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ABSTRACT In our work, we have empirically found that Vision Transformer (ViT) could not extract
object-centric features when applied to out-of-distribution (OOD) detection. To make object-centric
attention, we design an additional module that employs a cross-attention between class-wise token proxy and
feature token sequence of an input image. For inference suitable to our cross-attention structure with multiple
class-wise token proxies, we propose a score ensemble that can be applied to any scoring function. Compared
to ViT, the proposed inference scheme achieves outperforming performance by synergizing with our cross-
attention structure. Through experiments, we demonstrate that the proposed cross-attention structure with
score ensemble inference improves largely near OOD detection performance, where FPR95 improvement in
near OOD detection compared to the state-of-the-art method becomes 2.55% for CIFAR-10 and 2.67% for
CIFAR-100, keeping competitive classification accuracy.

INDEX TERMS Near out-of-distribution (OOD) detection, vision transformer, class-wise cross attention.

I. INTRODUCTION
Advancements in deep learning have demonstrated outstand-
ing technological improvements, such as residual learn-
ing [1], large-scale image data learning [2], transformers [3],
and resistant models to adversarial attack [4], in various
fields, whereas the advanced AI techniques have created
innovative products in data processing and analysis, such
as SpectralGPT [5] and cross-city semantic segmentation
system [6]. Recently, out-of-distribution (OOD) detection
attracts attention in safety-critical fields such as military
defense, system safety, autonomous driving, and surveillance.

The baseline approach for OOD detection focuses on
proposing scoring functions or training schemes. Score-
based methods measure the likelihood of how far a given
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sample originates from in-distribution (ID) ( [7], [8], [9],
[10], [11], [12]). Training-based methods are based on
representation learning in embedding space ( [13], [14]) or
reduce overconfidence in a network [15] by normalizing
model’s logits during training. Thus, OOD performance
of these methods based on both scoring functions and
training heavily depends on the quality of the features
or model’s outputs (i.e., logits) obtained from the trained
model.

To obtain highly representative features, a vision trans-
former (ViT) [3] has been employed as a backbone for
OOD detection ( [16], [17]). Although the self-attention in
ViT can effectively capture the global context of an image,
it does not pay attention to a target region as depicted in
Figure 1, where the self-attention (the middle column of
each subfigure in Figure 1) forms ambiguous attention map
on the overall image, including both the foreground object
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FIGURE 1. Illustrations of the attention map visualizations of the class
tokens. In each sub-figure, the left columns are the original images of the
corresponding datasets, the middle columns depict ViT’s attention map,
and the right columns show the proposed method’s attention map.

and background. In contrast, the proposed proxy-feature
cross-attention scheme forms an object-centric attention map
(the right column of each subfigure in Figure 1), which
is important because object’s features are a key factor in
distinguishing ID and OOD.

Motivated from our observations, we propose a novel
cross-attention module to focus on object-centric informa-
tion for OOD detection, referred to as a class-to-image
cross attention transformer (C2I-CAT). The conventional
cross-attention ViT (i.e., CrossViT [18]) uses a dual branch to
learn multi-scale representations of an image. In contrast, our
C2I-CAT utilizes class-wise token proxies and ViT’s feature
token sequences to pay attention to an object of an input
image.

To this end, we introduce a class-wise token proxy as an
additional input to focus on an object of a specific class
during OOD detection, without the need for any additional
branch. By averaging feature token sequences in each class,
the class-wise token proxy can serve as a representative for
each class. By utilizing the class-wise token proxy as the
criterion, the model can capture object-centric features and
learn the correlation between images and classes.

In addition, we newly introduce an inference method
designed to fit our cross-attention structure using class-wise
token proxies. Since the label of a test sample is unavailable
during inference, we utilize all the class-wise token proxies to
obtain the test sample’s result. When considering our struc-
ture and an inference process, we leverage the ensemble of
output scores for all class-wise token proxies. The proposed
inference scheme can directly utilize the outputs of specific
components, such as a classifier or a penultimate layer, with-
out the need for modifying scoring functions. This inference
method can be applied to various scoring functions for OOD
detection. We summarize our contributions as follows.

• We design a new cross attention transformer (C2I-
CAT) suitable for OOD detection. To the best of our
knowledge, our work is the first attempt to apply a
cross-attention mechanism for OOD detection. Our C2I-
CAT leverages the proposed cross-attention module,
using class-wise token proxies, to learn the correlation
between the feature tokens of images and classes. As a
result, C2I-CAT detects OOD samples in various OOD
datasets by focusing on object-centric features.

