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ABSTRACT Countering image and video manipulations is getting more and more relevant in several fields
such as investigation, intelligence and forensics. Multimedia forensics researchers keep developing new
tools and updating available detectors to discriminate the processing the media has been subjected to. While
these tools can be utilized efficiently in controlled settings, they are generally unreliable in open-world
scenarios where the investigated material may have been subjected to several unknown manipulations.
In this paper, we present a novel framework to discriminate different toolchains of media manipulation
and processing. We introduce the concept of media signature encoding to map image and video contents to
latent spaces where media produced by similar processing toolchains cluster together. We demonstrate that
this property still holds for toolchain that are not known when building the encoder, expanding the range
of applications for our framework to open-world contexts where forensic analysts may face both familiar
and unfamiliar manipulation techniques. A significant advantage of this approach lies in its ability to create,
in principle, media signatures from any kind of forensic features. We evaluated the effectiveness of the
proposed framework in two different experimental setups involving digital images and videos. Results show
that encoded signatures are capable of determining whether: (i) a media under analysis belongs to a known
life cycle or an entirely novel processing toolchain; (ii) a subset of media items share the same history. This
framework can be considered a first step towards the use of forensic features to characterize media life cycles
in open-world settings.

INDEX TERMS Multimedia forensics, media signature, feature fusion, autoencoders.

I. INTRODUCTION
Massive amounts of visual data are uploaded every day
to social media platforms by nearly 4 billion active users.
According to recent estimates, 14.1 billion images are shared
every day and 2 million hours of video are uploaded to
YouTube every minute.1 The reason behind the popularity of
sharing images and videos is actually rooted in the structure

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

1https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-
youtube-every-minute/

of the human brain, which is extremely fast and efficient at
processing visual information as opposed to textual content.
The result is that visual media are more likely to capture
and hold users’ attention, leading to increased engagement
levels and higher sharing rates. Visual data are responsible
for the viral diffusion of information through social media
and web channels, and they play a key role in the digital life
of individuals and societies.

At the same time, the availability of advanced tools
like Artificial Intelligence (AI) and photo/video editing to
the general public, which used to be restricted to skilled
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users and researchers, led to usage patterns that go beyond
the primary purpose of entertainment. Deepfakes, which
refer to convincing digital media that feature untruthful
content,, can be obtained either through the manipulation of
pristine material or generated from scratch using automated
algorithms based on AI. The web abounds with tutorials and
applications for the creation of simple deepfake generators
that can be easily run on commercial smartphones or PCs
(e.g. FakeApp, Impressions, Reface App, MyVoiceYourFace,
Snapchat Cameos, FaceSwap), and more sophisticated cre-
ation techniques are developed at a fast pace. The use of
AI-generated multimedia content allows marketers to cut
costs and lead times for campaigns aimed at engaging
customers and creating new prospects.2

Besides offering exciting opportunities in several fields
(such as entertainment, content production, e-learning, and
e-health), these advanced creation technologies are now
widely recognized as a pressing threat to the reliability
of visual information [1]. Indeed, malicious users and
organizations have long been interested in manipulating
visual contents and using them for diffusing unreliable
information and fake news, especially images and videos
depicting faces [2] and [3]. For instance, deepfakes are widely
used for driving social engineering campaigns related to mis-
information or disinformation and for obtaining financially
sensitive data.3 Moreover, research studies have shown that
human performance (even of experts) in distinguishing real
pictures from synthetic ones is alarmingly poor, meaning
that synthesis engines have advanced beyond the uncanny
valley and are now capable of creating faces that are
indistinguishable or even more trustworthy than real faces [4]
and [5]. This demonstrates that the detection of manipulated
content and the development of tools allowing to preserve the
trustworthiness of images and videos shared on social media
and web platforms are important topics that our society can
no longer ignore, given their significant impacts on media,
public discourse, and society at large.4

In the latest decades multimedia forensics researchers
have investigated the detection of manipulations and the
identification of the source of digital content, obtaining
promising results in laboratory conditions and well-defined
scenarios [6], [7], [8]. Classic examples are those involving
algorithms for device source attribution [9], which obtained
very promising results on both images [10] and videos [11],
[12], [13] when only spatial-transformations are applied,
but hardly cope with complex real world conditions involv-
ing combinations of in-device image processing [14] or
social-network compression [15]. Similarly, tampering and
deep-fake detection algorithms [16], [17], [18] suffer from
similar problems, as the specific laboratory conditions they

2https://pavla.gr/digital-marketing-en/deepfake-technology-is-about-to-
dominate-digital-marketing

3It is worth mentioning that the state of Texas recently passed a bill for
blocking the use of deepfake to sabotage candidates during the elections, see
https://legiscan.com/TX/text/SB751/id/1902830.

4https://www.cbinsights.com/research/report/ai-trends-2022/

typically consider hardly encompass the varying factors
contributing to the creation of partially or fully generated
data [19], [20], [21]. Although some of the assumptions
made for the tests of the methods mentioned above are
reasonable, the specificity of the features involved drastically
reduced their application fields. Moreover, the ability of
users to generate false information and deceptive content is
increasing at a rapid pace, presenting significant challenges
for the effectiveness of existing forensic tools in practical
scenarios. The research community has recently begun efforts
to expand forensic analysis to encompass real-world web-
based systems, including common activities like sharing
content on social media platforms [22]. However, outside
of laboratory conditions the media under analysis may have
possibly undergone unknown operations, and the reliability
of a forensic tool should be carefully weighed. In fact, the
use of forensic tools to characterize a media life cycle in
open-world settings generally requires a deep knowledge of
the technology behind each tool, its field of applicability,
its response under unusual circumstances, and the statistical
meaning of its output. As a consequence, the response
of a forensic tool on contents subjected to unknown new
processing can be unpredictable. These requirements make
it hard to imagine how these technologies can be widely and
effectively used by non expert users in the real world.

In this context, this paper presents a novel open-world
multimedia forensics framework for the identification of the
life cycle of a given media item under investigation. This
is achieved by encoding features of different nature into a
compact descriptor, called media signature, which is then
used to quantitatively assign an object to a known class of
media life cycle, and to assess whether different objects share
a similar (possibly unknown) digital history. The transforma-
tion of raw features extracted from a digital content into a
media signature is performed by a media-specific encoder
based on a siamese-like training paradigm with denoising
autoencoders, designed to preserve the traits of diverse
processing chains. Therefore, the Euclidean distance between
media objects in the signature space can be considered as
a proxy of the similarity between the processing chains
they underwent. Accordingly, we use such metric to assess
the origin of a media under investigation, with respect to
both known and never-seen-before processing operations.
An advantage of this approach is that in principle media
signatures can be generated from any kind of forensic
features. As a matter of fact, we experimentally prove
that the proposed methodology allows effectively encoding
features extracted from both the visual content and the file
structure of the object. Furthermore, the structure of the
proposed media signature allows scaling the analysis to
very large amounts of data. These characteristics make this
framework useful to retrieve information about the life of
a digital object in terms of provenance, manipulations, and
sharing operations; therefore, it can support law enforcement
agencies and intelligence services in tracing perpetrators
of deceptive media diffusion and in countering the effects
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of misinformation. The obtained results demonstrate the
potential of the proposed approach in compelling forensic
scenarios described in the next sections, as well as its ability
to deal with data subject to unseen toolchains (i.e., sequence
of processing operations along the media life cycle).

