, spiking neural networks.

I. INTRODUCTION
In recent years, the utilization of Spiking Neural Networks
(SNNs) has gained substantial popularity across diverse
research fields such as Edge Computing (EC) and Internet
of Things (IoT). SNNs have demonstrated the capability to
achieve key milestones such as enhanced power efficiency,
reduced latency, and high-performance computing while
maintaining the accuracy achievements of conventional Deep
Neural Networks (DNNs) [1], [2], [3], [4], [5].

SNN models adopt an approach similar to the biological
processes in the human brain, encoding information into
discrete spikes that are subsequently propagated through the
network. In the case of SNN models, the network processes
these spike signals on its structural configuration until the

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

cumulative internal values reach a defined threshold. At this
point, an internal neuron spike is triggered. This mecha-
nism aligns more closely with the information processing
paradigm in biological brains compared to the conventional
Artificial Neural Networks (ANNs) [6], [7].

However, due to their revolutionary and complex nature,
these networks require a deep comprehension of Deep
Learning (DL) techniques to accurately define the SNN
network architecture as well as its internal parameters.
These SNN parameters include variables such as neuron
activation thresholds, activation functions within neurons,
the selected number of temporal samples for the inference,
and temporal characteristics of neurons among many other
parameters [8], [9]. These parameters are not present in
the context of traditional DNN models, leading to an
increase of the complexity for non-expert users who may
struggle to understand the complex relationships among these

57504

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-5237-7756
https://orcid.org/0000-0003-0579-6506
https://orcid.org/0000-0002-5981-4135
https://orcid.org/0000-0001-6476-8105
https://orcid.org/0000-0001-8126-1146
https://orcid.org/0000-0002-2532-1674


A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

variables. As a result, this high-complexity can lead to wrong
configurations.

This complexity is one of the key reasons why, despite
their efficacy, SNNs are not used yet as the default approach
for DNN implementation at the network edge in contrast to
alternative techniques including DNN quantization, pruning,
or knowledge distillation. To address this issue, several
software packages have been created recently, aiming to
facilitate SNN development. However, most of these frame-
works have a task-oriented structure and workflow, such
as the ones proposed in [10], [11], and [12]. Nevertheless,
these frameworks still require expert knowledge for their
use due to the highly specific case-oriented style of them.
Another important difficulty of these frameworks lies in their
complexity to configure the SNN as well as the simulator to
run these intricate networks.

In this work, a novel framework to design, evaluate the
viability of the designs, train and evaluate SNN models
based on the Nengo [13] and NengoDL [14] packages is
depicted. These mentioned packages provide a simulator and
utilities to build and deploy SNNs. Nevertheless, they are
designed for experts, thus being difficult its use by non-
experienced users. The framework proposed in this paper has
been developed aiming to ease the usage of SNN models by
non-specialist users. To achieve this goal, the steps to generate
a SNNmodel have been simplified to replicate the same steps
required when defining a traditional ANN. Furthermore, the
internal names of the proposed framework follow the naming
convention used in the TensorFlow package [15] in order to
increase their interoperability capabilities with otherMachine
Learning (ML) packages such as SciPy [16].
For clarification, we summarize the contributions of this

research paper as follows:
• An easy framework to design SNN is proposed. The
workflow pipeline when using this framework is highly
similar to popular frameworks such as Keras [17] or
TensorFlow [15] to ease the usage of SNN by non-expert
users.

• The proposed framework was developed taking into
consideration its compatibility with external popularML
Python packages. This enables the usage of state-of-the-
art techniques with the proposed framework.

• This framework has been evaluated in three different
use cases. These use cases have been selected to show
how this framework can be easily used to design
classification-oriented as well as prediction-oriented
SNN models.

The remaining sections of this work are structured as
follows: Section II presents themost relevant software tools in
the literature for similar tasks. After this, Section III discusses
the proposed framework for a deeper understanding of its
capabilities. In Section IV, three use cases are presented in
order to further explain how the proposed framework can be
used to design SNNmodels for multiple applications. Finally,
Section V focuses on conclusions of this work.

II. STATE OF THE ART
In this section, some of the most relevant frameworks for
SNN model creation are discussed, aiming to present the
current state of the art of this field. Furthermore, these
frameworks are compared with the one proposed in this paper
regarding their capabilities and limitations.

As indicated in Section I, various other publications
have also proposed similar tools or frameworks for SNN
model creation. For instance, C. Li introduced a framework
in [10] that mainly focuses on optimizing the conversion
process from ANNs to SNNs while reducing the time to
represent the information of the SNN by quantifying the
ANN network. Nevertheless, this tool is intended for specific
applications such as image processing (it reports 70.18%
accuracy on the ImageNet [18] dataset), and does not face
neither the complexity of the network generation process
nor the compatibility with external tools. As a consequence,
it is highly restrictive regarding both the techniques and the
creation process for SNN models.

Similarly, in [12] a framework focused on direct SNN
quantization rather than relying on a quantized ANN model
is described. In this proposal, all parameters involved in the
SNN configuration for the parameter quantization are taken
into consideration. In practical experiments, the framework
demonstrated a remarkable memory footprint reduction of
four times in comparison to baseline models while facing
only a 1% accuracy drop on the MNIST [19] dataset.
However, despite its high-performance results regarding
memory optimization, this framework remains centered on
a specific task of the SNNmodel creation without addressing
general challenges of SNN model development.

Further contributing to this research field, Zhou proposed
a novel approach in [11]. In this paper, the author proposed
a framework to convert Transformer Networks into SNN
models. This approach combines the latest advances in DL
with biologically plausible structures, aiming to balance
the SNN’s energy-performance benefits with the robust
accuracy of Transformers. As a result of this approach, this
framework achieves a classification accuracy of 74.81% on
ImageNet, surpassing state-of-the-art SNN results. However,
it is important to point that this technique aims to improve the
performance without considering the complexity or the final
user of the framework. This set it apart from the user-centric
approach embodied by the framework proposed in this paper.

Differently from the previous papers, other authors faced
the SNN generation complexity problem by developing
general frameworks, similar to the followed approach in
this paper. Notably, the company SynSense introduced the
‘‘Rockpool’’ tool [20], which aims to increase the SNN usage
among non-expert users. Rockpool has numerous examples
of how to use this framework for audio classification tasks
as well as adversarial training. At the same time, all the
documentation and code to use this framework can be
easily found on the website of the company, leading to an
easy to understand package. However, while Rockpool aims

VOLUME 12, 2024 57505



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

FIGURE 1. ClassDiagram of the proposed framework.

to simplify the SNN utilization, it diverges from standard
naming conventions used in other relevant AI packages. This
creates a bottleneck when trying to use SNN for state-of-the-
art applications.