• We introduce a novel inference method suitable for our
cross-attention mechanism utilizing class-wise token
proxies. The proposed inference scheme, synergizing
with our cross-attention structure, shows outstanding
OOD performance compared to the self-attention-

based method. In addition, our inference method
can be applied to various scoring functions without
modification.

• We validate the effectiveness of the proposed method
through extensive experiments on variousOODdatasets,
including both far and near OOD cases. The proposed
method outperforms the state-of-the-art method in the
near OOD case without significant degradation of
classification accuracy.

II. RELATED WORKS
A. SCORE BASED OUT-OF-DISTRIBUTION DETECTION
MSP [7] is the baseline paper that proposes the framework
of OOD detection for the first time and presents a maximum
softmax probability (MSP) score. MaxLogit [9] improves
OOD performance by using maximum logit value, compared
to the MSP scoring function. Mahalanobis distance (MD)
[10] proposes a distance-based scoring function that detects
OOD samples using Mahalanobis distance. Energy [8]
proposes a new scoring function that is called energy
score which is based on the Energy-based Model (EBM)
[19]. In addition to proposing an energy score, the authors
improve OOD performance by using an outlier fine-tuning
scheme. kNN [11] proposes an OOD detection method based
on k-Nearest Neighbor (kNN) with supervised contrastive
learning [20]. ViM [12] suggests a scoring function by
utilizing feature and logit space information on a large
scale.

B. VISION TRANSFORMER BASED OUT-OF-DISTRIBUTION
DETECTION
Recently, [21] has demonstrated that the transformer-based
model (i.e., Vision Transformer (ViT) [3]) is effective for cap-
turing global information. Since ViT’s self-attention module
takes into account the correlation between all local patches
in an image, it extracts features that effectively reflect the
global context of the image. Therefore, OODformer [16] and
Exploring [17] have achieved state-of-the-art performance
by utilizing the features of ViT. These works have shown
that using ViT-based features is more effective than CNNs
for OOD detection. In particular, they show the outstanding
ability of the ViT in near OOD detection and use the
MD scoring function. RMD [22] proposes a distance-based
method called relative mahalanobis distance (RMD) scoring
function for near OOD detection.

C. TRANSFORMER-BASED ADVANCED MODELS
Since the advent of ViT [21], attention mechanism-based
methods have been employed in various fields to enhance
performance in specific tasks, such as classification and
segmentation. CrossViT [18] is a dual-branch transformer
model applying cross-attention. In each branch, token
sequences are extracted from image patches of different sizes,
and the class tokens of the token sequences are exchanged.
Then, cross-attention is performed between a class token of
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FIGURE 2. Entire structure for the proposed method. S(·) means a scoring
function and p is class-wise token proxies, where C is the number of
classes and pi is i -th class token proxy. zi represents the class token in
the output tokens of CAT for pi and f .

a branch (i.e., small or large branch) and the other branch’s
token sequence, enabling the transformer to learn multi-scale
feature representation.

SpectralGPT [5] proposes a foundation model based on
a self-attention-based encoder and a benchmark dataset for
handling spectral data in the remote sensing field. The
proposed method addressed the issues of limited spectral data
extraction and utilization, enabling the recognition of objects
or scenes in remote sensing applications. HighDAN [6]
proposes a model using an adversarial domain adaptation
module for cross-city semantic segmentation tasks, along
with multi-modal remote sensing benchmark datasets. This
method not only tackled the challenges in multiple urban
environments with spatio-temporal and regional changes but
also improved the generalization ability of the semantic
segmentation across regions.

III. PROPOSED METHOD
In this section, we explain our method for out-of-distribution
(OOD) detection, named Class-to-Image Cross Atten-
tion Transformer (C2I-CAT) depicted in Figure 2. First,
we describe the process of extracting class-wise token
proxies, which are fed into C2I-CAT (Section III-A). Then,
we provide the details of C2I-CAT (Section III-B). Finally,
we explain the training scheme for C2I-CAT and the inference
method for OOD detection (Section III-C).

A. CLASS-WISE TOKEN PROXIES
The key idea of the proposed C2I-CAT is to detect OOD
samples by focusing on object-centric features via the
proposed cross-attention module. As shown in Figure 2,
considering that the proposed method requires two inputs
for cross-attention, we introduce feature token sequence and
class-wise token proxy. The feature token sequences contain
all token features for input images and are extracted from
the penultimate layer (i.e., before a classifier) of vision
transformer (ViT).

