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ABSTRACT This study proposes a novel motion optimization method for a manipulator equipped with a
soft robotic hand for object transportation. The flexibility of the soft robotic hand induces large vibrations.
The manipulator must pause until the vibration converges, leading to an increase in the cycle time. The
robotic system also has issue with the low motion repeatability in the robotic hand, even under identical
operational conditions. In this study, a method based on Bayesian algorithms is developed to optimize the
motion of a manipulator. The objective is to minimize the cycle time for object transportation tasks, while
considering the challenges of vibration and low repeatability in soft robotic hand systems. The optimization
is performed through an exploratory search using actual experiments. To achieve a low-cost and versatile
measurement system, this study proposes a method for deriving the cycle time, which is a key metric for
optimization, based on the measurement results obtained using a web camera with standard specifications.
The proposed optimization method is evaluated through a comparison with existing optimization methods,
including the grid-search-based, conventional Bayesian optimization, particle swarm optimization, S. Lin’s
heuristic algorithm, and sparrow search algorithm. The proposed method achieves optimization results
comparable in accuracy to those obtained using the grid-search-based optimizationmethod, whereas requires
95% fewer searches. Furthermore, it provides more stable optimization results than those obtained using the
conventional Bayesian optimization method.

INDEX TERMS Bayesian optimization, motion optimization, parameter tuning, soft robotic hand, vibration
suppression.

I. INTRODUCTION
This study proposes a novel motion optimization method for
a manipulator equipped with a soft robotic hand (soft robotic
hand system), considering the issue of residual vibration in
the soft robotic hand. The proposed method also addresses
the low repeatability of the motion behaviors of soft robotic
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hand systems. In recent years, soft robotic hands constructed
from materials such as silicone rubber have gained popu-
larity owing to their high deformability, which makes them
particularly effective for grasping fragile or complex-shaped
objects [1], [2], [3], [4]. However, soft robotic hand sys-
tems face an issue that their high deformability often results
in considerable vibrations during the motion of a robotic
manipulator equipped with this type of hand. Vibration is
induced during the acceleration and deceleration phases of
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TABLE 1. Comparison of the methods for suppressing residual vibration of robotic systems.

the robotic manipulator movement. Residual vibrations in
the soft robotic hand decrease the positioning accuracy. This
reduced accuracy can lead to grasping failures, misalign-
ments, and incorrect poses of the object during the release
phase. Consequently, the manipulator needs to pause until
residual vibrations subside during critical phases, such as
grasping and releasing. The waiting time required for the
residual vibrations to subside increases the cycle time, which
is the time required to complete a series of robotic system
actions. This study focuses on a transportation task per-
formed using a soft robotic hand system. The goal is to
develop a method that minimizes the cycle time of the system
while accounting for hand vibrations. Another challenge in
minimizing the cycle time in a soft robotic hand system
is the low reproducibility of the motion. When the same
motion commands are applied to a manipulator equipped
with a soft robotic hand, the manipulator exhibits identical
motion behavior. However, soft robotic hands produce differ-
ent motion behaviors, resulting in varying cycle times. This
is due to the flexibility of the soft robotic hand, where even
slight positional deviations in the robotic manipulator can
significantly impact the behavior of the hand. Several stud-
ies have proposed analytical models to estimate the motion
behavior of soft robotic hands [5], [6]. However, an accurate
estimation of the vibrational behavior of these hands using an
analytical approach remains difficult because of the uncer-
tainty caused by the low motion reproducibility. Therefore,
to minimize the cycle time while accounting for the two
challenges of vibration and low reproducibility, this study
presents a novelmethod for optimizing themotion parameters
of the robotic manipulator by utilizing data collected from
real-world tests. The features of the proposed method are as
follows.

• The manipulator motion is optimized by exploring the
motion parameters to suppress residual vibration with-
out relying on mechanical modeling.

• Optimization is achieved with minimal search trials,
even when the criteria values are uncertain due to the
low repeatability of soft robotic hands.