The paper is organized as follow: in Section II we
further state the faced problem of open world forensics, the
considered scenarios and precisely describe the innovations
with respect to state of the art techniques; in Section III
we describe the proposed framework, focusing especially
on the definition, extraction and cross-indexing of media
signatures; in Section IV we analyze the experimental setup
on manipulated digital videos, while Section V is devoted to
the experimental setup that involves shared digital images.
In both cases, we define the specific descriptors and datasets,
and we assess the performance of the proposed framework
in the specific context. In Section VI-A, we provide a
thorough discussion on the results achieved by the proposed
framework, and we assess its scalability, showing that the
proposed framework is capable of working on large amounts
of data. Finally, in Section VII we draw the conclusions and
we highlight some open issues for future works.

II. MOTIVATION AND CONTRIBUTION
The ultimate goal of image forensics is to be able to
reconstruct the history of a media content by determining
a posteriori the processing chain it went through. Current
techniques are unable to attain this objective for multiple
reasons. First of all, each proposed forensic detector is
targeted to a specific attack and is designed and trained
to reveal the corresponding traces. Second, such traces are
partially erased by successive operators along the chain, thus
hindering the performance of the detector. In this respect, the
order of operations is also important, as different sequences
usually produce very different results even when using same
set of operators. Finally, when an unknown operator is
introduced in the processing chain, the detector may produce
unpredictable results even if the rest of the sequence is known.
All these situations are very common in open-world settings,
where no priors are available and media may have been
shared and processed by different actors along their lifecycle.

A universal detector capable of dealing with such scenarios
is currently out of reach in forensics research; however,
an interesting intermediate result would be to be able to
exploit the knowledge learned from previously analyzed pro-
cessing chains to characterize chains using similar operations
in a different order. Furthermore, when dealing with chains
including never-seen operators, it would be useful to retrieve
some common characteristics associated to known parts of
the chain, and/or to detect similarities among media that used
the same unseen operators.

The present work addresses the above ambitious objec-
tives, by proposing a novel framework that supports the
analysis of media lifecycle in open-world settings. To this
purpose, we started from the basic assumption that a hard
decision can rarely be achieved in an open-world scenario.

Accordingly, we introduce the concept of media-signature
to extract multifaceted information on the object under
investigation, and quantitatively linking it to known or
unknown lifecycles.

More in detail, themain novelties of the proposed approach
with respect to the state of the art in the field can be
summarized in the following three points:

(i) Being able to retrieve useful information even in the
presence on data subject to unseen lifecycles. Current mul-
timedia forensics techniques aim at discriminating fake vs.
real media within a finite set of classes (e.g., by considering
a set of possible manipulations, distinguishing among a finite
number of possible GAN models that could have generated a
fake media, or dealing with a given set of possible deepfake
generators). We demonstrate that our approach is capable of
retrieving useful forensic information also when the content
under analysis underwent a different lifecycle with respect to
training data, thus allowing us to reconstruct at least a part of
the media history. For instance, when analyzing a deepfake
generated by a new tool which is unknown to the classifier,
the framework can recognize that it is an AI-generated video,
although the specific generation tool cannot be identified.

(ii) Clustering data with similar lifecycles. If a completely
new type of manipulation is presented, traditional forensic
tools either associate the media to a random class or, when
available, to a rejection class. The proposed framework takes
a significant step forward. First of all, it detects whether
the media belongs to a known class of manipulations or
not. Second, it is able to cluster it with other unknown
media that share a common history. For instance, when
analyzing a set of media that have been shared multiple times
over a given sequence of social networks, it could happen
that (1) the social networks and the sharing sequence are
already known, leading the detector to output their sharing
history, or (2) the social networks and/or the sharing sequence
are different from what was seen before, prompting the
detector to classify the media history as unknown but, at the
same time, to cluster them into the same group (meaning that
they share an unknown but common history).

(iii) Scaling to different media types and large data
volumes. Working in the real world also means being able
to scale to huge amounts of data in a continuously evolving
scenario. Most of the current forensics frameworks require
the sequential application of different detectors, designed
and trained for specific purposes, often characterized by
intrinsically high complexity. This forensics framework was
explicitly designed to deal with open-world scenarios, and
is therefore able to encompass different types of media
manipulations, to ensure effective computation, thus adapting
to rapidly evolving scenarios.

The proposed framework has been extensively validated
by addressing two different media forensic experimental
setups, specifically designed to prove the above innovative
characteristics. In the former (media4provider, Section IV),
video sequences are analyzed to reveal the presence
along the lifecycle of manipulations based on either AI
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or other software-based editing operations. In the latter
(media4community, Section V), images shared through
social networks are analyzed to identify various possible
sharing operations within a number of different platforms.

III. THE OPEN-WORLD FORENSIC FRAMEWORK
Given both the motivations and the requirements detailed
in the previous section, the proposed framework performs
a distance-based evaluation that aims at evaluating whether
a media object under analysis belongs to a specific known
life cycle or a previously unseen processing toolchain, thus
allowing to understand whether a subset of media objects
share the same history (i.e., they have undergone a similar
processing/manipulation/sharing sequence of operations).

To achieve this goal we designed the architecture depicted
in Figure 1. We first extract a number of features from the
media under analysis (in particular, in the current implemen-
tation both content- and format-based information has been
exploited); then, we encode all the extracted information into
a media signature. The signature is a compact descriptor that
maps the media under investigation into a space where it is
possible to cross-index it with other media items coming from
different sources, thus recognizing whether it belongs to a set
of known classes of processing/manipulation/sharing or if it
comes from an unknown media history.

In particular, media signatures need to be properly
designed by ensure the following properties:

1) they should contain sufficient information to discrimi-
nate among media belonging to different life cycles;

2) when computed on media objects that share equal or
similar life cycles, they have to be close to each other
– according to a selected metric – in the signature space.

The second point is particularly relevant for real-world
applications. As it is unrealistic to simulate all possible
toolchains during training, our goal is to define an encoding
process which can convey traces of arbitrary toolchains, so as
to increase its potential in open-world settings. Typical state-
of-the-art forensic detectors are in fact designed as close-set
classifiers, which discriminate among toolchains that were
present in the dataset used to train it. On the contrary, the
proposed signature-similarity approach allows retrieving a
set of similar toolchains for each given sample, as well as
identifying and rejecting samples that are deemed not to
belong to any of the known toolchains.