The class-wise token proxies for an in-distribution (ID)
dataset are defined by p = {p1, p2, · · · , pC }, where C is the
number of classes in ID and pi is i-th class-wise token proxy.
pi is obtained by token-wise averaging all sample features in
the i-th class, that is,

pi = {pi,1, · · · pi,t , · · · , pi,T }, pi,t = (1/N )6N
j=1fi,t,j, (1)

where N is the number of training samples for i-th class and
T is the number of tokens, whereas fi,t,j represents the t-th

feature token of the j-th sample in the i-th class. The pi can
be regarded as the representative token proxy for i-th class in
an ID dataset. Note that when obtaining the class-wise token
proxies, we do not use a test set, but use a train set of the ID
dataset.

As a result, the dimension of pi is (1, T , D), and the
dimension of p becomes (C , T , D), where D represents the
feature dimension for each sample. The class-wise token
proxies (p) are imputed to the proposed C2I-CAT along with
the feature token sequence of each input sample in the train
or test set.

B. CROSS ATTENTION TRANSFORMER
1) OVERALL ARCHITECTURE
As depicted in Figure 2, we use ViT as a feature extractor
because the feature token sequences extracted by ViT contain
abundant global information. As mentioned in Section III-A,
our C2I-CAT has two inputs. One is a token proxy and the
other is a feature token sequence extracted by ViT. When
determining two inputs for applying cross-attention, it is
basically considered to employ cross-attention between two
sampled feature token sequences of ViT. However, we do
not consider cross-attention between sampled feature token
sequences by using a sampling method. The performance
may vary depending on the sampling method used to select
feature token sequences. Furthermore, there is a challenge in
selecting the token proxy of a class between two sampled
feature token sequences. To be more specific, it is difficult
to determine a suitable feature token sequence to be the
class-wise token proxy for cross-attention with the other
token sequence.

For these reasons, we use feature token sequences and
token proxies that average feature token sequences for each
class as inputs. The difference from the existing ViT is that
the proposed method does not require position embedding
and patch embedding. As a result, we introduce a method
of cross-attention between feature token sequences and
class-wise token proxies.

2) CROSS-ATTENTION BLOCK
The structure of the cross-attention block (CAB) is depicted
in Figure 3. Similar to ViT, CAB is composed of layer
normalization, multi-head cross-attention module, residual
connection, and feed-forward layer.

In addition to the difference mentioned in subsec-
tion III-B1, another difference is cross-attention module.
While current ViT-based OOD detection methods use self-
attention, we utilize a cross-attention module, and the
details for the cross-attention module are explained in
subsection III-B3. The other components except for the
cross-attentionmodule are applied in a similar way as existing
ViT and transformer [23] components.
The proposed CAB consists of alternating layers of multi-

head cross-attention module and feed-forward. The layer
normalization is applied to inputs of CAB and feed-forward
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FIGURE 3. Cross-Attention Block (CAB) in the proposed cross attention
transformer. The feature token sequence is generated by the trained ViT
for an input image. CAMm means m-th single-head cross-attention
module. Multi-head cross-attention module and m-th single-head
cross-attention module are indicated by a dotted green line and red line,
respectively. CAT in Figure 2 is composed of layered 12 CABs. f o

represents the output feature token sequence of CAB and becomes an
input to the following block.

layer. We employ residual connection around multi-head
cross-attention module and feed-forward layer. In order to
utilize residual connections like ViT and transformer, all
the sub-layers in the CAB produce outputs with the same
dimension. The residual connections are effective in learning
the residual, which prevents the gradient vanishing problem.
The feed-forward layer is performed to represent the attention
result that is passed through the multi-head cross-attention
module.

As shown in Figure 3, the class-wise token proxy is fed into
every CAB’s input. The feature token sequence extracted by
ViT is forwarded to the first CAB in our model. Then, the
output for the cross-attention block becomes an input to the
following cross-attention block.

3) CROSS ATTENTION MODULE
Multi-head cross-attention module and single-head cross-
attention module are shown in Figure 3. In the case of m-
th single-head cross-attention module, query Qfm is extracted
from the feature token sequence. Key K pi

m and value V pi
m are

extracted from the class-wise token proxy through a linear
layer in m-th single-head cross-attention module (CAMm).

Considering Figure 3, let f be a feature token sequence that
is input to the cross-attention block and pi be the class-wise
token proxy corresponding to the label of f . Then, f is
linearly mapped to the query Qfm and pi is linearly mapped
to the key K pi

m and value V pi
m in the CAMm. Each of query,

key, and value is a matrix since the inputs are a token
sequence. Cross-attention is performed in a similar way to
self-attention [23], except that the cross-attention is employed

FIGURE 4. Training scheme for the proposed C2I-CAT. CE loss is a cross
entropy loss. The class token proxy corresponding to the label of input is
forwarded to CAT along with the feature token sequence of the input.

between two sequences. The expression for m-th single-head
cross-attention module is given by

CAMm(f , pi) = Softmax(
Qfm(K

pi
m )T

√
d

)V pi
m , (2)

where
√
d is dimension of Qfm and K pi

m . As shown in Eq.
(2), the similarity between the class-wise token proxy (pi)
and feature token sequence (f ) is calculated by scaled dot
product [23].