Tables 1 and 2 compare the proposed and existing methods
in terms of vibration suppression techniques and motion
optimization algorithms, respectively. As shown in Table 1,
methods for suppressing the residual vibrations of robotic
systems can be classified into hardware-based [7], [8], [9],
[10] and software-based methods [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24]. The former
methods target the soft robotic hand. They require special
mechanisms or structures for vibration suppression, resulting
in an increase in size and weight of the robotic hand. Hence,
these methods cannot be applied if additional mechanisms or
structures cannot be added. This study employs a software-
based method. Software-based methods are classified into
two types: those that involve mechanical modeling and those
that do not. Several studies achieved vibration suppression
using mechanical modeling given specific vibration proper-
ties [11] [12], [17]. The others [13], [18], [19], [20], [21],
[22], [23], [24] proposed methods for identifying the vibra-
tion properties in mechanical models either through the use
of sensors or by experimental exploration using an optimiza-
tion algorithm. However, as described earlier, an accurate
estimation of the vibrational behavior of soft robotic hands
is challenging because of the low reproducibility of motion,
which limits their adoption in soft robotic hand systems.
Hence, a method that does not rely onmechanical modeling is
effective for soft robotic hand systems. In [14], [15], and [16],
the robotic manipulator motion was optimized to suppress
the vibration of the target system using data collected from
actual trials. Considering the need to minimize the number of
actual trials, [14], [15], [16] have respectively employed the
particle swarm optimization, S Lin’s heuristic algorithm, and
Bayesian optimization methods to efficiently search for opti-
mal motion. This study develops a parameter-tuning method
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TABLE 2. Comparison of exploratory motion optimization methods.

based on the Bayesian optimization algorithm [25], [26], [27],
[28], [29], which is noted for its efficiency in parameter
search among various optimization methods. As shown in
Table 2, various other optimization methods can achieve opti-
mization with a small number of search trials, although the
issue of low-motion reproducibility has not been addressed,
except by the grid search algorithm [30]. The grid search
algorithm conducts a comprehensive search; hence, it can
optimize the motion of systems with low motion repro-
ducibility by repeatedly evaluating each parameter condition.
An extended Bayesian optimization methods have also been
developed [29], [30], [31], [32] to be applicable even when
the criteria values do not correspond one-to-one to the search
parameters. However, these methods do not address the spe-
cial condition of unobservable noise (uncertainty) in the
criterion values, which is the focus of this study. Therefore,
no attempt has been made to develop an optimization method
capable of tuning the parameters for soft robotic hand systems
considering the uncertainties caused by low motion repro-
ducibility and using a small number of search trials.

The primary contribution of this study is the develop-
ment of a parameter optimization methodology for a soft
robotic hand systemwith the aim of minimizing the operation
cycle time while considering the vibrations and low motion
reproducibility. This method refines the search for the opti-
mal parameters by repeatedly revisiting previously evaluated
conditions, thereby enhancing the reliability of the results
and reducing the overall amount of exploration required.
In addition, this paper proposes a novel, easily installable,
and cost-effective system for measuring the vibrations of
a robotic hand, which is a criterion for the optimization.
References [18], [19], [20], [21], and [22] used expensive
high-speed cameras and internal sensors requiring additional
structures; conversely, this study uses a general-specification
camera (30 fps, 640 × 360 pixels), thereby reducing costs.

II. PROBLEM DEFINITION
Fig. 1 shows the fundamental robotic system used in this
study, including a 6-axis articulated robotic manipulator

FIGURE 1. Target soft robotic hand system.

FIGURE 2. Target motion of the object transportation task.

(UR5) equipped with a pneumatic soft robotic hand. The
target task is to transport an object grasped by a robotic hand
using a robotic manipulator (Fig. 2). The soft robotic hand
incorporates two bellows-structured fingers driven by pneu-
matic actuation inspired by [33] and [34], which is a widely
used structure for pneumatic soft robotic hands. The fingers
are made of a flexible and deformable material (Smooth-
On, Dragon Skin 30), which is the same as that used in
conventional pneumatic soft robotic hands. The target object
is a cylinder (diameter: 102 mm, height: 50 mm, weight:
0.17 kg). Assuming object transportation within the pick-
and-place task, the trajectory of the tool center point (TCP)
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FIGURE 3. Illustration of the proposed method.

of the manipulator is set as a U-shaped path, as shown in
Fig. 2(a). The operations for grasping and releasing objects
are not considered in this study. PS and PE are the start and end
points of the target trajectory, respectively; and PM1 and PM2
are the points at the corners of the U-shaped trajectory path.
Let pi(i = {S,E,M1,M2}) be the coordinate of Pi relative
to the world coordinate, 6w, shown in Fig. 2(a). The starting
point ps is set as follows:

ps =
[
psx , psy, psz

]T (1)

To form the U-shaped TCP path, the other points are
expressed as follows:

pM1 = ps + [0, 0, d1]T

pM2 = pM1 − [d2, 0, 0]T

pE = pM2 − [0, 0, d1]T (2)