The above framework can be instantiated in several
scenarios and applied to any type of media. In each case,
proper feature representations will have to be determined to
train the encoder and generate media signatures.

A. MEDIA SIGNATURE ENCODER
This open-world framework depends on finding an encoding
function that fulfills the aforementioned properties. The
search problem can be formalized as follows. Let X be the
original feature space and Y be the set of all possible media
life cycles, and let fθ : X → Z be a family of parametric

functions capable of mapping the original feature vectors to
a metric space

(
Z , d : Z × Z → R+

0

)
, namely, the signature

space. Our goal is to find θ so that the distance in the
signature space between samples belonging to the same class
is smaller than the distance between samples belonging to
different classes; in other words, we want to enforce that,
given three examples (x1, y1), (x2, y2), (x3, y3) ∈ X×Y where
y1 = y2, y1 ̸= y3, we have that:

d(fθ (x1), fθ (x2)) < d(fθ (x1), fθ (x3)). (1)

We adopted an approach based onmachine learning, where
a neural network mapping examples from X = Rn to
Z = Rk is used as fθ . Then, the definition of the encoding
function becomes a supervised learning problem, where we
want to estimate θ (the weights of the network) such that
the relationship (1) is verified given a set of examples
(xi, yi) ∈ X × Y . To this purpose, we follow an approach
inspired by Siamese Networks [23]. In this case, multiple
examples are jointly examined, their distances evaluated,
and an appropriate loss function used to force the learnt
representation to meet the requirements of the similarity
function. During training, for each sample x acting as an
anchor, three more samples are extracted from the training
set:

• a sample xs belonging to the same class as x;
• a sample xn1 belonging to a different class with respect
to x;

• a sample xn2 belonging to a different class with respect
to both x and xn1 .

These four vectors are fed into the encoder separately in order
to obtain the corresponding encoded signatures z = fθ (x),
zs = fθ (xs), zn1 = fθ (xn1 ), and zn2 = fθ (xn2 ). Finally, the
parameters θ are tuned by training the network using the
quadruplet loss function [24]

Lq = max
(
d(z, zs)2 − d(z, zn1 )

2
+ m1, 0

)
+ max

(
d(z, zs)2 − d(zn1 , zn2 )

2
+ m2, 0

)
(2)

where m1 and m2 act as regularization terms for distances
among different classes, and d is the Euclidean distance
on Rk . In this way, we force the network to learn an encoding
function that meets the similarity requirement in (1).

In practice, when operating in open-world scenarios the
training set will include samples belonging to a (small) subset
Y k ⊂ Y of all the existing media life cycles. As neural
networks are usually trained on the assumption that the
distribution of training data matches the one of test data,
generalization issues arise when dealing with classes in
Y \ Y k that are unknown at training time. In particular, our
network might only retain information needed to separate
classes in Y k , while discarding cues that are useful to identify
additional classes in Y \ Y k .

To solve this problem, we enhance our siamese architecture
by adding a decoding process based on Denoising Autoen-
coders [25]. In particular, we introduce a second network
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FIGURE 1. The proposed framework extracts features from a media (both content- and
container-based information), encodes them into a compact descriptor (the media signature)
and maps it in the signature space for forensic assessment.

gψ : Z → X (called decoder) designed to map vectors
on the signature space back to the original feature space.
This decoder is trained jointly with fθ by minimizing the
distance

∣∣x − x̂
∣∣2
2 between an original feature vector x and

the corresponding estimate produced from its signature x̂ =

gψ (z) = gψ (fθ (x)). This will force gψ to approximate the
inverse function for fθ (i.e., gψ (z) ≈ f −1

θ (z), ∀z ∈ Z ) and
allow reconstructing x from its encoded version fθ (x). This
choice is based on the assumption that if we force the network
to encode the information needed to reconstruct the original
features, the signatures will keep trace of the cues that are
relevant for separating unknown classes. This is formalized
in the following reconstruction loss, computed on three other
vectors xs, xn1 , and xn2 along with each anchor x:

Lr =
∣∣x − x̂

∣∣2
2 +

∣∣xs − x̂s
∣∣2
2 +

∣∣xn1 − x̂n1
∣∣2
2 +

∣∣xn2 − x̂n2
∣∣2
2 .

(3)

The whole network is thus trained using a combination of
the two aforementioned loss functions

L = λ1Lr + λ2Lq, (4)

where the two hyperparameters λ1 and λ2 are used to tune
the trade-off between reconstruction fidelity and separation
capability. Figure 2 shows the complete architecture used for
training.

It is to be noted that the decoder gψ is required only at
training time, while the encoder fθ will be used to extract
media signatures from new examples. At test time, the system
in Figure 1 takes an incoming sample, performs feature
extraction, and generates the signature in the signature space,
where the sample may be compared with other objects in
terms of Euclidean distance. We also stress that our method
makes no assumption on the shape of the original feature

space. Therefore, it can be easily applied to features coming
from different domains, such as discrete values extracted
from the file structure (also called container) and continuous
values extracted from the visual content.

In the next sections, we demonstrate the potential and
flexibility of the proposed framework by instantiating it in
two different experimental setups, where different media
(namely videos and images) and feature representations are
involved.

IV. EXPERIMENTAL SETUP 1: MEDIA4PROVIDER
In the media4provider setup, we consider a deceptive
processing toolchain used to create a fake video to be
uploaded to a web service, like a social media platform.
We assume that the provider can analyze the content, before
its spreading, by exploiting our framework to determine
its history. We consider two main classes of manipulations
(as depicted in Figure 3): (i) AI-based manipulations,
including video streams where selected subjects/objects
are removed and the corresponding areas are automati-
cally generated and filled (inpainted) using last-generation
AI-based techniques; (ii) user-based manipulations, includ-
ing native media subjected to editing operations by means
of free or commercial software for image/video manipulation
(e.g., Adobe Photoshop, Adobe Premiere, Avidemux). In the
next subsections, we discuss in detail the datasets utilized, the
set of content- and container-based features employed, and
the findings obtained on open-world data.

A. DATASETS
Due to technological disparities between AI-based and user-
based manipulations, descriptions of instances for each class
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FIGURE 2. Architecture of the proposed media signature extractor. During training, for each example x (anchor) belonging
to class C1 we sample three additional vectors: xs from the same class C1 (in green), xn1 from a different class C2 (in red),
and xn2 from a third class C3 (in orange). All of them are projected to the signature space by the encoder network,
producing four signatures z , zs, zn1 , and zn2 . The decoder network is then used to estimate the original features x̂ , x̂s, x̂n1 ,
and x̂n2 from the signatures, which are then compared by the reconstruction loss. At the same time, the quadruplet loss
forces signatures belonging to the same class d (z, zs) to be near each other, while maximizing the distances d (z, zn1 ) and
d (z, zn2 ) of signatures belonging to different classes.

TABLE 1. Summary of the considered datasets for the Experimental
Setup 1.

are presented in separate paragraphs. An overview of the
datasets involved is provided in Table 1.