In the case of the multi-head cross-attention module,
it can be expanded from m-th single-head cross-attention
module. In a similar way as multi-head self-attention [23],
the expression for the multi-head cross-attention module is
described in Eq.(3).

MultiHeadCAM (f , pi) = Concat(CAM1(f , pi),

· · · ,CAMM (f , pi))Wlin, (3)

where M is the number of cross-attention modules (i.e., the
number of heads) and Wlin is the weight matrix of the linear
layer.

After passing through layer normalization, the output token
sequence of the multi-head cross-attention module is fed into
the feed-forward layer. Therefore, the cross-attention block
extracts the final output token sequence reflecting the class
proxy information.

C. TRAINING AND INFERENCE
1) TRAINING SCHEME
As shown in Figure 4, we design a training method to learn
target class relationships using the cross-attention module.
We train C2I-CAT using a supervised manner that can utilize
labels of training data. For simplicity, we consider that a
training batch size is 1. Letting f be the feature tokens of a
training sample with i-th label, then f and pi are fed into our
C2I-CAT.

After that, we train C2I-CAT using cross entropy (CE) loss
between the classifier outputs and the target labels. At this
time, the first token (i.e., class token) among the output tokens
of CAT is used as input to the classifier. Note that we do not
additionally train ViT, which is pre-trained on an ID dataset
(e.g., CIFAR-10 or CIFAR-100 [24]) during training C2I-
CAT.

Therefore, the model learns which part of input tokens for
C2I-CAT should be focused more by referring to the given
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FIGURE 5. Score ensemble inference for the class-wise cross-attention
structure. zi is the class token in the output tokens of CAT inputted by pi ,
where pi denotes i -th class token proxy. Sf (·) represents a scoring
function and Si means i -th OOD score for zi . SOOD is the final OOD score
for the test input. When obtaining SOOD, the min (or max) operation
depends on the scoring function. ιj,i is the j-th logit of the classifier
output vector for zi . Sconf means a confidence score to evaluate
classification performance. SM(·) is the softmax function for an input.

class-wise token proxy. Furthermore, this training process can
be extended to arbitrary batch size.

2) INFERENCE SCHEME
We newly introduce an inference scheme referred to as a
score ensemble inference method, which is suitable for a
scenario of cross-attention with class-wise token proxies.
During inference for OOD detection and ID classification,
since the labels of test samples are unknown, we provide all
the class-wise token proxies as shown in Figure 5. C2I-CAT
performs cross-attention between a feature token sequence
(denoted by f ) of a test sample and every class-wise token
proxy (denoted by pi). In the same way as C2I-CAT training
scheme, we evaluate OOD detection and ID classification
performance using only the class token among the output
tokens of CAT.

For evaluating ID classification, we use the highest
softmax score among all outputs of the classifier for every
class-wise token proxy. To be more specific, let ιi be the
classifier’s logit vector for i-th class token proxy, F(·) be
the classifier, and CAT (·) be the proposed module. Then,
ιi = F(zi), where zi = CAT (f , pi). After taking the maximum
of ιi, we use the maximum value as the resulting response
(denoted by Responsei in Figure 5) for the i-th class token
proxy. Since the maximum logit value can be considered as a
representative result for the corresponding class token proxy,
we use the maximum value as the response result. When the
classifier generates outputs for all class-wise token proxies,
the outputs form a matrix with the dimension of (batch size,
C), where C is the number of classes. Subsequently, the
maximum values applying softmax to the outputs are used
as the final confidence scores (i.e., Sconf in Figure 5) of ID
samples, and the dimension of Sconf becomes (batch size, 1).
Using the result of softmax on the outputs, C2I-CAT predicts
the classes of the test samples.

In OOD inference, the process also performs similarly to
ID classification. For testing OOD detection performance,
we utilize Mahalanobis distance (MD) scoring function to
determine whether the test sample is OOD or not. As shown
in Figure 5, we put zi as the input to a scoring function (i.e.,
Sf (·)) and then obtain OOD scores for zi. After obtaining
OOD scores for all class-wise token proxies, we calculate the

final OOD scores using min or max operation. Using min or
max operation depends on a scoring function. For example,
we use the max operation for MSP scoring function and the
min operation for MD scoring function. Although we mainly
utilize MD scoring function, this inference scheme can be
applied to various scoring functions. Note that we do not use
noise like [10] for MD scoring function.