The TCP passes each point in the order of Ps, P1, P2, and
PE. The manipulator is controlled in such a way that the
trajectories between each point are linear, and the velocity
profile of the TCP within each linear path follows the trape-
zoidal law [35] (Fig. 2(b)). Let pTCP

(
ti→j

)
be the position

of the TCP at time ti→j after departing from Pi within the
trajectory from Pi to Pj. The velocity ṗTCP

(
ti→j

)
of the TCP

is expressed as

ṗTCP
(
ti→j

)
=


ηi→j
acc ti→jei→j if ti→j < t1

η
i→j
vel ei→j else if ti→j < t2

η
i→j
vel + η

i→j
dcc t3 otherwise

(3)

where

ei→j =
pj − pi∥∥pj − pi

∥∥
t1 = η

i→j
vel /ηi→j

acc

t2 =

∥∥pj − pi
∥∥

η
i→j
vel

−
η
i→j
vel

2

 1

η
i→j
acc

+
1∣∣∣ηi→j
dcc

∣∣∣


t3 = ti→j − t2 (4)

η
i→j
vel (> 0), ηi→j

acc (> 0), and η
i→j
dcc (< 0) denote the max-

imum velocity, acceleration, and deceleration of the TCP

movement following the trapezoidal law within the trajectory
from Pi to Pj, respectively. In this context, the motion of the
manipulator is determined by η

i→j
vel , η

i→j
acc , and η

i→j
dcc for the

three linear paths within the U-shaped trajectory, i.e., nine
motion parameters. Correspondingly, the time top, required
for the manipulator to accomplish the U-shaped trajectory
movement is given by

top =

∑
i,j
(t2 +

η
i→j
vel∣∣∣ηi→j
dcc

∣∣∣ ) (5)

For a manipulator with a rigid robotic hand, the cycle time
is equivalent to top because the vibration of the robotic hand
after reaching the endpoint is negligibly small, allowing the
subsequent release motion to be performed immediately.
In contrast, with a soft robotic hand, the manipulator must
pause until the vibration in the hand converges to a low
level, thereby increasing the overall cycle time. This causes
an increase in the actual cycle time. Let tvib be the time
required for the vibration to converge. Then, the actual cycle
time, tcy, is expressed as

tcy = top + tvib (6)

Although top can be reduced by adjusting the motion param-
eters for the high-speed operation of the manipulator, the
high-speed motion can cause significant vibration in the
robotic hand, thereby increasing tvib and leading to an
increased tcy. In contrast, reducing the speed of the move-
ments of the manipulator can suppress the vibrations, but this
will result in a longer top and, consequently, an increased tcy.

Considering this tradeoff relationship, this study chal-
lenges to optimize the motion parameters for minimize tcy.
In this study, for the simplicity, the maximum velocities,
accelerations, and decelerations for each linear path are set
to be same value each other, and the magnitude of the
acceleration is set to be equal to that of deceleration:

ηS→M1
vel = ηM1→M2

vel = ηM2→E
vel := ηvel

ηS→M1
acc = ηM1→M2

acc = ηM2→E
acc := ηacc

ηS→M1
dcc = ηM1→M2

dcc = ηM2→E
dcc := ηdcc

ηacc = −ηdcc (7)
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III. OVERVIEW OF PROPOSED METHODOLOGY
Fig. 3 illustrates the overview of the proposed method, which
optimizes the motion parameters (ηvel and ηacc) to minimize
the cycle time (tcy) in the object transportation task. This
method addresses the challenges of vibration and low motion
repeatability in soft robotic hand systems by exploring the
optimal parameters via experimental trials. This method is
based on Bayesian optimization, which is adopted to reduce
the number of trials. Let s be the search parameter:

s = [ηvel, ηacc] (8)

confined within domain S:

S =

{
s1, s2, s3, . . . , sl

}
(9)

The objective function is denoted as tcy (s). Bayesian opti-
mization determines the optimal parameter sopt yielding the
optimal tcy

(
sopt

)
through a sequential search with a small

number of trials. Let siact (∈ Sact =
{
s1act , s

2
act , . . .

}
) represent

the investigated search parameters with known correspond-
ing tcy

(
siact

)
. Then, tcy (s) for all search parameters in S

is estimated using a Gaussian process. Using the estimated
tcy(s), the method determines the next search parameter to be
explored. By considering the profile of the estimated tcy(s)
and the distribution of siact in the search domain to determine
the next search parameter, the method achieves the optimiza-
tion with fewer trials. This approach is applicable even when
the objective function is a black-box function.