1) AI-BASED MANIPULATION
We developed a dataset of videos manipulated with some
recently-proposed video inpainting techniques. Such tech-
nologies allow removing arbitrary areas and objects from
video frames, and have been chosen since they allow to work
on sceneswithout people or faces. A set of 312 original videos
have been collected from Youtube 8M [26], a video dataset
with no copyright restrictions on Youtube, Sport 1M [27],
Socrates [28], and VISION [29]. The original videos
collected from the aforementioned datasets depict different
scenes, from outdoor to urban environments, with resolutions

ranging from 720p to 1080p. For each video, we semi-
automatically generated the masks that identify the object to
remove, and we generated different inpainted versions with a
resolution of 432 × 240.
In our experiments, the following three technologies have

been exploited:

• Spatial Temporal Transformer Network (STTN) [30];
• Onion Peel Network (OPN) [31];
• Generative Multi-column Convolutional Neural Net-
works (GM-CNN) [32].

The first two techniques are conceived for video inpainting
and exploit both spatial and temporal information, while the
third one is a powerful image inpainting technique that we
apply frame-by-frame. Moreover, the data inpainted with
OPN are post processed by the same inpainting technique
using a Temporal Consistency Network (TCN) [33] aimed at
removing temporal inconsistencies such as flickering in the
inpainted area. These three pipelines have been applied to
generate three different toolchains, using the implementation
provided by the authors of the papers.5 Examples of the
original frames, the masks, and the resulting inpainted frames
are reported in Figure 4.

5https://github.com/shepnerd/inpainting_gmcnn
https://github.com/seoungwugoh/opn-demo
https://github.com/researchmm/STTN
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FIGURE 3. Functional blocks for toolchains considered for experimental setup 1.

FIGURE 4. Example of inpainting process.

In total, we generated 312× 3 = 936 manipulated videos,
in addition to their pristine versions.

2) USER-BASED MANIPULATIONS
We considered the EVA-7K dataset [34], which consists
of 6860 videos altered by software and exchanged through
several social media platforms. This dataset provides
software-based manipulations obtained from the same pris-
tine contents, thus providing a good experimental basis for
the analysis of different toolchains.

The 140 pristine videos are edited with the following
software:

• Adobe Premiere6: each video was manually cut by
keeping 5 to 7 seconds and saved as H.264 with medium
bitrate setting;

• Avidemux6: each videowasmanually cut by keeping 5 to
7 seconds and saved as copy and MP4 Muxer settings;

• Exiftool6: each video was manually processed to change
the date information within the metadata;

• Kdenlive6: each video was manually cut by keeping 5 to
7 seconds and saved with the MP4 - the dominating
format(H264/AAC) setting;

• ffmpeg6: the software was used in an automated way to
(i) trim the video to 5 seconds and re-encode it with
H.264/AVC; (ii) trim the video to 5 seconds by copying
the audio and video coding parameters to minimize

6Videos from EVA-7K [34].

the traces left by the operation; (iii) trim the video to
15 seconds and slow it down by 1/4×; (iv) speed the
video up by 4× through ffmpeg; (v) trim the video
to 15 seconds and downscale it to the resolution of
320 × 240.

• Vegas Pro v.167: we cut 140 native videos from
EVA-7K with Vegas Pro editing. Overall we built
140 videos edited with H.264/AVC and 140 edited
with H.265/HEVC. The manipulation with Vegas Pro
has affected the resolution, the duration, the frame per
second, the audio codec, and the video codec for each
video. The video resolution was set to FullHD (1920 ×

1080 pixels) at 25 fps. We considered video encoding
and transcoding with H.264/AVC and H.265/HEVC.
In addition, we used AAC as audio codec. Finally, the
original video was cut randomly with at least 5 seconds
of video content.

B. FEATURES
The analysis of videos is performed by exploiting features
from different domains.We consider container-based features
including metadata, coding parameters, and video container
structure, and content-based features extracted from state-of-
the-art detectors.

7Videos fromVegas-Pro dataset are accessible at https://drive.google.com/
drive/folders/1w5XYbfgV4n3n_c_xYu6v57R37ysOV6jd?usp=sharing.
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1) CONTAINER-BASED FEATURES
The video container analysis is based on the recent techniques
proposed in [34], [35]. The video file (or container) is
represented as a labeled tree where internal nodes and leaves
correspond to atoms and field-value attributes. A video
container X can be characterized by the set of symbols
{t1, . . . tm}, where ti can be: a field-symbols, i.e. the path from
the root to any field; a value-symbols, i.e. the path from the
root to any field-value. An example of this representation can
be8:

t1 = [ftyp/@majorBrand]

t2 = [ftyp/@majorBrand/3gp4]

. . .

ti = [moov/mvhd/@timescale]

ti+1 = [moov/mvhd/@timescale/1000]

. . .

Overall, given a set of possible origins O = {O1, . . . ,Ot }
(e.g., AI-based inpainting, user-based manipulation), the
method exploits Decision Trees, a non-parametric learning
method, to assign a container X to a specific class Ou based
on its symbols {t1, . . . , tm}. The method is enriched with a
likelihood ratio framework designed to automatically clean
up the container elements that only contribute to source intra-
variability.

2) CONTENT-BASED FEATURES
Content-based analysis focuses in particular on the char-
acterization of different AI-based inpanting manipulation
techniques. We start the analysis by exploiting the method-
ology proposed in [36], which consists in applying a
convolutional network without fully-connected layers, which
has the advantage of accepting input media with arbitrary
sizes, and returns a full resolution tampering probability map
with values in [0, 1] for each video frame. The map is used as
a raw data to evaluate the detection capabilities of differently
trained networks. A pictorial representation of the technique
is reported in Figure 5. One specificity of the architecture
is the pre-filtering module, which is intended to act as a
high-pass filter to enhance the tampering traces left in the
signal.

We fine-tuned the pre-trained models separately on frames
inpainted with the different inpaiting techniques (GMCNN,
OPN, and STTN), and with the pristine frames. We will refer
to detectors trained separately on each inpainting technique,
as S1, S2, and S3 where 1 → GMCNN, 2 → OPN, 3 →

STTN, each one trained to detect manipulations generated
with one of the toolchains considered. We observed that,
when testing such networks on data from the three different
toolchains (indicated as X1, X2, and X3), the inpainted areas
are typically more accurately localized when Si is tested on
Xi for the same index i. Therefore, we explored the possibility
of leveraging frame responses of S1, S2, and S3 to extract

8Note that @ is used to identify atom parameters.

indications on the inpainting toolchain used. Figure 6 reports
an example of network’s output maps when testing on data
from different toolchains.