IV. EXPERIMENTS
In this section, we show our experimental results. In IV-A
section, we explain datasets, evaluation metrics, model struc-
ture, and implementation details. In IV-B section, we report
our results for structure variants, inference scheme, and
visualizations. In IV-C section, we compare our method with
ViT-based methods, including the state-of-the-art (SOTA)
method, for near and far OOD detection tasks. Note that,
for a fair comparison, we only compare with ViT-B/16-based
methods, including the SOTA method using R50-ViT-B/16
model. In addition, when implementing the experiments,
we fix all randomness factors for fair comparison and
evaluation (i.e., fix all random seeds). We implement
5 independent training runs, setting random seeds from 0 to 4.

A. EXPERIMENTAL SETUP
1) IN-DISTRIBUTION DATASETS
We use CIFAR-10 and CIFAR-100 [24] as in-distribution
(ID) dataset. When training a model, we use a standard split
with 50,000 training images and 10,000 test images. All ID
images are resized to 224 × 224.

2) OUT-OF-DISTRIBUTION DATASETS
For near out-of-distribution (OOD) detection task, we use
CIFAR [24] dataset as OOD dataset. In other words,
if CIFAR-10 is ID dataset, then we use CIFAR-100
as OOD dataset and vice versa. For far OOD datasets,
we use SVHN [25], LSUN (resize/crop) [26], Texture [27],
Places365 [28], iSUN [29], iNaturalist [30], SUN [31],
STL10 [32], MNIST [33], K-MNIST [34], and fashion-
MNIST [35]. ODIN [26] authors constructed LSUN
(resize/crop) by resizing and cropping LSUN [36] dataset
to 32 × 32. For MNIST family datasets (i.e., MNIST,
K-MNIST, and fashion-MNIST), we follow MOOD [37]
setting. In addition to these OOD datasets, we also validate
our proposed method on synthetic data. To be more specific,
we utilize Gaussian noise (σ=0.5), Rademacher noise, and
Blob. We follow OE [38] settings for these synthetic data.
All OOD images are resized to 224 × 224.

3) EVALUATION METRICS
We mainly use the false positive rate at true positive
rate 95% (FPR95) and area under the receiver operating
characteristic curve (AUROC). We also utilize a supportive
evaluation metric that is area under the precision-recall
curve (AUPR). AUROC and AUPR metrics show binary
classification performance and higher these values indicate
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TABLE 1. Variation results of attention structure on CIFAR-10 (ID). We denote self-attention as SA (i.e., ViT-B/16 [3]) and cross-attention as CA (i.e., our
C2I-CAT). Training time [s] indicates one epoch training time for the corresponding structure in the measurement of seconds. We measure one epoch
training time for each seed and then average the measurements for all seeds. Class tokens refer to the use of class tokens from class-wise token proxies
(i.e., pi ) and feature token sequences (i.e., f ), while all tokens refer to the use of entire tokens from pi and f . We use MD scoring function and every
structure consists of 12 layers. We report mean and std based on 5 independent training runs. The bolded result is the best result.

that a model performance is better. FPR95 is a strict
threshold-based measurement when comparing performance
with other models and the smaller this value is, the better
model performance is. These metrics are widely used for
evaluating OOD detection performance.

4) MODEL STRUCTURE
We use a ViT-B/16 as a baseline model for a feature
extractor of our C2I-CAT and comparison methods (e.g.,
ViM or OODformer). The ViT-B/16 has 12 layers, a feature
dimension of 768, an input image size of 224×224, an image
patch size of 16× 16, and a token sequence length of 197 by
adding a class token to 224/16 × 224/16 = 196 tokens. The
number of head is 12. Our C2I-CAT has a structure (e.g., the
number of layers, feature dimension, the number of tokens)
similar to the ViT-B/16, except for the attention mechanism
and model’s input. We denote our model as C2I-CAT-B/16-
12. C2I-CAT refers to our cross attention transformer, B/16
denotes the feature extractor (ViT-B/16), and 12 represents
the number of layers.

5) IMPLEMENTATION DETAILS
Weuse an ImageNet [39] pre-trainedViT-B/16 [3] as a feature
extractor for our C2I-CAT and fine-tune the ViT-B/16 on ID
datasets. When fine-tuning the ViT on ID datasets, we train
the model for 50 epochs using cross entropy loss. We set
the initial learning rate of 0.001 with Cyclic learning rate
scheduler [40], batch size of 32, weight decay of 0.0001,
dropout rate of 0.1, and SGD optimizer with momentum 0.9.
For training C2I-CAT, we train 10 and 15 epochs for CIFAR-
10 and CIFAR-100, respectively. We set the initial learning
rate of 0.001 with a Cosine learning scheduler [41], batch
size of 32, weight decay of 0.0001, and dropout rate of 0.
We also use SGD optimizer with momentum 0.9 for CIFAR-
10 and momentum 0.95 for CIFAR-100. We do not use any
data augmentation.