In the soft robotic hand system, the cycle time (tcy)
obtained from experiments may lack reliability due to the low
repeatability in the soft robotic hand. To address this issue,
the proposed method re-evaluates the previously investigated
search parameters selectively based on the estimated objec-
tive function tcy (s), rather than randomly. This re-evaluation
strategy for soft robotic hand systems leads to more reliable
optimization results with fewer trials.
top in (6) can be derived from (5) using the search param-

eters, ηvel and ηacc. For efficiency, the vibration time (tvib)
is measured experimentally, whereas top is calculated com-
putationally in each trial to determine the total cycle time
(tcy). This study aims to develop an easily installable and
cost-effective measurement system for vibration time (tvib)
using a standard (general specification) camera as an external
sensor. The subsequent sections describe the proposed system
for measuring the cycle time and methodology for optimizing
the motion parameters.

IV. CYCLE TIME MEASUREMENT METHOD
This section describes the derivation of the cycle time (tcy),
which is calculated from the robot operation time (top) and
vibration time (tvib). As top can be computationally calcu-
lated, this section focuses on the experimental measurement
of tvib. Fig. 4 illustrates the measurement system used for tvib.
A camera (Logicool, BRIO) is positioned to capture images
of the robotic hand when the TCP reaches the endpoint (PE)
of themotion trajectory. In tasks such as object transportation,

FIGURE 4. Proposed measurement system for determining the vibration
convergence time.

FIGURE 5. Experimental setup for evaluating the proposed measurement
system.

a high positioning accuracy at the endpoint PE is crucial.
Therefore, the vibrational behavior of the robotic hand is
observed when the TCP is at PE. The camera setup can be
adjusted for various tasks. The camera begins to capture
images of the robotic hand as the TCP reaches PE. The image
captured by the camera at time step t is represented by M t ,
which belongs to RW×H and has a resolution of W × H
[pix]. To evaluate the vibration magnitude, the difference Et
between the images at two consecutive time steps is calcu-
lated at each time step, as follows:

Et =

√∑
W

∑
H

(
M t(w,h) −M t−1(w,h)

)2 (10)

If the displacement of the robotic hand between the tth
and (t − 1)th time steps is large due to its large vibration,
Et becomes large, and vice versa. Thus, the extent of the
vibration can be estimated by monitoring the Et value. tvib
is identified at the point where the value of Et decreases to a
predefined threshold, Eth. tvib is then defined as the moment
at which Et decreases below Eth:

Et |t=tvib < Eth (11)

A. VALIDATION
This section validates the proposed methodology for measur-
ing the vibration time (tvib). The reliability of the operation
time (top) derivation is considered high, given the use of the
industrial robotic manipulator UR5, which is a widely recog-
nized standard in the industry. Fig. 5 shows the experimental
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FIGURE 6. Comparison of vibration measurements in the soft robotic
hand using the proposed and motion capture systems.

setup used to evaluate the tvib measurement method. In the
experiment, a motion capture system (OptiTrack PrimeX 13)
was used alongside the proposed system tomeasure the vibra-
tion behavior. Themotion-capture system tracks the positions
of the reflective markers attached to the grasped object using
infrared cameras. Let pmk ∈ R3 be the center of gravity
of these markers relative to the world coordinate system,
6w, shown in Fig. 2. The manipulator executes the object
transportation task with ηvel = 700 [mm/s] and ηacc =

1700 [mm/s2]. Upon the TCP reaching the end point PE
of the movement trajectory, both the proposed and motion
capture systems begin to measure the vibrational behavior of
the robotic hand and grasped object. The converged position
p̄mk ∈ R3 represents the stable position of pmk after a suf-
ficient time has elapsed. The displacement 1pmk , indicating
the movement of the robotic hand and object relative to the
stable position, is then calculated as follows:

1pmk = pmk − p̄mk (12)

Then, the effective value EGTt of the vibration during the
small time 1t at the tth time step is given by:

EGTt =

√
1
1t

∫
1t

∥∥1pmk∥∥2 dt (13)

The motion capture system had a sufficiently high sam-
pling rate (1 kHz) to measure the vibration behavior of
the robotic hand and object. Thus, EGTt , which represents
the ground truth of the vibration behavior, is consistent
with the actual vibration behavior. Therefore, the accuracy
of Et was assessed by comparing its behavior with that of

EGTt . Fig. 6(a) shows the results for both Et and EGTt , indi-
cating that their values decreased over time and eventually
stabilized at specific levels. Fig. 6(b) shows the numerically
differentiated values of Et and EGTt based on the data shown
in Fig. 6(a). The declines in both Et and EGTt ceased at
approximately the same time, indicating that the proposed
methodology effectively assessed the vibration magnitude.
The threshold value Eth, used in (11) to determine the vibra-
tion time tvib, was set to 150 to ensure that the vibration
magnitude remained below 0.06 mm.