On this basis, we define a statistics R to be extracted from
each map. In particular, by denoting as S(X ) the output map
of a network S from a frame X , we split the pixels in two sets
as follows:

M .
= {pixels in S(X ) that are ≥ 0.5} (5)

P .
= {pixels in S(X ) that are < 0.5} (6)

By denoting as medM and medP the median values of M and
P, respectively, the final statistics R is defined as:

R = medM − medP. (7)

Accordingly, R is intended to quantify the separation
between M and P on a specific frame, and represents the
content-based feature used to identify the correct toolchain
instance.

For every case depicted in Figure 6, we defined statis-
tical models, using equation (7), to detect the inpainting
techniques though a majority voting criteria considering the
likelihood with respect to the testing data.

C. EXPERIMENTAL EVALUATION
In this section we assess the capability of the proposed
method to cluster together signatures of videos produced by
the same unknown processing toolchain. To this purpose,
we consider two toolchain classes: AI-based manipulations
and user-based manipulations, as described above. The
first class includes 3 different processing chains (STTN,
OPN, GM-CNN), while the second one includes 7 different
processing toolchains (Adobe Premiere, Avidemux, Exiftool,
Kdenlive, Ffmpeg, Vegas Pro AVC, Vegas Pro HEVC).

The initial feature space of size 20319, obtained by con-
catenating container- and content-based features, has been
compressed using a single-layer media signature encoder
(as described in Section III-A) into a 25-dimensional latent
space. This size has been selected to demonstrate the ability of
the proposed method to maintain strong discriminative power
even when compressing the feature space into a minimal
number of elements.

We performed a preliminary step to assess the impact of
the signature encoding process on the features discrimination
power. For this purpose, we considered two SVM classifiers,
the first one built on the considered features while the second
one built on the encoded signatures. In Figure 7 we report the
accuracy in the form of a confusion matrix computed over the
11 different toolchains. We can notice a slight performance
drop in a few categories due to the signature encoding,
which is however limited to 6% on the discrimination power
(average accuracy drop from 78.9% to 72.9%).

To evaluate open-world scenarios, we considered 10 cases
in which each analyzed toolchain is not available in the
training set. Therefore, we applied a leave-one-out strategy
where we repeated the experiments 10 times, removing
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FIGURE 5. Architecture of the network used for inpaiting localization, as reported in [36].

FIGURE 6. AI-based inpainting manipulation probability maps produced by different detectors
(columns) on data coming from different toolchains (row).

FIGURE 7. Assessment of the signature capability to encode the features information.

each time all the videos produced by one of the above
toolchains. At test time we extracted the signatures from
video items belonging to both known and unknown classes.

Finally, we computed the Euclidean distances between pairs
of signatures associated to unknown class (intra-distances),
and between pairs of signatures associated to unknown and
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known classes, respectively (inter-distances). Our aim is
to show that unknown signatures generated from content
processed by the same unknown toolchain are not only
separable from those associated to other known toolchains
(high inter-distances), but also close to each other in the
signature space (low intra-distances).

We represent the obtained results graphically, reporting
for each experiment the distribution of intra-distances for
the unknown class, and the inter-distances between the
unknown class and each of the known ones. In order
to capture the most significant statistical aspects of each
distribution, we represent them with a combination of box-
and violin-plots. We report an example in Figure 8: each
box represents the range between the first and the third
quartiles, with an orange line in between representing the
median; whiskers extend to 1.5 times the interquartile range,
and small circles indicate outliers (i.e., every datum outside
that interval). At the same time, the blue violin-shaped plot
underneath the box represents a density estimation of data.
Using this representation, we can easily assess whether the
learned signatures can be used to identify the unknown
class. Indeed, signatures are effective in discriminating a
class when the bulk of intra-distances density is lower than
inter-distances densities. Moreover, the relatively small range
for intra-distances suggests that they form a cluster easily
identifiable as a new class. In Figure 8, for instance, we have
a distribution of intra-distances, related to Avidemux, which is
below most of those of the inter-distances with other classes,
except for ffmpeg and partly Kdenlive. We can thus infer
that when Avidemux is unknown at training time, contents
produced by it can be wrongly identified as produced by
ffmpeg (as the overlap between distributions is large) or, more
rarely, by Kdenlive (as the overlap is smaller).

Our experiments yielded 10 distinct outcomes, one for each
potential unknown class. We provide all achieved results in
Figure 9 and 10 for an overall understanding of the system
performance. In the following we report and discuss the most
significant cases.

1) CASE 1: FFMPEG-BASED INSTANCES
This case represents the analysis of an unknown software
that implements parts of the ffmpeg library. In Figure 9 we
show the intra-variability of Avidemux signatures and their
inter-variability with respect to all available toolchains. It can
be noticed that the proposed features can cluster unknown
data as media belonging to similar toolchains (leftmost plot).
Other available toolchains are generally far from Avidemux
in the signature space, except for ffmpeg, which highlights a
relevant similarity. This is interesting, since it shows that the
proposed method allows both to cluster new data and to find
similarities with related available toolchains. We observed
identical results in our analysis of data processed through
both the Kdenlive and ffmpeg toolchains.

2) CASE 2: AI-BASED INSTANCES
This case allows examining unknown instances from
AI-based manipulations, i.e., OPN, STTN, or GMCNN.

In Figure 10 we show the results for GMCNN (very similar
results were obtained with OPN and STTN). As in the
previous case, we found that the proposed signatures can
cluster unknown toolchains. In this case, however, unknown
signatures show a higher degree of compatibility with the
other available AI-based toolchains (see Figure 10), making
it hard to properly separate each instance. Nevertheless, the
distribution of the achieved signatures is strongly separable
from user-based manipulations. Therefore, we cannot expect
to identify the specific AI-based toolchain, but we are able to
find a high compatibility with toolchains of a similar pipeline
(since the AI-based manipulations share similar pipelines).

3) CASE 3: INSTANCES OF AVAILABLE TOOLCHAINS WITH
DIFFERENT SETTINGS
Within our reference dataset, we have Vegas Pro instances
encoded with different settings. We tested each of the
available settings as an unknown toolchain. We found that
changing the setting of the encoding process marginally
affects the signature. Indeed, in the encoded space, unknown
signatures belonging to Vegas ProHEVC are highly compati-
ble with their AVC kindreds.We report the results for the case
of Vegas Pro HEVC signatures in Figure 10. Conversely, the
unknown toolchain forms a cluster that is highly separable
from other available toolchains. We achieved very similar
results for the AVC case.

4) CASE 4: MISCLASSIFIED INSTANCES
When dealing with unknown instances fromAdobe Premiere,
we noticed that they are still clustered together in the
signature space (see Figure 9). However, the separability from
Vegas ProHEVC instances is not so sharp, possibly leading to
misclassified instances. The Adobe Premiere tool is the only
case in which this issue occurred.