We re-implemented the comparison methods except for
Exploring1 [17]. When re-implementing other methods,
we search hyper-parameters from the papers and publicly
available Git-Hub codes. For OODformer [16], we fine-tune
an ImageNet [39] pre-trained ViT-B/16 on ID datasets for
50 epochs, using cross entropy loss. The initial learning rate
is 0.01 with Cyclic learning rate scheduler [40]. We set batch
size of 32, weight decay of 0, dropout rate of 0.1, and SGD
with momentum 0.9. For ViM [12] and RMD [22], they
evaluate on a large-scale OOD (i.e., ImageNet-1k is ID) or do
not specify training hyper-parameters. Therefore, we evaluate
their OOD performance on ViT-B/16 model trained with
OODformer settings.

In addition, we follow all hyper-parameters by the
proposed methods such as k for the kNN scoring function and
temperature (Temp) for the Energy scoring function. To be
more specific, we set k=50 for CIFAR-10 (ID) and k=200
for CIFAR-100 (ID) in all experiments. For the Energy
scoring function, we set Temp=1 for all experiments. Note
that we do not use any auxiliary data to train the models
for all experiments. Furthermore, we utilize softmax function
to evaluate the model’s ID classification accuracy for all
experiments.

B. ANALYSIS OF THE PROPOSED METHOD
1) VARIATION RESULTS OF ATTENTION STRUCTURE
Table 1 shows the results of structural variants in attention
modules and input types for CIFAR-10 (ID). SA means
the self-attention structure (i.e., ViT-B/16 [3]) and CA
represents the cross-attention structure (i.e., our C2I-CAT).
== indicates a serial connection from the left one and
∥ indicates a parallel connection. Like CA structure, the
inputs of the serial and parallel structures are feature token
sequences of ViT and class-wise token proxies.

1The Git-Hub code has an issue when attempting to reproduce the method.
Furthermore, the authors only specify hyper-parameters for outlier training,
while not addressing hyper-parameters for training on ID datasets.
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TABLE 2. Variation results of inference scheme on CIFAR-10 (ID). We compare three variations of proposed inference scheme. We use MD scoring
function and all tokens for all inference methods. We report mean and std based on 5 independent training runs. The bolded result is the best one.

Regarding input types, we conduct structure variation
experiments on two input types. One uses all tokens (i.e.,
pi = {pi,t }t=Tt=1 and f = {ft }t=Tt=1 ) and the other utilizes only
class tokens (i.e., pi,1 and f1 in pi and f ) for inputs to all
structure variants, excluding SA.

When compared to SA (i.e., ViT-B/16 [3]), all of our
structural variants significantly improve OOD performance,
particularly in terms of FPR95.When considering the training
time, all of our structures with only ‘‘class tokens’’ require
less training time compared to SA structure. Among all vari-
ants, our SA∥CA structure with only ‘‘class tokens’’ shows
outstanding improvements in both near OOD performance
and classification accuracy, demonstrating enhancements of
0.09% and 3.59% for ID accuracy and FPR95, respectively.
In addition, our CA structure with only ‘‘class tokens’’ still
shows remarkable OOD improvements in both near and far
OOD tasks while requiring the least training time among
all our structural variants and SA. When compared to SA,
our CA structure with only ‘‘class tokens’’ enhances FPR95
performance by 3.14% and by 1.89% for near and far OOD
cases, respectively.

Regarding the number of model parameters, our CA has
slightly fewer parameters than SA, while the other structures
combining SA and CA have more parameters. Although
more model parameters lead to increased training time,
OOD performance is significantly improved compared to
SA. In addition, despite having a similar number of model
parameters as SA, our CA still demonstrates remarkable
OOD performance compared to SA.

Therefore, considering training time, model parameters,
and improvements in OOD performance, our CA with only
‘‘class tokens’’ is effective inOODdetection compared to SA.
On the other hand, SA∥CAwith only ‘‘class tokens’’ achieves
the best OOD performance but requires longer training time
and more parameters.

2) VARIATION RESULTS OF INFERENCE SCHEME
Table 2 illustrates the comparison between the proposed
class-wise proxy score ensemble and feature-level ensemble
variants that are based on feature concatenation over all
classes instead of class-wise score ensemble. As shown in
Table 2, scoring the concatenated feature over all class is

not useful for OOD detection, compared to the proposed
class-wise score ensemble.