V. PARAMETER OPTIMIZATION METHOD
This section introduces the proposed method for optimiz-
ing the motion parameters, s = [ηvel, ηacc], to minimize
the cycle time tcy (s). This optimization is achieved by iter-
atively evaluating tcy (s) through actual experiments using
a Bayesian-optimization-based algorithm. The manipulator
performs the transportation operation with a given parameter
s. Subsequently, tcy (s) is calculated by combining the oper-
ation time top (s), as defined in (5), and the vibration time
tvib (s), which is measured using the proposed system detailed
in Section IV. Notably, tvib (s) encompasses the uncertain-
ties caused by the low-repeatability characteristic of the soft
robotic hand system. The expression for tcy (s) is as follows:

tcy (s) = t̄cy (s) +1e (14)

where t̄cy is the mean value of tcy (s), and 1e is the error fol-
lowing the unknown probabilistic distribution. The objective
of this optimization is as follows:

sopt = argmin
s∈S

t̄cy (s) (15)

Next, the optimization procedure is described. Let sn and
tcy (sn) be s and tcy (s) in the nth search, respectively.
Although the obtained tcy (s) includes the error 1e as shown
in (14), it is used as the criterion value Jn for the Bayesian
optimization algorithm:

Jn = tcy (sn) (16)

Themeanµn (s) and variance σ 2
n (s) of the estimated objective

function (i.e., tcy (sn)) are given by

µn (s) = kn (s)
(
Kn + Inσ 2

ω

)−1
Jn (17)

σ 2
n (s) = k (s, s) − kn (s)

(
Kn + Inσ 2

ω

)−1
kTn (s) (18)

where

Jn = [J1, J2 . . . , Jn]T

Kn =

 k (s1, s1) · · · k (s1, sn)
...

. . .
...

k (sn, s1) · · · k (sn, sn)


kn = [k (s, s1) , k (s, s2) , . . . , k (s, sn)]

k
(
si, sj

)
= exp

(
−

∥∥si − sj
∥∥

2γ 2

)
(19)
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and In ∈ Rn×n denotes an identity matrix [7]. σω and γ are
the hyper parameters. Considering the uncertainties in tcy, the
mean value of the objective function t̄cy (s) is expressed as

t̄cy (s) ∼ N
(
µn(s), σ 2

n (s)
)

(20)

To obtain the parameters that minimize the objective function,
the lower confidence bound (LCB) function ln (s), is used as
the acquisition function:

ln (s) = µn (s) − θ (n) σ n (s) (21)

The next search parameter sn+1 is determined by

sn+1 = argmin
s

ln (s) (22)

θ (n) in (21) represents the weight that balances the emphasis
between exploration and exploitation. Setting a larger θ (n)
favors exploratory search, leading to the selection of param-
eters from the less densely searched areas of the domain.
Conversely, setting a smaller θ (n) encourages exploitational
search, prioritizing parameters that are more likely to mini-
mize the objective function. Therefore, the determination of
θ (n) is critical for identifying the optimal search parameter.
The special function of θ (n) used in the proposed method is
set as follows:

θ (n) = δβ

√
log n
n

δ =

{
1 if n < τth ∼ U (0, τ )

0 otherwise
(23)

where β is a constant value (hyper parameter), and U (0, τ )

represents a uniform distribution with the bounds ranging
from 0 to τ . The coefficient β

√
log n/n is often used in

the optimization method based on the Bayesian optimiza-
tion [36]. This coefficient decreases with an increasing
number of searches (n), facilitating a shift from exploratory
to exploitative searches. This approach helps prevent the
optimization from settling at a local minimum. However,
it does not address the issue of the low reliability of the
obtained criterion (objective function) values. To overcome
this, an additional coefficient, δ, is introduced. In each search,
δ is randomly set to either 0 or 1. If the number of trials
(searches), n, is less than a threshold τth, following a uniform
distribution U (0, τ ), δ is set to 1; otherwise, it is set to
0. With δ = 1, the policy for selecting the next search
parameter aligns with the traditional LCB-based approach,
which avoids revisiting previously searched parameters until
the optimization nears the vicinity of the optimal parameter.
Conversely, with δ = 0, the acquisition function is equivalent
to the estimated mean objective function:

ln (s) = µn (s) (24)