D. MULTIPLE UNKNOWN INSTANCES
The abundance of available classes in this scenario allowed us
to stress the system’s capabilities by increasing the number of
unknown toolchains. We performed a leave-two-out strategy:
in each test we excluded two classes from the training. It is
worth noticing that this setup generates 55 tests (the number
of pairs within a sample of 11 classes), thus making it
unfeasible to report the results in the form of violin plots.
Then, we considered the following main distributions:

1) the intra-distribution of the first unknown class (C1-C1);
2) the intra-distribution of the second unknown class

(C2-C2);
3) the inter-distribution between the two unknown class

(C1-C2);
4) the inter-distribution between the first unknown class

and the available classes (C1-All);
5) the inter-distribution between the second unknown class

and the available classes (C2-All);

More specifically, intra-distances (C1-C1 and C2-C2) high-
light the capability of the system to cluster the signature of
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FIGURE 8. Avidemux signatures intra-distances (leftmost plot) and inter-distances related to all known toolchains instances.

FIGURE 9. Signatures intra- and inter-distances distributions for available toolchains in leave-one-out strategy (part 1 of 2). The unknown toolchain
intra-distribution is shown in the left-side of each plot. Inter-distances are reported with all available toolchains.
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FIGURE 10. Signatures intra- and inter-distances distributions for available toolchains in leave-one-out strategy (part 2 of 2). The unknown toolchain
intra-distribution is shown in the left-side of each plot. Inter-distances are reported with all available toolchains.

each unknown class. The inter-distance C1-C2 summarizes
the capability of the system to identify the two unknown
toolchains as different instances. Similarly, the inter-
distances C1-All and C2-All, summarize the capability of
the system to identify each unknown toolchain as something
new with respect to the available signatures. In Figure 11 we
report the above statistics for each experiments by plotting
each distribution range between 10% and 90% percentiles.
We also report the results of the Kolmogorov-Smirnov test
[37], a nonparametric hypothesis test used to measure to
which extent two underlying one-dimensional probability
distributions differ. The test’s output expresses the difference
between the cumulative distribution functions of the empiri-
cal distributions of the two samples over the data range.

In most cases, the distributions C1-All and C2-All confirm
the system trend to distinguish both unknown classes from
the available toolchains. Similarly to the leave-one-out test,
some overlapping are found when related toolchains are
excluded (e.g. ffmpeg vs Kdenlive). This is reasonable since
the system identifies some similarities that actually exist
among toolchains. The only relevant error is found when

Vegas Pro and Premiere are excluded. Even if they are
still distinguished from the available toolchain, they expose
a strong degree of overlapping between them. This is not
surprising since they produced some errors even in the leave-
one-out experiment.

E. UNKNOWN AI-BASED FAMILY
To evaluate the generalization capabilities of the framework,
we removed all AI-based instances (OPN, STTN, and
GMCNN) from the training. In this case, we report the
results in the form of a confusion matrix containing the
average Euclidean distances among each instances pair (see
Figure 12). It can be noticed that the average intra-variability
of theAI-based family is lower than any other inter-variability
in the matrix. This suggests that even when the AI-based
family is completely unknown, the extracted signatures
cluster together in the encoded space. At the same time,
the separability among the three instances looks harder.
Wemust consider, however, that the discrimination capability
of the proposed features is still not particularly accurate for
AI-based instances even in a fully informed scenario.
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FIGURE 11. Intra- and inter-distances distribution when two classes are left out of the training set. The range between 10% and 90% of each
distribution is reported in two shades of green. The red portion highlights the overlapping degree between the two distributions. We report for
each experiment the result of the two-sample Kolmogorov-Smirnov test.

V. EXPERIMENTAL SETUP 2: MEDIA4COMMUNITY
In media4community setup, we focus on the realistic
case where the provider does not apply any manipulation

detection before uploading themedia, thus possibly spreading
deceptive information to the user community. In this context,
we aim at giving the possibility to retrieve the lifecyle
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FIGURE 12. Average intra and inter-distances among instances in the case of unknown AI-based instances.

of a media in terms of sharing history, by focusing on
the characterization of images that have been recycled
(shared multiple times) from one social network to another.
We consider toolchains including native media, shared
media (media that have been natively produced/acquired
and then shared), and recycled media (media that have
been downloaded from another service and re-shared). The
considered scenario is depicted in Figure 13. Additionally,
for this configuration, we present the datasets utilized, the
features employed, and the results obtained on open-world
data in the subsections below. A list of the involved datasets
is summarized in Table 2 where, with Facebook, Instagram,
Telegram, Twitter and WhatsApp we refer to images of the
FODB dataset [38] shared on these social networks and, with
FB, TW and FL to images shared on Facebook, Twitter and
Flicker of the R-SMUD dataset [39].

A. DATASETS
We employed datasets of digital images that have been
shared through different platforms once or multiple times,
thus yielding various toolchains. This has been done through
semi-automated procedures for uploading and downloading
contents to and from different platforms. According to the

TABLE 2. Summary of the considered datasets for the Experimental
Setup 2.

definition of the media4community experimental setup,
we collected natively-shared media, i.e., native data shared
on a social network only once, and recycled media, i.e., data
shared twice or more through the same or a different platform.
We indicate natively-shared media and recycled media as
follow:

[P]

= {native data uploaded to platform P then downloaded}

[P′
→ P]

= {data in P′ uploaded to P then downloaded}.
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FIGURE 13. Functional blocks for toolchains considered for experimental setup 2.

We used two image collections featuring multiple shares,
namely R-SMUD [40] and FODB [38], containing both
natively-shared and recycled media:

• R-SMUD: 50 RAW images are extracted from the
RAISE dataset [39]. Then, the images are top-left
cropped with three different sizes (377 × 600, 1012 ×

1800, and 1687 × 3000) while keeping an aspect ratio
of 9:16. Moreover, all the different cropped images are
compressed using The Independent JPEGGroup’s JPEG
software under six quality factors (50, 60, 70, 80, 90,
100) before being uploaded. All images are shared up to
three times on the following platforms: Facebook (FB),
Flickr (FL), Twitter (TW).

• FODB: 143 scenes acquired by 27 different smartphones
for a total of 3651 images [38]. Each image is
shared on five different platforms: Facebook, Instagram,
Telegram, Twitter,WhatsApp. Uploads are done through
the mobile apps installed on the respective devices. The
database thus contains a total of 23106 JPEG images.

In this scenario, examples of toolchain instances are: ‘One-
time sharing with Facebook’, ‘Re-sharing from Twitter to
Facebook’.

B. FEATURES
In order to instantiate the framework described in Sec-
tion III, we considered the feature representation proposed
in [41], which includes both content-based (DCT) and
container-based features (META and HEADER).

In particular, the following feature vectors are used:

• DCT: histograms of the DCT coefficients (9 AC
subbands) are computed from the full image and
concatenated; integer values between −20 and 20 have
been considered (41 bins) in each subband, for a total
feature size of 369;

• META: metadata related to the JPEG compres-
sion settings of the image under investigation; the
152-dimensional feature vector encodes information on
the quantization tables of luminance and chrominance
channels, the Huffman encoding tables, optimized
coding options and progressive modes, the image size;

• HEADER: this 8-dimensional feature is defined starting
from the analysis of the JPEG header of the file
under investigation; this is a novel approach that scans
the structure of the image container and counts the

frequency of 8 selected types of segments found in the
file header.