Additionally, Liu presented a framework for SNN gen-
eration in [21]. This framework not only adapts an ANN’s
activation function for a spike-approach activation but also
aims to reduce information loss resulting from the ANN-
SNN conversion, thus leading to a reduction of the accuracy
degradation. However, it is essential to acknowledge that this
framework offers only a description of the approach followed
by the author and not a full framework. At the same time,
this tool is not intended for general users but expert ones
who can replicate the approach proposed by the author neither
consider the integration of the framework with other external
packages.

Finally, one of the frameworks worth mentioning within
the state-of-the-art is the one developed by Fang, called
SpikingJelly [22]. One notable feature of SpikingJelly is,
as well as other frameworks like Nengo, its focus on
automatic differentiation, a crucial component for gradient-
based training of deep learning models. This allows to
optimize the parameters of the SNN and thus to solve
complex traditional deep learning problems by using this
type of networks. The framework also includes two separated
modules, a very extensive and detailed one for activation
based learning, and another one for timing based learning,
which only includes the encoding process and a neuron
model. The type of neurons that could be implemented in
SpikingJelly are more detailed than the simplified neurons
from Nengo and the framework proposed in this paper.

As an example, its documentation shows how to build and
train a spiking convolutional network to solve the Fashion-
MNIST problem [23]. However, the necessary amount of
lines of code for this application is larger compared to those
required by our proposed framework, as it will be shown in
Section IV. The reason behind this is the high level of detail
required by the configuration of SpikingJelly since it aims
at developing application specific state-of-the-art techniques
in comparison with the proposed framework. This requires a
deep understanding of SNNs, in contrast with the simplified
configuration available in our framework, aiming at non-
expert user, where these configuration steps are not strictly
necessary.

As a summary, it is important to remark that these pre-
existing frameworks have not fully addressed the discussed
challenges. One of the reasons for this is their approaches are
oriented to a specific application or platform, thus leading to
limitations on their generality and user-friendliness. In con-
trast, the proposed framework in this paper aims to solve the
limitations in existing solutions by offering a user-friendly
approach by reducing the complexities of SNN model
creation while integrating capabilities for compatibility with
existing relevant AI packages.

In the following section, the proposed framework will be
described in a detailed level. This will allow readers to better
understand the framework’s capabilities in comparison with
the proposal found in the state of the art.

III. GENERICSNN FRAMEWORK
The present section introduces the proposed GenericSNN
package, which comprises three essential classes, each

57506 VOLUME 12, 2024



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

FIGURE 2. Workflow of the proposed framework for SNN model generation, training and inference.

designed to facilitate specific functionalities within SNN
modeling. Firstly, the core of the package is the BaseModel
class, serving as the parent class from which the other classes
inherit crucial utilitymethods. Thesemethods play a vital role
in tasks such as creating the optimizer for the training process
and visualizing spiking patterns. Moreover, the package
encompasses a dedicated class aimed at creating SNNmodels
exclusively employing Nengo [13] objects (except for the
Simulator which is common for both classes and taken
from NengoDL [14]), thus enhancing model construction
efficiency. Lastly, an analogous class is included, allowing
for the creation of models utilizing NengoDL objects, and
providing an alternative approach for network design and
evaluation. Figure 1 shows a class diagram where the
relationship between Nengo and NengoDLwith our classes is
detailed. Through this package, researchers and practitioners
can effectively develop and analyze SNNmodels in amodular
and flexible manner.

Despite the different classes, all of them follow a common
flow regarding the implementation and execution of an SNN.
Figure 2 shows the proposed diagram flow, which is highly
similar to other common deep learning frameworks such
as Keras or TensorFlow [15], [17]. The first step is Data
adaptation since this type of model requires the input data
to have a temporal dimension. Therefore, the user has to
convert its data to this format. There are different options to
accomplish this step, and we have selected for our framework
a technique consisting on dividing the samples using a time
window in order to generate multiple time samples of a
standardized size. However, this is only possible when the
data has a temporal evolution. When working with individual
samples, the network still requires them to have a temporal
dimension. Our approach for this case is to repeat the same
sample for the time window length.

Apart from the data conversion to time domain data,
data must be converted into spikes, a fundamental aspect of
SNN modeling, for the correct processing of the data when
implementing SNNs models. This, as well as the remaining
steps of our flow, will be further explained in the following
subsections.

A. NEURAL CODING SCHEMES
Neural coding schemes are used to convert input analog or
digital data (e.g. the value of the pixel of an image) into spikes

that are transmitted to the excitatory neurons [24]. Following
biological brain approaches for information codification,
there are various encoding schemes used to represent environ-
mental information such as acoustic, visual, or somatic data
into electrical spikes.

Between all the different approaches, two main coding
schemes can be differentiated: rate coding and temporal
coding. The first one, rate encoding, has been proven to be
the predominant technique to transmit information within
nervous systems [25]. Rate encoding can be further divided
into three subcategories: count, density, and population rate
encoding, being the last one the coding schemes used by
Nengo [13].
Following this approach, the information is encoded by

a population of neurons whose firing rate is described by
a tuning curve. The superposition in a large population can
encode single numbers, vectors, or even function fields [26].
In the decoding process, the different trains of spikes are first
filtered by an exponentially decaying filter accounting for
the process of a spike generating a postsynaptic current, and
then they are all summed together [13]. Figure 3 summarizes
this encoding and decoding approach. The left column shows
the encoding process, in which a signal is encoded by a
population of eight neurons whose firing rate depends on the
tuning curve configured using the uniform option provided by
the framework. The top graph in that column shows the tuning
curves of the different neurons, where each of the colors is
associated with each of the neurons, using the same colors
for the rest of the graphs. The middle graph of the encoding
column shows the input signal, which is a simple sinusoidal
wave. Finally, the bottom graph of that column represents
the spikes of each neuron, and it can be seen how, when the
value of the input signal approaches one, the firing rate of
the neuron represented in blue is maximum meanwhile the
one from the neuron represented in gray is null. The right
column shows the decoding process applied to reconstruct the
original signal. The top graphs of the figure shows the same
train of spikes of each neuron generated in the enconding
process explained before. The middle graph shows the same
train of spikes after apply a low-pass filter of the synapses.
Finally, the bottom graph shows how, by adding up in a
weighted way the components from the different neurons,
the original signal is reconstructed. Those neurons which
increasing tuning curve have a positive weight, while the
others have a negative one.

VOLUME 12, 2024 57507



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

FIGURE 3. Spikes coding scheme, a) encoding process, b) decoding
process. In all subfigures, except in the left-middle and right-bottom
ones, each color is associated with a neuron.