In this methodology, the next search parameter is primar-
ily determined based on the LCB function, ln (s,δ = 1),
which is consistent with the conventional Bayesian optimiza-
tion. However, to address the uncertainties inherent in the

FIGURE 7. Proposed optimization method.

objective function of the target system, the mean function
µn (s) is intermittently used to select the next search param-
eter, increasing the likelihood of re-investigating previously
searched parameters. The re-investigated search parameters
provide different criterion values from those yielded by the
previously searched parameters because of the low repeata-
bility. µn (s) is updated to estimate the objective function,
considering the different criteria obtained through the re-
investigation. Thus, this approach enhances the reliability of
the estimated objective function (µn (s)), particularly when
the obtained objective function values are uncertain. The
search parameters are re-investigated more frequently as the
number of trials n, increases, as shown in (23). Consequently,
this method improves the reliability of the estimated objective
function while effectively managing the number of trials.
In contrast, in systems where the objective function values are
certain, as in conventional studies, re-investigating the previ-
ously searched parameters is redundant because the criterion
value remains unchanged.

Finally, the condition for terminating the optimization pro-
cess and the policy for determining the optimal parameters
are described. Let J (s) represent the set of criterion values
obtained for a specific search parameter s. The size of this
set, |J (s) |, corresponds to the number of times that s is
investigated using the algorithm. The optimization process
terminates when the count |J (s) | reaches its threshold, mth:

|J (s)| = mth (25)

The rationale behind this termination condition is that the
more frequently a parameter is investigated, the higher its
likelihood of being optimal. The optimal parameter sopt is
given by

sopt = argmin
s∈S

|J (s)| (26)
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Note that max |J (s)| = mth. The optimal cycle time is
given by

tcy
(
sopt

)
=

1
|J (s)|

∑
J∈J(s)

J (27)

The proposed methodology is summarized in Fig. 7.

VI. EVALUATION
This section presents the evaluation of the proposed method,
which was designed to minimize the cycle time of the object
transportation task performed by the soft robotic hand system.
The effectiveness of this method was assessed by comparing
it with existing optimization techniques. For this evaluation,
the range of the search parameters, specifically the motion
parameters of the manipulator, were defined as follows:

S =

{
s = [ηvel, ηacc] |

ηvel = {100, 200, · · · 900}
ηacc = {1500, 1700 · · · 3700}

}
(28)

The maximum velocities (ηvel) of the TCP were set in the
range from 100 mm/s to 900 mm/s, with increments of
100 mm/s. The accelerations (decelerations) (ηacc) were set
in the range from 1500 to 3700 mm/s2, with increments of
200 mm/s2. This resulted in a total of 108 distinct param-
eter settings. The effectiveness of the proposed method for
the optimization of soft robotic hand systems is evaluated
through a comparison with the existing optimization methods
listed in Table 2. Given the extensive number of experiments
required for a comprehensive comparison, an evaluation was
conducted using a simulator developed based on actual exper-
imental data. In the following subsections, the construction
of the evaluation simulator is described, and the comparative
evaluation using the constructed simulator is presented.

A. CONSTRUCTION OF EVALUATION SIMULATOR
To conduct the evaluation efficiently, a simulator was con-
structed based on the relationship between the cycle times
and search parameters derived from actual experimental data.
The experimental setup is illustrated in Fig. 4 and described in
Section II. The object transportation task was conducted for
each parameter setting. The cycle times were measured using
the proposed measurement system described in Section IV.
For each setting of the search parameters, the experiments
to measure the cycle time were conducted 10 times. Fig. 8
shows the results of the cycle-time profile, including the
means and errors. As indicated by the data, varying cycle
times were observed even for the same search parameters,
demonstrating the low repeatability of the soft robotic hand
system. To construct a simulator model that represents these
results, the means (µGT (s)) and variances (σ 2

GT (s)) of the
obtained cycle times for each parameter set swere calculated.
Assuming a normal distribution for the cycle times obtained
for each s, the simulated cycle time, tsimcy , is given by

tsimcy (s) ∼ N
(
µGT (s) , σ 2

GT (s)
)

(29)

FIGURE 8. Result of mean and standard deviation (S.D.) of the cycle times
obtained from the actual experiments.