C. EXPERIMENTAL EVALUATION
Within this experimental configuration, we examined three
distinct categories of processing toolchains, specifically:
1) NS, containing single-shared images;
2) R1, containing recycled images, i.e., sharing chains of

length equal to 2;
3) R2, containing twice recycled images, i.e., sharing

chains of length equal to 3.
As seen in the media4provider scenario, the considered
529 features have been fused using a media signature encoder
as described in Section III-A. Here, we also utilized a
small 25-dimensional latent space produced by a single layer
media signature encoder to showcase the performance of the
proposed method even when the feature space is minimized
to just a few elements.
In following Section IV-C, we first evaluated the proposed

method’s accuracy for the media4community scenario in
a closed-world environment, prior to its application in an
open-world context. The accuracy results are displayed as a
confusion matrix in Figure 15.

Although a slight performance drop is noticeable for a
few categories here as well, the signature encoding produces
a limited drop of 6% on the discrimination power (average
accuracy drop from 42.6% to 36.9%).

D. OPEN WORLD EXPERIMENTS
We consider two cases in which the analyzed toolchain is not
available in the training data:

• Unknown time-instances: the considered social media
is available in the training set, but the training data
belong to past years, thus possibly exhibiting different
coding artifacts or metadata features, as the uploading
algorithms get updated over time.

• Unknown toolchains: the social media corresponding
to the query image are available in the training data but
it has been subjected to multiple exchanges not available
in the training data.

Results are reported in the following paragraphs.

1) CASE 1: UNKNOWN TIME-INSTANCES
To assess the behavior of our signatures when different
time-instances of a given sharing platform are present in
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FIGURE 14. Example images from R-SMUD.

FIGURE 15. Assessment of the signature capability to encode the features information in m4c scenario. Results are reported in the form of confusion
matrix. Warmer colors are associated to higher detection accuracies. Labels are arranged based on the last social media exchange. We notice that the
detection of the last processing step is generally achieved while the system can fail in determining previous sharing. Overall, we achieve an accuracy of
42.6% and 36.9% before and after the signature encoding respectively.

the test set, we made use of both R-SMUD and FODB
datasets combined. R-SMUD, collected in 2017, contains
three type of processing chains (NS, R1, R2) related to
three platforms (Facebook, Flickr, Twitter). FODB, collected
in 2020, contains a single toolchain (NS) related to five

platforms (Facebook, Instagram, Telegram, Twitter, What-
sApp). We used 80% of R-SMUD (NS only) as training set
and the whole FODB, together with the remaining 20% of
R-SMUD, as test set. We trained the signature-generation
autoencoder on the training set and then extracted the
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signatures from all samples in the test set. Finally, we com-
pared the intra-class distances with the inter-class distances
for each tested class.

Figure 16 reports an ensemble of results obtained on
the described cross-dataset scenario. Each plot refers to a
specific class (highlighted by a ‘‘*’’ character) displaying
the distribution of intra-distances for that class and the
distributions of inter-distances from that class to all the others.
R-SMUD’s classes are denoted by the shortened versions
of the platforms’ names (FB, FL, TW), while FODB’s
ones are reported with their full name and in parentheses,
to denote that those were not present in the training
set.

Interestingly, we can observe that themost evident overlaps
happen for different time-instances of the same platform.
In the top-left plot, R-SMUD’s Facebook overlaps with
FODB’s Facebook (and partially with WhatsApp). Similarly,
in the bottom-left plot, R-SMUD’s Twitter only overlaps with
FODB’s Twitter. This is a key result in the evaluation of
our system, as it suggests that the proposed signatures is
able to recognize a known platform even when the image
under analysis was shared at a different time from that of the
training of the system. This clustering can be better visualized
in Figure 17, which displays the average distances among
instances.

Additionally, in the bottom-right plot we can further
appreciate the partial overlapping of WhatsApp with both
time-instances of Facebook, which is reasonable as the
two are commercially related and are likely to share some
common software features. Finally, in the top-right plot,
we can observe a partial overlapping of Flickr and Telegram,
possibly deriving from the lower level of compression
introduced by these two platforms compared with the others.
Also, note that we kept Instagram out of these results as it
produces very different signatures from all other platforms,
and thus the distributions of distances went off the scale. The
very good identification of this class can also be appreciated
in Figure 17.

2) CASE 2: UNKNOWN PROCESSING TOOLCHAIN
To simulate the presence of an unknown toolchain,
we adopted a leave-k-out strategy, by excluding the whole
R2 family (triple sharing chains) from the R-SMUD dataset.
Thus, our training set was composed of single and double
sharing chains, while triple chains only appeared in the test
set.

As in the previous cases, the trained system is not aware
of the existence of R2 chains and the experiment cannot
be considered a classification problem. In this specific case,
however, the best outcome we can expect is the following:
given an unknown chain R2 in the form P3P2-P1 (with Pi
being a generic sharing platform), the framework produces a
signature in the cluster of P2-P1, i.e., the known chain in R1
that coincides with its trailing part.

We trained the signature-generation autoencoder with
the features extracted from NS and R1 families. Then,

we deployed the trained encoder to calculate the signatures
for all samples in R2. With the obtained signatures, given a
specific chain in R2, we computed the Euclidean distances
among samples of that chain (intra-distances) and from that
chain to all known ones in NS and R1 (inter-distances), and
we repeated this process for each of the 27 chains in R2.

Figure 18 reports the distance distributions obtained
for six example chains in R2. In each plot, the leftmost
distribution corresponds to the intra-distances for the cur-
rent unknown chain (label in parentheses), while all the
others are inter-distances with respect to each chain in NS
and R1.

First, we can observe a general trend across all the reported
cases: the lowest inter-distances are associated to all the
known chains that share the last platform with the unknown
chain. For instance, in the top-left plot, related to the chain
FB-FL-FB, the lowest inter-distances are found for FB, FB-
FB, FL-FB and TW-FB. Furthermore, in the two cases in the
middle row, we observe that, among these four closer chains,
the closest one is precisely the training part of the unknown
chain under analysis (FL-FL for FL-FL-FL and FB-FL for
TW-FB-FL). Similarly, in the two bottom cases, if we take a
look at the four chains closest to the unknown one (FB-TW,
FL-TW, TW, TW-TW), we can note that the chain with the
highest distances is the one containing a platform that does
not belong to the unknown chain (FB-TW for both FL-TW-
TW and TW-FL-TW).

VI. DISCUSSION OF RESULTS
In the previous sections we demonstrated the versatility of the
proposed approach by applying it to two separate open-world
experimental setups, where we have instantiated data and
features through the designed framework for the forensic
analysis of digital images and videos. The experiments
performed on different datasets highlighted the following
results in the two considered experiments.