The reason is that ‘‘Proposed Ensemble’’ method calcu-
lates the score of an input based on each class-wise proxy
and ensembles these scores to determine the final score,
which can clearly distinguish ID and OOD samples by
the precisely fitted in-distribution boundary from multiple
class-wise proxy kernels. That is, OOD input images can
be easily discriminated from the kernel of the nearest class
proxy determined by the proposed ensemble. However,
in the case of concatenated feature, the features of other
classes within the concatenated feature affect scoring, giving
a rough in-distribution boundary based on one kernel in
high-dimensional space and so degrading OOD detection
performance. Therefore, ensemble of scores for all class
proxies is more suitable for our structure than feature-level
ensemble methods.

Table 3 and Table 4 show influence of scoring function type
in our inference scheme, comparing with ViT-B/16 model.
When evaluating OOD performance for our method and ViT-
B/16, we utilize widely used scoring functions based on the
model’s output (i.e., logit) or feature space. In other words,
we use scoring functions based on logit space (MSP, Energy,
MaxLogit), feature space (kNN, MD), and a combination of
feature and logit space (ViM).

As demonstrated in Table 3, the proposed inferencemethod
(i.e., score ensemble inference) can be applied to various
scoring functions. Compared to ViT-B/16 in each scoring
function result, our C2I-CAT significantly improves near
OOD performance across all scoring functions. Considering
the average result over all scoring functions, we improve the
performance by 2.51% (FPR95 average), 0.83% (AUROC
average), and 4.52% (AUPR average) for CIFAR-10 (ID),
compared to ViT-B/16. We also improve OOD performance
for CIFAR-100 (ID).

Table 4 shows the far OOD results. Similar to the near
OOD results in Table 3, the proposed inference method is
still effective for far OOD datasets, considering the average
results over all scoring functions. Compared to ViT-B/16,
our C2I-CAT improves far OOD performance by 1.01%
(FPR95 average), 0.73% (AUROC average), and 4% (AUPR
average) for CIFAR-10 (ID). In addition, we also achieve
improvements in OOD performance for CIFAR-100 (ID).
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TABLE 3. Near OOD detection results of scoring functions on CIFAR (ID). ↓ (or ↑) indicates that the smaller (or bigger) the value, the better the
performance. We report mean and std based on 5 independent training runs. The bolded result is the best result.

TABLE 4. Far OOD detection results of scoring functions on CIFAR (ID). ↓ (or ↑) indicates that the smaller (or bigger) the value, the better the
performance. We report mean and std based on 5 independent training runs. The results are averaged over all OOD datasets (15 datasets). The bolded
result is the best result.

TABLE 5. Near OOD detection results on CIFAR (ID). ↓ (or ↑) indicates that the smaller (or bigger) the value, the better the performance. Except for
exploring [17], we reimplement all other methods. We use the results of Exploring, which are reported in the paper [17]. We report mean and std based
on 5 independent training runs. The bolded result is the best.

From these results, our inference method synergizing with
our cross-attention structure outperforms the OOD perfor-
mance of the self-attention-based method. When considering
an inference process and our structure, the ensemble of output
scores obtained from specific components, such as a classifier
or a penultimate layer, is more suitable for our structure and
OOD detection than feature-based ensemble methods.

Furthermore, our inference method can be applied to
various scoring functions without modification.

3) QUALITATIVE RESULTS
Figure 6 shows the penultimate layer’s features of eachmodel
(i.e., C2I-CAT and ViT-B/16) in 2D embedding space. While
ViT does not detect near OOD samples well, our C2I-CAT
robustly identifies near OOD samples. For ViT, the near OOD
samples are more closely located around the boundaries of
ID samples than our C2I-CAT, considering that near OOD
detection is a challenging task. For the far OOD case, the
result of ViT shows that far OOD samples are widely spread.
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FIGURE 6. t-SNE visualization of CIFAR-10 (ID). We visualize t-SNE results for near and far OOD cases. We use CIFAR-100 and SVHN as
the near and far OOD datasets, respectively. Blue dots indicate ID samples and red dots represent OOD samples. We randomly select
300 samples from each dataset. For all models, we extract class token features from the penultimate layer (i.e., before a classifier) of a
model.

TABLE 6. Far OOD detection results on CIFAR (ID). ↓ (or ↑) indicates that
the smaller (or bigger) the value, the better the performance. We report
mean and std based on 5 independent training runs. The results are
averaged over all OOD datasets (15 datasets). The model for all
comparison methods is ViT-B/16. The bolded result is the best.

However, C2I-CAT still discriminates ID and OOD samples
more clearly than ViT in the far OOD case.