Notably, while the constructed simulator is based on the
assumption that the cycle time variation follows a normal dis-
tribution, the proposed optimization methodology, designed
to address the issue of low repeatability, can also be applied
to scenarios where the cycle time follows other distributions.

B. COMPARISON WITH EXISTING METHODS
This section evaluates the proposed methodology by compar-
ing it with six existing optimization methods. These include
two grid-search-based methods (GS1 and GS10 methods)
and four conventional optimization methods: the Bayesian
algorithm method (BA), particle swarm optimization (PSO),
S. Lin’s heuristic algorithm (SHA), and the sparrow search
algorithm (SSA). Brief descriptions of the algorithms used in
each method are provided as follows:

1) GRID-SEARCH-BASED METHODS (GS1 AND GS10
METHODS)
The GS1 and GS10 methods aim to identify the optimal
parameter by examining the objective function values across
all search parameter conditions. The GS1 method selects
the optimal parameter with the minimum cycle time based
on the data from a single experiment conducted for each
search parameter. In contrast, the GS10 method determines
the optimal parameter based on the minimum cycle time
derived from aggregating data across 10 experiments for each
parameter, which improves the reliability of the resulting
optimal parameter.

2) CONVENTIONAL BAYESIAN-ALGORITHM-BASED
METHOD (BA METHOD)
The BA method utilizes the Bayesian algorithm to opti-
mize the search parameters. The exploration process in this
method is similar to that of our proposedmethod and employs
the following conventional LCB function as the acquisition
function:

ln (s) = µn (s) − β

√
log n
n

σ
n
(s) (30)
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FIGURE 9. Result of the optimal value, i.e., minimum cycle time, with the optimal search parameters obtained using each method.

The optimization process is terminated when the previously
investigated search parameter is selected as the next search
parameter, i.e., the parameter search is repeated.

3) PARTICLE SWARM OPTIMIZATION METHOD (PSO
METHOD)
The PSO method searches for optimal parameters by updat-
ing the particle positions corresponding to the candidate
optimal parameters [37]. The position of each particle is
updated based on its own best position and the best position in
the all particles. In this study, the search was terminated when
all the particles are within less than the threshold distance
from their centroid.

4) S. LIN’S HEURISTIC-ALGORITHM-BASED METHOD (SHA
METHOD)
The SHA method combines a random search and heuristic
algorithms. In each step, several search conditions are evalu-
ated, and then some of the variables in the search condition
that provide the best criteria values in the previous evaluation
are changed to random values. The optimal parameters are
determined by repeating this procedure.

5) SPARROW SEARCH ALGORITHM-BASED METHOD (SSA
METHOD)
The SSA method is a recently developed technique inspired
by the behavior of sparrows [38], [39]. Similar to the PSO
method, the position of the candidate optimal parameter
(sparrow) is updated based on the criteria. The sparrows are
divided into producers and scroungers. This method utilizes
the differences in the behaviors of producers and scroungers
for an efficient search.

To assess the effectiveness of each optimization method
in a system with low repeatability, 100 simulated experi-
ments based on (29) were conducted for each method to
determine the optimal value. For the proposed and existing

TABLE 3. Performance indicators for each optimization method.

methods, except for the GS1 and GS 10 methods, the initial
search parameters were randomly set for each experiment.
The results are summarized in Figs. 9 and 10, and Table 3.
Fig. 9 illustrates the optimal cycle times achieved by each
method over the iterations. The variations in these values are
also depicted in the figure, where the proposed and GS10
methods exhibit smaller variances than the other methods.
Fig. 10 shows the distribution of optimal search parame-
ters for each method, where the parameters of the proposed
method are predominantly clustered around specific values,
such as [ηvel, ηacc] = [900, 2300] and [900, 2700]. For the
quantitative comparison, three performance indicators, Ninv,
RnearGS10, and Rclust, are introduced (Table 3). Ninv represents
the number of investigations required to identify the optimal
search parameter in each experiment. A smaller Ninv indi-
cates a faster search. RnearGS10 represents the proportion of
experiments in which the optimized cycle time falls within
the 3-sigma limit of the cycle time optimized using the GS10
method. Given that the cycle time optimized by the GS10
method serves as a benchmark, RnearGS10 measures the accu-
racy of each method in comparison to this benchmark.