In our framework, the number of neurons in the population
of each layer is specified by the parameters n_neurons when
defining the layer itself. As well, the maximum firing rates of
the neurons are specified when the SpikingNengoNeuralNet-
workModel class is instantiated. In the case of the interception
of the tuning curves (the point when the activity of each
neuron turns to zero), the framework allows the possibility
to choose between two options: setting all the curves to
zero interception, or distributing the interceptions uniformly
between -1 and 1. However, the framework provides default
values for these parameters, in case the user is not sure about
how to configure them. The values of these parameters have
been selected based on a prior study to ensure they fit general
applications, as it will be shown in Section IV.

B. NETWORK DEFINITION
The way of defining the SNN will depend on which class the
user is implementing. As previously commented, the class
defined in SpikingNengoNeuralNetworkModel uses purely
Nengo objects. This implies that the user must specify the
layers in terms of Ensemble object parameters (where an
Ensemble is a population of neurons) and the connection
between each Ensemble in terms of the parameters of the
operation that is performed between two populations of
neurons (e.g. the parameters of a convolution).

As a consequence of this structure for the layer definition,
the user has a deeper control over the internal configuration

of the connections among the layers and neurons. This leads
to the possibility of further optimizing and adapting the
SNN topology to a specific use case. However, a deeper
knowledge of the topic is required in contrast with the
SpikingNeuralNetworkModel class.

When using SpikingNeuralNetworkModel class, only a
definition of the layer structure is required for the construc-
tion of the network topology, in a more similar way to a
conventional ANN when defined with Keras. Specifically,
the layer structure definition is based on a list creation where
each element of the list is a layer. These layers only require
traditional parameters such as the activation function or the
number of neurons.

After the layer definition, as shown in Figure 2, the internal
parameters for the training of the model must be configured.
It would be necessary to specify neuron-related parameters,
the optimizer to use as well as the loss function, among other
training parameters. One of those configurable parameters
is problem_type, which will be used to set the internal
parameters to fit the specific use case, based on the input
provided by the user. The options for these parameters as well
as the effect on other internal parameters are shown in Table 1.

TABLE 1. Internal configuration of the training parameters based on
problem_type variable.

Once the training parameters are defined, the user can
instantiate the class to generate the SNN object for the
training, evaluation, and inference. This will trigger the
internal generation of the model without having to deal
with complex syntax. Additionally, Nengo Probe objects will
be instantiated, whose purpose is to collect data from the
simulation (spike data, represented values, neuron voltages,
etc.), for every layer automatically. This will allow the user to
debug the network in case any problem is detected during the
training phase. In the following subsection, details about the
training and evaluation of the SNN models will be provided.

C. TRAINING AND EVALUATION
For the training, the two mentioned classes of this framework
lie on NengoDL which sits at the intersection between
deep learning and neuromorphic modeling tools, combining
Nengo and TensorFlow [14]. Due to the use of TensorFlow
behind the hood, it is possible to train the network in both
CPUs and GPUs, thus allowing users to train their models
in different scenarios. When high-performance resources are
available, such as large GPU servers, the training phase can
be executed in the GPUs in order to parallelize this process,

57508 VOLUME 12, 2024



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

leading to a time reduction for this step. In other scenarios,
the training could also be executed in CPUs without having
to adapt the script.

NengoDL provides a simulator that allows optimizing
the network parameters. Most of the optimization methods
require the model to be differentiable, which can represent an
issue in this kind of models. However, in most of the cases
good results could be achieved by rate-based approximation
of the spiking neuron model, which is the approach followed
by the NengoDL simulator [14]. By employing this approx-
imated model it is possible to use automatic differentiation
methods following the same techniques as those utilized in a
traditional deep learning model.

To use this NengoDL simulator, it is necessary to compile
the network, provide a valid optimizer, as well as provide a
large number of configuration values. All of this is simplified
in our framework, creating automatically a configuration for
the simulator based on the arguments provided when the
class is instantiated. Besides, all the data produced during
the simulation will be gathered making use of the probes
explained before. This information can be later accessed
easily by calling the methods defined in our classes.

The parent class of our framework, BaseModel, provides
several methods that allow plotting the data generated during
training. The data gathered vary from the voltage of the
spikes, the number of spikes that emits the population of
neurons of the different layers, as well as the temporal
decision results based on the spikes. By providing the layer
index as an argument for these methods, it is also possible to
access the temporal results in each layer and not only in the
last one.

Upon optimization, both classes incorporate two essential
methods, namely predict and score. In order to get the
prediction and the loss function score of the model, it is also
necessary to use the NengoDL simulator, but in this case
with a different configuration that allows making predictions
instead of optimizing the parameters. This configuration is
also provided automatically, making it transparent to the user,
based on the argument problem_type mentioned before.

D. COMPATIBILITY WITH EXTERNAL PACKAGES
This framework was initially planned to be fully compatible
with other well-known data science frameworks. This implies
that a naming convention of the different methods that
the class implements should be followed. Some of the
methods are standard in all the frameworks, for example, the
aforementioned fit, predict, and score methods. This must be
taken into consideration because some utility functions make
use of them to provide external capabilities.

This is especially relevant when aiming to increase the
popularity of SNN models for emerging research topics.
This approach enables the user not only to make use
of external packages for hyper-parameter optimization but
also integrate new techniques into these models, promoting
broader usability within the machine learning community.

For the first case, the hyper-parameter optimization
process, numerous approaches can be followed. The goal of
this process is to search for the parameters that minimize the
loss function implemented for the user’s application. Some
of these parameters are not easy to study, such as the number
of neurons of each layer, or even the proper loss function.
However, the selection of these parameters has a high impact
on the performance results of the resulting SNN model.

One of the external packages that can be used for
this task is scikit-learn [16]. This package, as previously
commented, makes use of some of the methods defined
in the proposed frameworks such as score, get_params
or set_param in order to provide capabilities to study
the hyper-parameter configuration, such as the GridSearch
functionality. Apart from this, this adherence to scikit-learn’s
interface specifications renders the class fully compatible
with its estimator and predictor interfaces.

Regarding the integration of emerging AI techniques in
this framework, due to its dependency with TensorFlow, the
usage of novel layer configurations as well as loss functions
or metrics will be direct.

Some of these capabilities, as well as the implementation
of the discussed classes of this framework, will be shown
in Section IV. There, two different well-known applications
will be covered for a deeper understanding of the coding
structure of our framework. The achieved results will also be
compared with the state-of-the-art results based on traditional
ANN models.