In all considered tests, we found that unknown toolchains
can be identified as a separated cluster in the signature
space, thus allowing forensic analysts to examine media that
have been subjected to novel or unknown life cycles In our
opinion, this is the most relevant contribution of the proposed
work since it opens the path to real-world forensic media
analysis.

In particular, in the media4provider scenario, Vegas Pro
toolchains are also found to be similar independently of the
coding parameters, thus highlighting a potential robustness
of the signature to slight variations of the encoding software
parameters. We also found that, when the unknown toolchain
partially shares the life cycle of some available toolchains,
a non-marginal degree of compatibility can be found. This
is the case, for instance, of ffmpeg-based instances and
AI-based manipulations. In a single case (Vegas Pro) we
found that a non-marginal compatibility can be found with
a different cluster.

On the other hand, in the media4community scenario,
we are able to identify recycled images across multiple social
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FIGURE 16. Distributions of intra-distances (labelled with ‘*’) and inter-distances in a cross-dataset scenario, where R-SMUD (classes FB, FL, TW) is
used as training set and FODB (classes facebook, telegram, twitter, whatsapp) is added in test.

networks. Furthermore, when a more complex sharing chain
is analyzed, we are able to identify the most similar toolchain
available in the training set (e.g., TW-FB-FL can be identified
as FB-FL if Twitter is not known).
Eventually, the designed media signature proved to be

robust to social media encoding variations and processing
updates in time. Indeed, the framework trainedwithFacebook
and Twitter data acquired in 2017 can be exploited to
characterize Facebook and Twitter images exchanged in
2020, since the corresponding media signatures highlight
strong similarities in the encoded space.

Furthermore, in both experimental setups, we proved
that even considering both container- and content-based
features, the proposed media signature encoding allows
characterizing the media life cycle in low-dimensional
spaces. This aspect is particularly relevant to guarantee the
framework’s applicability to large volumes of data.

A. COMPUTATIONAL COMPLEXITY AND SYSTEM
SCALABILITY
The challenge of scalability is particularly relevant in open-
world contexts, where thousands or even more instances of

media may require signature extraction. The computational
complexity of or system can be characterized by two
factors: (i) the cost of extracting features and generating
signatures from new instances; (ii) the cost of retrieving and
cross-indexing a growing amount of signatures.

The first cost, related to the signature generation, does
not really affect the scaling capability since it is a one-time
cost to project each content in the signature space. Moreover,
in the proposed experimental setups, costs related to the
extraction of image and video container features, image
content features, and signature encoding are limited to few
seconds per media9 (see Table 3). The extraction of AI-based
features is by far the most resource-intensive task in this
process, requiring approximately 0.5 seconds per frame.

It’s important to note that the cost-independent nature
of feature extraction from media content allows for highly
efficient batch processing of large datasets and long videos.

The second cost associated with signature retrieval and
cross-indexing becomes increasingly significant as the
dataset size grows in the signature space, making it a critical
factor for scalability.

9computed on an Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz
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FIGURE 17. Average intra- and inter-distances in the R-SMUD/FODB cross-dataset scenario.
R-SMUD’s classes are FB, FL, TW; FODB’s are facebook, instagram, telegram, twitter,
whatsapp. Therefore, {facebook, FB} and {twitter, TW} are different time-instances of the
same platform.

TABLE 3. Computational time required to extract features and compute
signatures.

To quantify the influence of this cost on system scaling,
we utilized Milvus,10 a popular open-source search engine
known for its ability to handle massive-scale feature vector
indexing and retrieval tasks. Milvus comes with several
options for building the index and to cross-index the
signatures. In our test settings, including 6400 media, Milvus
can build the index in less than 5 seconds and retrieve
the nearest signatures with an average time lower than
0.1 seconds11 when using the default indexing setting (IVF
FLAT). However, other settings can be set to reduce the
retrieval time at the price of longer time for building the

10https://milvus.io/
11computed on an Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz

TABLE 4. Indexing times (in secs) when using Milvus. The first three
columns show results for different portions of a real signatures dataset
containing 6480 items. The last two columns show results for a
combination of real and synthetic signatures.

index. In Table 4 we report the times required to build the
indexes depending on the size of the signature database and
the Milvus indexing setting.

Results for experiments on 10% and 50% of the dataset
shows how, for small numbers of signatures, the time required
to build the index is dominated by the system overhead, and
thus the results are not meaningful. When building larger
indexes we have an almost-constant cost for quantization-
based indexes, while the time requirement of graph- and
tree-based indexes grows rapidly with the number of items.
It should be noted, however, that the index creation is rarely
performed.
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FIGURE 18. Distributions of intra-distances of a toolchain from the unknown R2 (leftmost plot) and inter-distances with respect to all known
toolchains in NS and R1 (6 example cases out of the 27 toolchains in R2).

Similarly, in Table 5 we report the times required to
retrieve similar vectors given a set of queries. In all cases
we can retrieve the results almost in real-time. In our

opinion Milvus, with its options IVF_FLAT and HNSW,
strike the best balances between indexing and retrieval
times. Moreover, both of them privilege a high recall rate
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TABLE 5. Retrieval times (in secs) for our dataset. The first three columns
show results for different portions of a real signatures dataset containing
6480 items. The last two columns show results for a combination of real
and synthetic signatures.

over memory and time requirements. As we will use the
indexing engine to retrieve similar toolchains, a high recall
rate is an essential requirement of the tool that we will
use.

VII. CONCLUSION
In this paper we introduced a framework for the forensic
analysis of multimedia in open-world settings. We exploited
a siamese architecture based on denoising autoencoders to
encode multiple forensic features from different domains
(content- and container-based features) into a compact
descriptor. The proposed method is designed to cluster
media belonging to similar toolchains in the signature space.
We demonstrated the effectiveness of the proposedmethod by
analysing twomeaningful experimental setups involving both
digital images and videos. Experimental results highlighted
that the method is capable of clustering correctly media
belonging to unfamiliar processing toolchains, thus allowing
the identification of new and previously unknown life cycles.
We also found that, when the unknown toolchain partially
share the life cycle with one or more available toolchains,
a non-marginal degree of compatibility is maintained in the
encoded space, thus providing clues on the relevant life
cycle. Finally, the proposed method has the potential to scale
to internet volumes of information, given its capability to
encode features in a low-dimensional space with limited
computational effort.

This work can be considered a first step towards the design
of a bigger picture for the investigation of media in open-
world settings. Similarly to former fusion frameworks, the
suggested method’s primary drawback is that it is mostly
dependent on the features that are fed into the network.
In fact, different features might be more or less relevant in
capturing traces left by new possible tampering operations,
and their initial choice may have an impact on the overall
capability of the system. Future research ought to focus on
assessing the framework’s robustness in terms of feature
selection in characterizing unseen manipulations. Addition-
ally, exploring the potential of incorporating newmedia types
like digital audio and studying novel mathematical tools for
signature generation can further enhance the framework’s
effectiveness.
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