Letting µGS10(= 8.17 s) and σGS10(= 0.42) be the
mean and standard deviation of the optimal cycle times
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FIGURE 10. Result of the number of times the optimal value converged in the optimal search for each search parameter.

for GS10 method, respectively (see Fig. 9(c)), RnearGS10 is
expressed by:

RnearGS10 =

∑
i φi

Num. of experiments (= 100)

φi =

{
1 if ρi < 3σGS10
0 otherwise

ρi =
∣∣tcy (sopt)i − µGS10

∣∣ (31)

where tcy
(
sopt

)
i is the optimal cycle time obtained in the ith

experiment. Rclust represents the proportion of experiments
that converged to the top four parameter conditions based
on the frequency of convergence, relative to the total num-
ber of experiments conducted. Rclust indicates the degree of
clustering (or variation) of the parameter conditions yielding
the optimal cycle time for each method. As presented in
Table 3, only the proposed method yielded high RnearGS10
and Rclust with a small Ninv. Notably, the GS10 method is the
benchmark; thus, it yields high RnearGS10 and Rclust although
it requires a large Ninv. The SSA method yielded high Rclust
but low RnearGS10. The parameter conditions that provided the
optimal cycle time in the SSA method were concentrated at
the corners of the search area (Fig. 10(e)). This concentration
might contribute to the low value of RnearGS10. These findings
suggest that, except for the proposed and GS10 methods,
the other methods struggle with parameter optimization in
this uncertain context. The BA method requires a smaller
Ninv than the proposed method. Both methods are based
on the Bayesian optimization algorithm. Fig. 11 shows the
representative results when comparing the number of inves-
tigations for each search parameter condition between the
proposed and BA methods. In contrast to the BA method,
which conduct only a single investigation per parameter, the
proposed method frequently revisits certain parameters to

FIGURE 11. Representative results of the number of investigations for
each search parameter condition.

refine their optimal values. These results demonstrate the
effectiveness of the proposed method in attaining optimiza-
tion with fewer searches, despite the low repeatability of the
objective function values.

Finally, the improvement in the productivity by the pro-
posed method is discussed. From the results in Fig. 8, the
number of cycles per day (Ncy) for the soft robotic hand
system operating under the search parameter condition (s) is
calculated using

Ncy (s) =
60 × 60 × 24

µGT (s)
(32)
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FIGURE 12. Numbers of cycles per day when the soft robotic hand system
is operated under each search parameter condition.

As a reminder, µGT (s) denotes the means of the obtained
cycle times for the search parameter condition s. Fig. 12
shows the result. When the optimal search parameter
[ηvel, ηacc] = [900, 2300] was used for the operation,
the Ncy value exceeded 10,000 cycles/day. To improve the
productivity without optimizing the parameters, a typical
approach would involve running the soft robotic hand system
at the maximum speed and acceleration. In such a sce-
nario, the parameter condition would be set to [ηvel, ηacc] =

[900, 3700], resulting in an Ncy value of approximately 5,000
cycles/day. This suggests that the proposed method achieves
the reduction inNcy of over 5,000 cycles/day compared to this
scenario.

VII. CONCLUSION
This study introduced a novel parameter-tuning method for
a soft robotic hand system to improve the cycle time of
object transportational operations by considering the vibra-
tion of the robotic hand. This method identifies the optimal
motion parameters for the manipulator that minimize the
cycle time, accounting for the uncertainties due to the low
repeatability of soft robotic hands. It employs sequential
experimental exploration to identify the optimal parameters.
To reduce the number of necessary investigations, this study
developed a Bayesian-optimization-based search algorithm
that systematically revisits previously explored parameters to
enhance the reliability of the optimization criteria. In addi-
tion, a cost-effective and versatile measurement system was
proposed to determine the vibration convergence time. This
system utilizes a standard web camera with a resolution of
640 × 360 pixels and a frame rate of 30 fps, resulting in a
cost-effective solution (26,180 JPY ≈ 183 USD). The cam-
era, which served as an external sensor, enabled integration
of the system into conventional robotic systems. The efficacy
of the proposed motion optimization method was validated
through comparisons with existing optimization techniques.
The results confirmed that the proposed method effectively

optimized the parameters of soft robotic hand systems. In this
paper, the effectiveness of the proposed method for optimiz-
ing the motion in a soft robotic hand system was validated
using a simple object-transportation task. Future work will
aim to refine and expand this method for real-world applica-
tions by addressing more complex tasks, including grasping
and placing. This may involve integrating sensory feedback
and diverse actuators as well as incorporating more motion
parameters for manipulator movements.
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