IV. USE CASES
In this section, three different applications based on the
proposed SNN framework will be explained and discussed to
further understand how the framework is used in comparison
with other approaches previously commented in Section II.
In these use cases, not only the direct application of the
framework to generate SNN models will be shown but also
how it can be used with other external AI packages to
integrate external capabilities. The two first examples will
introduce the usage of the proposed framework for simple
applications while the last example will focus on a more
advanced use case.

The examples with the full scripts that will be explained in
the following subsections can be found in the same GitHub
repository where the full framework code is located.

A. MNIST CLASSIFICATION USE CASE
In this subsection, an application based on the proposed
framework for classification will be commented. In order
to better demonstrate the capabilities of the framework,
a commonly used classification dataset has been selected.
The selected dataset is the Modified National Institute
of Standards and Technology (MNIST) handwritten digi-
tal dataset [27]. This dataset contains handwritten digits
(from 0 to 9) in grayscale images of 28 × 28 pixels. These
images include samples from different people to ensure a

VOLUME 12, 2024 57509



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

LISTING 1. SNN layer definition

large variety among the data that can enable the models
trained on this data to achieve a high generality for the task.

This dataset also contains classification labels for the data
that can be used for supervised model training. At the same
time, the dataset has a train sub-dataset, which contains
60,000 samples, as well as a test sub-dataset, which contains
10,000 samples. This way it is possible to calculate the
accuracy in the test dataset to ensure the achieved accuracy
is general and not only for the training data. Some examples
of this digit data are shown in Figure 4.

FIGURE 4. Examples of MNIST sample images.

The goal when using this dataset is the classification of
individual images into their corresponding classes using an
SNN based on the proposed framework. To achieve this
objective, a series of preprocessing steps are required to align
the input data with the prerequisites imposed by the SNN
model. Since SNN requires temporal processing of spikes
to provide a stable outcome, the first preprocessing step
involves a transformation of the input data into a time-series
input. However, in cases where data remains static across

time, rather than concatenating different samples to include
temporal features, the same image can be concatenated
multiple times to ensure static information across temporal
steps. Consequently, the input data shape would be (batch
size, sample, time steps, features) where the number of
features will be set to 784 since the images are converted
from 28 × 28 into flat vectors of 784 features. Converting
the data into a flat vector is always required when using the
SpikingNengoNeuralNetworkModel class. Subsequently, this
class will execute a reshaping process to adapt the data to the
shape specifications of the selected layer.

Following the data preprocessing phase, the data is ready
for the training. However, the SNN architecture must be
defined before starting the training process. As with all
neural network models, the first step for the network structure
definition involves the selection of parameters such as
the number of layers, layer types and number of neurons
among other parameters. Since the input data are images,
convolutional layers can be used to first extract relevant
features that can be later used to classify the data. To define
the layer structure, we need to create two lists, similar to how
it is done in Nengo, to encapsulate both the layers themselves
and the interconnections with their respective properties.
An example of this process is depicted in Listing 1.

Once the network structure has been defined, the parame-
ters for the training and neuron attributes must be defined to
finish generating the full SNN model. Among the parameters
to define in this point, as in general ANNs, are the numbers
of epochs, batch size, optimizer, learning rate and input shape
as well as the specific parameters for the SNN such as the
neuron type, simulation time steps, maximum firing rates
of the neurons, membrane RC time constant and absolute
refractory period, among others. However, the class will set
some default parameters in case the user does not specify
them. This strategy allows users to easily define a first
network configuration whose results can be used later to
refine the network parameters. The code to be executed in
this case is shown in Listing 2.

During the generation of the SNN model, if the user has
set some parameters that are incompatible among themselves,
such as wrong values for the RC time constant and the
absolute refractory period, the framework will return an error
message indicating which parameters must be adjusted and
how this can be performed.

Once the network has been correctly generated, the
user can start the training phase. For this, the method
SpikingNengoNeuralNetworkModel.fit can be used as when
using TensorFlow [15] or Keras [17]. This call will trigger
the training phase, which will use the internal parameters
previously defined such as number of epochs or batch size.
Once the training phase finishes, it is possible to execute a
prediction using the method SpikingNengoNeuralNetwork-
Model.predict or calculating the accuracy of the model on
a set of data and labels by calling the method SpikingNen-
goNeuralNetworkModel.score. With the previously defined

57510 VOLUME 12, 2024



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

LISTING 2. SNN model creation.

LISTING 3. SNN training and evaluation.

SNN, the achieved test accuracy is 95.90%. This result has
been calculated as shown in Listing 3.
The achieved performance is similar to other implemen-

tations based on traditional ANNs, as shown in Table 2.
Some authors, such as Kadam et al. [28] compare the
performance of multiple Convolutional Neural Networks
(CNNs) to further understand the effect of modifying
the hyper-parameters of the network in the final result.
This author achieves a test accuracy of 98.27% using the
same batch size as the SNN defined in this paper and a
similar architecture. Following this topic, there are numerous
tutorials for other frameworks that use MNIST handwritten
digits dataset to demonstrate the workflow of the framework,
such as Keras or TensorFlow. One of these examples can be
found in [29], where a train accuracy and test accuracy of
98.87% and 99.04% were achieved, respectively. Similarly,
it was shown in a TensorFlow example [30] how a simple
ANN of 2 layers was able to achieve a train accuracy of
98.18% and a test accuracy of 97.28%. As a summary, we can
conclude that the SNN defined with the proposed framework
achieves results of similar magnitude order to the rest of the
implementations since the maximum accuracy difference is
3.14% when comparing it with the results from [29].

TABLE 2. Comparison of accuracy results based on our framework and
similar implementations.

The previously implemented methods, as commented in
Section III, were designed taking into consideration the
compatibility with other packages. Because of this, our
framework has these common names and executing pipelines.
Nevertheless, after the training, it is possible to access some
specific information of SNN models. One of these options
is extracting the output spikes to visualize the temporal
evolution of the classification results. This information can be
used to better set the number of time steps to include in each
input data sample. Some examples of the output spikes as well
as the temporal classification output decision are shown in
Figure 5.

FIGURE 5. Output spikes from SNN trained with MNIST data, a) output
spikes after synapse over timesteps, b) raw spikes over timesteps. Notice
that in b) a zoom has been applied in order to better visualize the spikes.

From Figure 5, one of the optimizations the user could
make is to reduce the number of time steps required to provide
a prediction. As an example, in the left image of the figure,
the value of the synapse associated with the correct class for
this input data is highly superior to the rest of the synapse
values since the time step 75. Therefore, the time steps could
be reduced to improve the energy consumption, memory
consumption and the latency of the model without affecting
the classification accuracy of the SNN model.