In addition to Figure 1, we provide additional attentionmap
visualizations for CIFAR-10 (ID) and CIFAR-100 (OOD) in
Figure 7. Therefore, the visualization results indicate that
focusing on the object-centric features is a key factor in
detecting OOD samples. Furthermore, our C2I-CAT, utilizing
class-wise token proxies, captures object-centric information
more effectively than ViT-B/16, demonstrating that our
structure extracts the correlation between the feature tokens
of images and classes.

C. COMPARISON WITH STATE-OF-THE-ART METHOD
Table 5 and Table 6 show the results of a comparison
with other methods, including the SOTA methods (i.e.,
Exploring [17] and ViM [12]). Note that our primary goal is
near OOD detection.

As shown in Table 5, our C2I-CAT demonstrates superior
performance in terms of FPR95 and AUROC, keeping
competitive ID classification accuracy. When compared to
OODformer [16] that uses a ViT-B/16 model and the same
scoring function, our C2I-CAT improves OOD performance
by 3.45% (FPR95) and 0.61% (AUROC) for CIFAR-10 (ID).
For CIFAR-100 (ID), our C2I-CAT also improves OOD
performance by 12.27% (FPR95) and 2.11% (AUROC).
In addition, compared to the SOTA method (i.e., Exploring),
our C2I-CAT notably improves FPR95 by 2.55% and 2.67%
for CIFAR-10 (ID) and CIFAR-100 (ID), respectively.

In addition to near OOD detection, we also compare our
method with other methods for far OOD detection, as shown
in Table 6. Similar to near OOD results, the proposed C2I-

FIGURE 7. Attention map visualizations of the class tokens. Figure 7a and
Figure 7b are the visualization results for CIFAR-10 (ID) and CIFAR-100
(OOD), respectively. In each sub-figure, the left columns are the original
images, the middle columns depict ViT’s attention map, and the right
columns represent the proposed method’s attention map.

CAT improves far OOD performance when compared to ViT-
B/16-based other methods. Compared to OODformer [16],
our method achieves FPR95 improvements of 2.2% and
2.85% for CIFAR-10 (ID) and CIFAR-100 (ID), respectively.
When compared to ViM [12] that is the best result for far
OOD detection, we improve FPR95 by 1.42% and 1.35% for
CIFAR-10 (ID) and CIFAR-100 (ID), respectively.

Therefore, based on these experimental results, our
C2I-CAT learns more informative features by extract-
ing object-centric features via the cross-attention module,
compared to the self-attention module (i.e., ViT-B/16).
In addition, our C2I-CAT effectively detects outlier samples
in various OOD datasets, which demonstrates outstanding
robustness for OOD detection.

V. CONCLUSION
In this paper, we have proposed a new cross attention
transformer, namely C2I-CAT, for OOD detection. Unlike
existing ViT-based OOD methods, we have introduced
a newly designed cross-attention module that employs a
cross-attention between class-wise token proxy and feature
token sequence of an input image. The proposed structure
extracts object-centric features, which are a key factor in
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discriminating ID and OOD samples. For inference suitable
to our cross-attention structure with multiple class-wise
token proxies, we have suggested a score ensemble that can
be applied to any scoring function. Through experiments,
we have demonstrated that our inference method can be
applied to various scoring functions and outperforms ViT’s
OOD performance by synergizing with our cross-attention
structure.

A. LIMITATION AND FUTURE RESEARCH
OOD detection is a classification task, where a localized
image including only the target object (trained or untrained)
should be given. To apply OOD detection to actual envi-
ronments, it is essential to localize untrained objects from
a natural scene. However, the localization of an untrained
(unknown) object is a challenging task because most object
detection algorithms (YOLO, etc.) mainly detect trained
objects. As the future research for military and social
purposes, an undefined foreground object (UFO) detection
is required where unknown object localization and OOD
detection tasks are tackled at the same time. For instance,
in a military coastal security system, AI should localize
an unknown object in a wide range of coastal scenes and
determine whether it is a suspicious object (OOD) or not.
In a social environment such as autonomous driving, UFO
detection in 3D scenes is essential for highly safe driving even
when undefined objects appear.

B. SOCIETAL IMPACT
Regarding societal impact, it is crucial to identify an
invasion of an unidentified object or person that is not
anticipated. However, actual applications of OOD detection
to real-world environments are still limited because the
performance of unidentified object localization along with
OOD detection is not satisfactory. Thus, the low technical
level might lead to harmful situations, such as enemy
infiltration within the military or major accidents involving
self-driving cars, etc. However, if the technical level of UFO
detection increases to a satisfying level via future research,
it can be applied to real-world scenarios to enhance human
safety.
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