As a summary of this use case, a list of the relevant features
of the framework are provided below:

• The structure of the pipeline does not require a deeper
understanding of SNN to be implemented since it can be
used following the same steps of Keras or TensorFlow.

• The user does not need to configure the simulator for the
SNN since the framework will configure it based on the
parameters of the SNN.

• The framework includes methods to extract the metric
results with the SNN as well as methods to access spike
results that can be used to further optimize the designed
SNN.

• SNN models trained with the proposed framework
achieve similar results to traditional ANNs taking into
consideration the large difference in the data processing
between SNNs and ANNs.

B. MILES PER GALLON PREDICTION USE CASE
In this use case, the auto-mpg dataset [31] will be used to
present how the proposed framework can be used to generate

VOLUME 12, 2024 57511



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

LISTING 4. Definition of SNN for auto-mpg.

a SNNmodel for regression tasks. Simultaneously, within this
use case, external capabilities from the scikit package [16]
will be incorporated into the network structure definition
and training phases to facilitate the identification of optimal
model configurations.

This dataset contains information regarding multiple
vehicle features such as number of cylinders, horsepower,
weight and acceleration among others. Some of these features
are discrete values such as the number of cylinders while
the dataset also contains continuous values such as vehicle
weight or acceleration. Based on these features, the aim when
using this dataset is predicting the fuel efficiency in terms
of miles per gallon. For illustrative purposes, some sample
data extracted from this dataset is presented in Table 3. It is
important to note that this table does not contains the entirety
of features within the dataset; rather, its purpose is to offer a
brief introduction to the data.

TABLE 3. Data sample from some features of the auto-mpg dataset.

First of all, the data has to be preprocessed in order to
fit the data structure that can be used with the SNN. In this
case, first of all the categorical features have to be converted
into numerical values. Accordingly, the ’Origin’ feature must

LISTING 5. Grid search for learning rate and batch size.

be converted to integer values. Furthermore, a normalization
procedure is applied to all features to ensure the network takes
into consideration all features equally. Otherwise, due to the
large range of variation between features, this could not be
ensured. After this, as in the previous use case, the data must
be converted into a temporal series that the SNN can study
over time to provide a stable output. However, this data does
not have any temporal evolution so the same sample will be
repeated a number of times to maintain it long enough for the
network to provide a consistent output.

In this particular scenario, the SpikingNeuralNetwork-
Model class will be used in order to showcase the usage of
this class. Consequently, the definition of the SNN model
varies with respect to the previous use case. Here, the layer
structure is defined using only one list, assuming a linear
interconnection among these layers with preceding layers for
data propagation. The remaining parameter configuration is
similar to the previous use case and can be seen in detail in
Listing 4.

At this point, the model is ready for the training phase.
However, rather than assuming a network structure directly,
an alternative approach emerges when using the GridSearch
method from the scikit-learn library [16]. This approach
facilitates the evaluation of numerous model configurations
based on the combination of a set of desired values for
some of the parameters of the model. This enables the user
to keep track of all the evaluated configurations to avoid
human errors in this step. Moreover, this approach reduces
the time to configure and train all these models thanks to the
optimizations of this method.

Therefore, the learning rate and batch size parameters will
be evaluated using this approach to find the best configuration
following the Listing 5. In this case, ’lr’ refers to the learning
rate and ’minibatch size’ to the desired batch size.
Using this code, the model will be trained using all

the possible combinations of the learning rate and batch
size to find the optimal combination. Similarly, the number
of neurons per layer can also be evaluated following the
same approach. However, an additional auxiliary function is
required to generate all the possible combinations of neurons
per layer, since the framework input must be the whole
network structure. Nevertheless, with the proposed function
this issue is solved and can be used in combination with other
parameters such as learning rate, as depicted in Listing 6.

As a result of this study, the best configurations, among
the considered ones, for the SNN model are a learning rate

57512 VOLUME 12, 2024



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

LISTING 6. Grid search for learning rate and number of neurons.

TABLE 4. Comparison of results using auto-mpg dataset.

of 0.001, a batch size of 10 samples, and a layer structure
of 400, 300 and 200 neurons respectively in the hidden
layers. The performance results with this configuration
can be found in Table 4 where the Mean Absolute Error
(MAE) is used as a metric. At the same time, some results
using other frameworks that can be used as a reference
for performance comparison are included in this table to
show how the proposed network outperforms these other
approaches regarding MAE results.

When using this class of the framework, it is still possible
to access the internal parameters of the SNNmodel apart from

FIGURE 6. Output from SNN trained with Aut-MPG data, a) output of the
neuron without synapse, b) output of the neuron after synapse, which
correspond to the estimated value.

the traditional output value and loss. The spikes, as in the last
use case, can be accessed to further understand the temporal
component of the decision making process. However, since in
this case the output is a single regression value, there is only
one output neuron in contrast with the previous use case as
shown in Figure 6.

In the left side of Figure 6 it is possible to observe the
temporal evolution of the spikes of the output neuron as well
as how this also affects the variation of the final output of
the neuron, which is shown in the right side of the image.
When studying the temporal evolution of this last signal, it is
possible to observe how, after 45 time steps, the value starts
to oscillate around a central value. Consequently, by studying
only this sample it is not possible to further optimize the
temporal components of the network for this use case.

As a summary of this use case, a list of the relevant features
of the framework presented in this subsection are provided
below:

• The class SpikingNeuralNetworkModel has been pre-
sented to better understand how to use it to define an
SNN model.

• It has been shown how the proposed framework can be
used with sklearn packages such as GridSearch.

• The performance results achieved with the proposed
framework reach a lower MAE than the rest of the
approaches used for comparison and based on traditional
ANNs.

C. GOOGLE SPEECH COMMANDS
Another cutting-edge use case that can be effectively
addressed through the use of SNNs, making this framework
highly valuable, is keyword spotting. The objective here is
to identify voice commands, for which a dataset of single
spoken English words has been used. More precisely, the
Google Speech Commands v0.02 dataset has been used [34].
It contains a set of 30 target words spoken by a variety of
different speakers, as well as background noise, adding a total
of 65,727 one-second labeled audio files with a sampling rate
of 16 KHz.

In this use case, the raw data by itself cannot be used
directly for the training of the model due to its complexity.

VOLUME 12, 2024 57513



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

FIGURE 7. Visual explanation of the spectrogram calculation [36].

Consequently, a set of preprocessing techniques have to be
applied to extract relevant features. These techniques are
used to generate the so-called Mel-Spectogram [35], which
provides information about the frequency content of a non
periodic signal in a scale more similar to how humans
perceive the sound. The Mel-Spectogram is derived from the
normal spectrogram of the signal. Therefore, the first step
to generate it is the calculation of the signal spectrogram.
Figure 7 shows how this spectrogram is computed by
applying the Fast Fourier Transform (FFT) on a set of
overlapping window segments of the signals.

In this example, a window length of 480 samples (30 ms)
and a hop length of 240 samples were selected to compute
the spectrogram. This configuration was selected empirically
after a research of different numbers of samples for the
window and hop length based on their final model per-
formance. These preprocessing parameters could be further
optimized. However, in this example we want to demonstrate
the capabilities of the proposed framework rather than further
diving in the data preprocessing optimization.

After this, in order to compute the Mel-Spectrogram it is
necessary to convert the frequencies to Mel-scale [37]. The
human ears do not perceive frequencies on a linear scale,
being the lower frequencies better differentiated than the
higher ones. The Mel-scale aims to mimic the non-linear
human ear perception of sounds. To perform this conversion,
a triangular filter bank is applied.

Each of the filters of this filter bank has a response of 1 at
the center frequency and decreases linearly towards 0 till it

FIGURE 8. Filter bank used to project FFT bins onto Mel-frequency bins.
Each filter is represented using a different color, with a total of 40 filters
represented in this figure.

reaches the center frequencies of the two adjacent filters of
both sides. Figure 8 shows an example of a filter bank with
40 filters. This number of filters was the one selected for the
preprocessing. This could be further optimized as previously
commented.

In summary, by applying this preprocessing, the initial
16,000 samples audio signals are turned into images of
40 × 67 pixels, where each row corresponds to a ‘‘mel-
frequency’’ and each column corresponds to one of the
previously commented data windows. Figure 9 shows an
example of the computed Mel-Spectrogram.

To facilitate the comparison of results with other models
in the literature, one option is to utilize a reduced version
of the dataset instead of the entire dataset. Since this is a
demonstratory use case to show the framework functionality,
it has been decided to use just two speech commands, which
are ’left’ and ’right’.

Since this is a benchmark dataset, the train, test and
validation splits are already provided, so different models
could be compared in the same conditions. The dataset
contains a list with the names of the audio files corresponding
to each subset. Specifically, after reducing the dataset to use
only the two mentioned words, the train set contains 3,318
samples, while the test and validation ones contain 464 and
466 samples respectively, which is approximately a 11% of
the train size.

In a similar way to how it was done in the previous
MNIST example, it is also necessary to add a temporal
dimension to the input data after the described preprocessing.
For that purpose, a vectorization has to be applied to the
Mel-Spectrogram matrices, adding also a new dimension for
the time. As elucidated in the Subsection III, for static data,
a common technique involves concatenating the same input
multiple times along the time dimension. As a result of this,
the input data shape will be (batch size, sample, time steps,
features), with the number of features in this case being 2,680.
This number comes from the flattening process of the images
of shape 40 × 67 pixels.
Once the data preprocessing has been applied, the only

thing that remains is to define the network architecture and

57514 VOLUME 12, 2024



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

FIGURE 9. Visual representation of the preprocessing applied to the raw
audio signal.

to train it. In this use case, the SpikingNeuralNetworkModel
class will be used. Therefore, the SNN definition is
similar to the one described in the auto-mpg example of
Subsection IV-B, using only one list to specify the layer
structure. Since here the input data are images, the most
suitable layers that could be applied are convolutional layers
to further extract relevant features. Nevertheless, it is always
advisable to try other architectures to make sure which one
is the most convenient in each case. This use case will
demonstrate how to achieve it using the proposed framework.

In Listing 7 it is shown how to configure the initial model
with this type of layers. However, the number of filters of
these layers, the number of layers and the learning rate are
hyperparameters that have to be set based on empirical exper-
imentation. This is an iterative process that could be highly
time consuming. To speed up this process and reduce possible
human errors, the scikit-learn library can be integrated in the
usage of the proposed framework to execute a grid search
of these empirical hyperparameters. The GridSearch method
will internally change the hyperparameters of the initial
model shown in Listing 7 based on the specified combinations

LISTING 7. Definition of SNN for Google Speech Commands.

of them. By the end of this automatized iterative process, the
best combination of hyperparameters will be provided.

In Subsection IV-B, a grid search looking for the best
combination of number of neurons of each layer, learning
rate and batch size was shown. However, this technique
will be used this time to study different SNN architectures
that could be applied to study the Mel-Spectrogram images.
For demonstration purposes, three different options of
architectures will be taken into consideration, but a more
complex set of combinations could be used following the
same approach. In contrast with the auto-mpg example, the
hyperparameters of each layer will remain constant, but the
number of layers or the type of them will change between
iterations. As it is shown in Listing 8, a fully connected
network as well as two convolutional network are tested,
in combination with different learning rates and batch sizes.

After performing this study, the best combination of
hyperparameters is a batch size of 100, a learning rate of
0.001 in combination with the third network option, which
is actually the network with no convolutional connections
among the selected ones. Using these hyperparameters, the
performance obtained can be found in Table 5, where the
accuracy of the model is used as comparison metric. Since
this is a well known benchmark dataset, other results can be
found in the literature for comparison purposes. In this table,
it could be seen that the results that the network yields using
our framework are close to the top ones found in the literature.
The reference founded does not provide the train metrics, that
is why they are not included in Table 5. Those top results are
obtained using networks with complex layers, while the one
shown in this use case is a simple one and it still produces
comparable results.

VOLUME 12, 2024 57515



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

LISTING 8. Grid search for different architectures, learning rate and batch
size.

TABLE 5. Comparison of results using Google Speech Commands dataset.

Through this use case, it has been shown how to solve
a state of the art problem with SNN using our framework.
Moreover, various types of architectures have been presented,
along with a pipeline that implements GridSearch to identify
the optimal combination of architectures and two crucial
hyperparameters. In summary, a list of the relevant features
that have been tested to be effective in this use case is
provided.

• The class SpikingNeuralNetworkModel has been pre-
sented to better understand how to use it to define an
SNN model using convolutional layers.

• It has been shown how to performGridSearch using this
framework to find the best candidate among different
types of architectures.

• The performance results achieved in this use case are
comparable to the top one found in the literature.

V. CONCLUSION
In this paper, we have presented a comprehensive SNN
framework and showcased its successful application to
three use cases. The SNN framework, inspired by the
biological neural processes, offers a unique approach to
neural computation, particularly in handling temporal and
event-driven data. Through a detailed exploration of the
framework’s architecture, learning mechanisms, and sim-
ulation techniques, we have highlighted its potential to
revolutionize the field of artificial intelligence and advance
our understanding of brain-inspired computing.

By applying the SNN framework to three use cases, includ-
ing image processing of handwritten numbers, time-series
forecasting and speech recognition, we have demonstrated
its effectiveness in well-known benchmarking databases that
include state-of-the-art applications. In these applications,
the SNN framework has shown remarkable capabilities in
capturing temporal dynamics and processing asynchronous
input streams, having a similar Key Performance Indicator
(KPI) to other models.

However, as with any emerging technology, challenges
remain in optimizing the SNN framework’s training pro-
cedures, scalability, and computational efficiency. Further
research is necessary to explore advanced spike-based learn-
ing algorithms and to optimize hardware implementations to
fully unlock the framework’s potential.

In conclusion, the GenericSNN framework proves to be
user-friendly and highly applicable to real-world scenarios.
Researchers and practitioners can seamlessly integrate the
SNN framework into their existing workflows, thanks to its
accessible implementation and compatibility with widely-
used programming libraries. Moreover, the framework
demonstrates exceptional performance and generalization
capabilities when applied to standard benchmarking datasets
in various domains. As technology progresses, we look for-
ward to witnessing the broader adoption and transformative
impact of the SNN framework in shaping the future of AI and
cognitive computing.

The scripts of the proposed framework, as well as the
examples, can be accessed in: https://gitlab.eesysmart.de/
public-ai-team/genericsnn

REFERENCES
[1] Q. T. Pham, T. Q. Nguyen, P. C. Hoang, Q. H. Dang, D. M. Nguyen, and

H. H. Nguyen, ‘‘A review of SNN implementation on FPGA,’’ in Proc. Int.
Conf. Multimedia Anal. Pattern Recognit. (MAPR), Oct. 2021, pp. 1–6.

[2] S.Wang, T. H. Cheng, andM. H. Lim, ‘‘A hierarchical taxonomic survey of
spiking neural networks,’’ Memetic Comput., vol. 14, no. 3, pp. 335–354,
Sep. 2022.

[3] Q. Liu and Z. Zhang, ‘‘Ultralow power always-on intelligent and connected
SNN-based system for multimedia IoT-enabled applications,’’ IEEE
Internet Things J., vol. 9, no. 17, pp. 15570–15577, Sep. 2022.

57516 VOLUME 12, 2024



A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

[4] A. R. Zarzoor, N. A. S. Al-Jamali, and I. R. K. Al-Saedi, ‘‘Traffic
classification of IoT devices by utilizing spike neural network learning
approach,’’ Math. Model. Eng. Problems, vol. 10, no. 2, pp. 639–646,
Apr. 2023.

[5] Q. Jiang and J. Sha, ‘‘The use of SNN for ultralow-power RF
fingerprinting identification with attention mechanisms in VDES-SAT,’’
IEEE Internet Things J., vol. 10, no. 17, pp. 15594–15603, 2023, doi:
10.1109/JIOT.2023.3264715.

[6] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, ‘‘Deep learning in spiking neural networks,’’ Neural Netw.,
vol. 111, pp. 47–63, Mar. 2019.

[7] J. Vreeken, ‘‘Spiking neural networks, an introduction,’’ Universiteit
Utrecht, Utrecht, The Netherlands, Tech. Rep., 2003. [Online]. Available:
https://scholar.google.es/scholar?q=%E2%80%98Spiking+neural+
networks,+an+introduction,&hl=en&as_sdt=0&as_vis=1&oi=scholart

[8] K. D. Carlson, J.M.Nageswaran, N. Dutt, and J. L. Krichmar, ‘‘An efficient
automated parameter tuning framework for spiking neural networks,’’
Frontiers Neurosci., vol. 8, p. 10, Feb. 2014.

[9] S. Schliebs, M. Defoin-Platel, S. Worner, and N. Kasabov, ‘‘Integrated
feature and parameter optimization for an evolving spiking neural network:
Exploring heterogeneous probabilistic models,’’ Neural Netw., vol. 22,
nos. 5–6, pp. 623–632, Jul. 2009.

[10] C. Li, L. Ma, and S. Furber, ‘‘Quantization framework for fast spiking
neural networks,’’ Frontiers Neurosci., vol. 16, Jul. 2022, Art. no. 918793.

[11] Z. Zhou, Y. Zhu, C. He, Y. Wang, S. Yan, Y. Tian, and L. Yuan,
‘‘Spikformer: When spiking neural network meets transformer,’’ 2022,
arXiv:2209.15425.

[12] R. V. W. Putra and M. Shafique, ‘‘Q-SpiNN: A framework for quantizing
spiking neural networks,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2021, pp. 1–8.

[13] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, ‘‘Nengo: A
Python tool for building large-scale functional brain models,’’ Frontiers
in Neuroinform., vol. 7, p. 48, Jan. 2014.

[14] D. Rasmussen, ‘‘NengoDL: Combining deep learning and neuromorphic
modelling methods,’’ 2018, arXiv:1805.11144.

[15] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on het-
erogeneous systems,’’ Google, Mountain View, CA, USA, Tech. Rep.
1603.04467, 2015. [Online]. Available: https://arxiv.org/abs/1603.04467

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

[17] F. Chollet. (2015). Keras. [Online]. Available: https://github.com/
fchollet/keras

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[19] L. Deng, ‘‘The mnist database of handwritten digit images for machine
learning research [best of the web],’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Oct. 2012.

[20] D. R.Muir, F. Bauer, and P.Weidel, ‘‘Rockpool documentaton,’’ SynSense,
Zürich, Switzerland, Tech. Rep. 10.5281/zenodo.3773845, Sep. 2019.
[Online]. Available: https://rockpool.ai/about.html

[21] F. Liu, W. Zhao, Y. Chen, Z. Wang, and L. Jiang, ‘‘SpikeConverter: An
efficient conversion framework zipping the gap between artificial neural
networks and spiking neural networks,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 36, 2022, pp. 1692–1701.

[22] W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang,
H. Zhou, G. Li, and Y. Tian, ‘‘SpikingJelly: An open-source machine
learning infrastructure platform for spike-based intelligence,’’ Sci. Adv.,
vol. 9, no. 40, Oct. 2023, Art. no. eadi1480.

[23] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747.

[24] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, ‘‘Neural coding
in spiking neural networks: A comparative study for robust neuromorphic
systems,’’ Frontiers Neurosci., vol. 15, Mar. 2021, Art. no. 638474.

[25] D. Auge, J. Hille, E. Mueller, and A. Knoll, ‘‘A survey of encoding
techniques for signal processing in spiking neural networks,’’ Neural
Process. Lett., vol. 53, no. 6, pp. 4693–4710, Dec. 2021.

[26] C. Eliasmith and C. H. Anderson, Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. Cambridge,
MA, USA: MIT Press, 2003.

[27] L. Deng, ‘‘The mnist database of handwritten digit images for machine
learning research,’’ IEEE Signal Process.Mag., vol. 29, no. 6, pp. 141–142,
2012.

[28] S. S. Kadam, A. C. Adamuthe, and A. B. Patil, ‘‘CNN model for image
classification onMNIST and fashion-MNIST dataset,’’ J. Sci. Res., vol. 64,
no. 2, pp. 374–384, 2020.

[29] S. Mahapatra. A Simple 2D CNN for MNIST Digit Recognition. Accessed:
Jul. 21, 2023. [Online]. Available: https://towardsdatascience.com/a-
simple-2d-cnn-for-mnist-digit-recognition-a998dbc1e79a

[30] TensorFlow. Training of a Neural Network With MNIST and Keras.
Accessed: Jul. 21, 2023. [Online]. Available: https://www.tensorflow.
org/datasets/kerasexample?hl=es-419

[31] R. Quinlan, ‘‘Auto MPG,’’ in UCI Machine Learning Repository, 1993.
[Online]. Available: https://archive.ics.uci.edu/dataset/9/auto+mpg, doi:
10.24432/C5859H.

[32] TensorFlow. Training of a Neural Network With Auto-MPG With
TensorFlow. Accessed: Jul. 24, 2023. [Online]. Available: https://www.
tensorflow.org/tutorials/keras/regression?hl=es-419

[33] M. Rahman and M. Asadujjaman, ‘‘Implementation of artificial neural
network on regression analysis,’’ in Proc. 5th Annu. Syst. Model. Conf.
(SMC), Sep. 2021, pp. 1–7.

[34] P. Warden, ‘‘Speech commands: A dataset for limited-vocabulary speech
recognition,’’ 2018, arXiv:1804.03209.

[35] D. O’Shaughnessy, Speech Communications: Human and Machine
(IEEE). New York, NY, USA: Universities Press, 1987. [Online].
Available: https://ieeexplore.ieee.org/book/5263814

[36] The MathWorks. Sfft. Accessed: Jan. 21, 2024. [Online]. Available:
https://de.mathworks.com/help/dsp/ref/dsp.stft.html

[37] S. S. Stevens and J. Volkmann, ‘‘The relation of pitch to frequency: A
revised scale,’’ Amer. J. Psychol., vol. 53, no. 3, pp. 329–353, 1940.

[38] D. Coimbra de Andrade, S. Leo, M. Loesener Da Silva Viana, and
C. Bernkopf, ‘‘A neural attention model for speech command recognition,’’
2018, arXiv:1808.08929.

ALBERTO MARTIN-MARTIN received the B.Sc.
degree in electronic engineering from the Univer-
sity of Granada (UGR), Spain, in 2019, and the
M.Sc. degree in data science and computer engi-
neering from UGR, where he is currently pursuing
the Ph.D. degree in the field of implementation
of artificial neural networks on reconfigurable
hardware. In January 2021, he moved to Munich
to work as an Artificial Intelligence Engineer
with eesy-Innovation GmbH. His current research

interests include deep learning, FPGAs, and embedded systems.

MARTA VERONA-ALMEIDA received the dou-
ble bachelor’s degree in mathematics and com-
puter science from the University of Granada,
in 2018, and the master’s degree in data science
and computer engineering from the University
of Granada. She is currently pursuing the Ph.D.
degree in collaboration with the Politechnical
University of Madrid (UPM) in the field of
data-driven modeling methodology for identifying
the implication of sleep quality on health. After

finishing her studies, she was a Research Assistant with the University of
Granada, contributing to the development of KnowSeq package. In August
2020, she moved to Munich to work as an Artificial Intelligence Engineer
with eesy-Innovation GmbH. Her current research interests include deep
learning, health care, and genomics.

RUBÉN PADIAL-ALLUÉ received the B.Sc.
degree in industrial electronics engineering from
the University of Granada, Spain, in 2016, and
the M.Sc. degree in microelectronics from the
University of Seville, Spain, in 2020. In February
2023, he commenced collaboration with the Uni-
versity of Granada as part of a research project
that encompasses his Ph.D. studies focused on
the implementation and optimization of artificial
neural networks for hardware acceleration on

FPGA devices. His current research interests include embedded systems,
FPGAs, and their applications in the field of artificial intelligence.

VOLUME 12, 2024 57517

http://dx.doi.org/10.1109/JIOT.2023.3264715
http://dx.doi.org/10.24432/C5859H


A. Martin-Martin et al.: GenericSNN: A Framework for Easy Development of SNNs

JAVIER MENDEZ received the B.Sc. degree in
electronics engineering from the University of
Granada, in 2018, the M.Sc. degree in electronics,
robotics and automatics engineering from the
University of Seville, Spain, in 2019, and the
Ph.D. degree (cum laude) in artificial intelligence
from the University of Granada, in 2022. After the
M.Sc. degree, he moved to Munich to start the
Ph.D. degree with Infineon Technologies. Since
May 2022, he has been with eesy-Innovation. His

current research interests include emerging deep learning trends, edge
computing, and sensor fusion. During the master’s degree, he received the
award as the Top Student of the Graduating Class.

ENCARNACIÓN CASTILLO received the
M.A.Sc. and Ph.D. degrees in electronic engineer-
ing from the University of Granada, in 2002 and
2008, respectively. From 2003 to 2005, she
was a Research Fellow with the Department of
Electronics and Computer Technology, University
of Granada, where she is currently a tenured
Professor. All this work has led to the publication
of 50 articles in indexed journals and more than
60 contributions to international conferences. She

has coauthored two patents in Spain and contributed to 13 projects in the
several national and regional programs and 11 technology-transfer contracts.
Her current research interests include cryptoprocessors on FPGA, memory
devices, smart instrumentation, and acquisition and processing of biosignals.
She serves as a reviewer and a guest editor for several journals.

LUIS PARRILLA (Member, IEEE) received the
M.Sc. degree in physics (majoring in electronics),
the M.A.Sc. degree in electronic engineering, and
the Ph.D. degree in physics from the University of
Granada, Granada, Spain, in 1993, 1995, and 1997,
respectively. In 1995, he joined the Department of
Electronics and Computer Technology, University
of Granada, where he has been a Professor, since
2000. He is the author of more than 70 technical
papers in international journals and conferences

and serves regularly as a reviewer and a guest editor for several journals.
His current research interests include the protection of IP cores on
VLSI and FPGA-based systems, the development of high-performance
arithmetic and algebraic circuits for IoT and cryptographic applications, the
design of specific architectures for cryptographic processors, and hardware
implementation of artificial neural networks.

57518 VOLUME 12, 2024


