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ABSTRACT This paper addresses the robustness of a novel two-stage super-twisting algorithm designed
to converge within a prescribed time interval despite disturbances and model uncertainties. Initially,
we introduce a method for tuning parameters that guarantees the algorithm’s analytic solution will reach
the origin precisely at a prescribed instant, assuming an unperturbed scenario. We then enhance this
method to maintain prescribed-time convergence, even when faced with unknown bounded disturbances.
The algorithm’s performance is demonstrated through a numerical simulation of a state estimation problem
for a perturbed damped pendulum. The results show that the estimation errors converge robustly to the origin
at the prescribed time and remain there afterward.

INDEX TERMS Prescribed-time convergence, robust estimation, super-twisting algorithm.

I. INTRODUCTION
The super-twisting algorithm (STA) [1], [2] has been widely
applied to the design of finite-time robust controllers and
estimators over the last three decades [3], [4], [5], [6], [7].
Although effective, it is essential to note that we cannot
determine a global finite upper bound for the settling time
(UBST) when employing the conventional STA. This is
because the actual settling time tends towards infinity when
the system’s initial condition increases without bounds [8].
Recent extensions to this algorithm offer fixed-time stability
[9], enabling us to estimate a finite UBST that does
not depend on initial conditions [10], [11]. However, this
estimate tends to be overly conservative compared to the
actual settling time seen in experiments and relates to the
system’s parameters in a complex way. Moreover, a bounded
settling time is insufficient for applications requiring precise
timing, such as tactical missile guidance. Hence, this paper
explores STA modifications that permit arbitrarily choosing
the settling instant.

The pioneering work of Song et al. [12] has demonstrated
that it is possible to drive the states of a nonlinear system
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in the normal form to a desired trajectory at a prescribed
instant tc ∈ R>t0 by employing time-varying gains that
continuously approach infinity as time approaches tc. This
idea was initially proposed to design regulators and later
expanded to state estimation by Holloway and Krstic [13].
However, to avoid encountering a singularity at tc, the
investigated prescribed-time initial value problem is only
defined in the finite domain [t0, tc) in the aforementioned
papers. Furthermore, these approaches are highly sensitive to
measurement noise and numerical errors, primarily due to the
unbounded growth of their time-varying gains as t approaches
tc. To address this latter limitation, recent papers [14], [15],
[16] have investigated using the user-defined instant as a
prescribed UBST instead of the convergence instant itself.
In doing so, these recent studies ensure that the time-
varying gains introduced in [12] and [13] remain finite but
render the exact convergence instant unknown, although
bounded.

The present paper is a continuation of [17] and proposes
a modification of the STA that presents state convergence
precisely at a prescribed instant tc, which is set a priori
as a system parameter. During the time interval [t0, tc),
the proposed algorithm uses both time-varying [12], [13]
and switching [1], [2] gains to provide robustness and the
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prescribed-time convergence property. At tc, the algorithm
assumes the dynamics of the conventional STA to ensure
stability in the infinite time horizon. In contrast to works [1],
[2], [10], [11], in which only a conservative bound of
the settling time can be estimated, the proposed solution
allows the arbitrary prescription of the settling instant.
Unlike Song et al. [12] and Holloway and Krstic [13],
our approach ensures robust stability in the infinite time
domain [t0, ∞) while also using a time-varying gain only
in its first component state equation, which mitigates the
sensitivity to measurement noise. Furthermore, our approach
differs from [14], [15], and [16] by employing the prescribed
instant as the exact settling instant, not as its upper bound.
Convergence and robustness proofs for the modified super-
twisting algorithm introduced in [17] are also provided. Addi-
tionally, for illustration, the proposed method is employed in
designing a state estimator for a disturbed damped pendulum.
In summary, the main contribution of this paper is the
proposal of a novel two-stage STA-like algorithm capable of
presenting robust convergence of its states to the origin at a
user-defined instant in the presence of bounded disturbances
or model uncertainties, along with analytical proofs of the
aforementioned properties.

In the remaining text, Section II presents the mathematical
preliminaries required to introduce the proposed results and
states the paper’s primary objective. Section III presents the
proposed proofs that indicate the existence of system param-
eters that guarantee the prescribed-time robust convergence.
Section IV presents simulation results and comparisons
with a similarly prescribed-time convergent method. Finally,
Section V concludes this paper.

A. DEFINITIONS
Consider the system

ẋ = f (t, x), x(t0) ≜ x0 ∈ Rn, t ∈ R≥t0 , (1)

where x ∈ Rn is the system state vector, t is the time variable,
t0 ∈ R≥0 is the initial instant, and f : R≥t0 × Rn

→ Rn is
a nonlinear function such that f (·, ·) is jointly continuous in t
and x, and f (t, 0) = 0, ∀t ∈ [t0, ∞). A solution x(t; t0, x0)
of (1) is viewed in the generalized Filippov sense [18],
and is understood as a first-order differentiable function
satisfying (1) and the initial condition, i.e., x(t0; t0, x0) = x0.
We present the definition of the stability and convergence

concepts required in this paper.
Definition 1 [19]: The equilibrium point x = 0 of (1) is

said to be finite-time stable if it is asymptotically stable, and
any solution x(t; t0, x0) converges the origin in a finite time
interval t ∈ [t0, t0 + T (t0, x0)], where

T (t0, x0) = inf {T ≥ t0 : x(t; t0, x0) = 0, ∀t ≥ t0 + T } (2)

is the settling-time function.
Definition 2: A solution of (1) is said to present

prescribed-time convergence to its equilibrium point if the
system is finite-time stable and its states reach the equilibrium

point in a finite time interval upper bounded by t0 + tc, where
tc can be arbitrarily specified.

II. PROBLEM STATEMENT
The super-twisting algorithm (STA) is given by [1]

ε̇1 = −κ1⌊ε1⌉
1/2

+ ε2, (3)

ε̇2 = −κ2 sign(ε1) + δ, (4)

where ε ≜ (ε1, ε2) ∈ R2 is its state vector, κ1, κ2 ∈ R>0 are
scalar parameters, ⌊ε1⌉

1/2 ≜ |ε1|
1/2 sign (ε1), and δ ∈ R is

the disturbance term. Consider that δ is bounded by a known
constant L, i.e., |δ| ≤ L. Despite of δ, the origin ε = 0 is
finite-time stable if the gain condition [20]

L < min
{

κ1

2
,

κ1κ2

1 + κ1

}
(5)

is satisfied.
As the STA (3)–(4) is a finite-time stable system, only a

conservative bound of its settling time can be estimated, and
the respective estimate is dependent on the system’s initial
conditions, as expressed in Definition 1. The goal of the
present paper is to introduce and analyze a new second-order
system analogous to (3)–(4), but endowed with the ability
to converge to the origin within a prescribed time interval,
despite the presence of the unknown disturbance δ.

III. MAIN RESULTS
To achieve the aforementioned goal, we propose a novel
algorithm obtained from a modification of the STA (3)–(4),
given by

ε̇1 = −σ (t, ε1) + ε2, (6)

ε̇2 = −κ2 sign (ε1) + δ, (7)

where

σ (t, ε1) ≜


η

tc − t
ε1, t ∈ [t0, tc),

κ1⌊ε1⌉
1/2, t ∈ [tc, ∞),

(8)

with tc representing the prescribed convergence instant, and
η ∈ Z≥1 being a scalar parameter. The algorithm above
presents a hybrid structure containing two stages. The first
stage comprises the time interval t ∈ [t0, tc), in which the
system (6)–(7) combines both a time-varying and a switching
gains. In the second stage t ∈ [tc, ∞), the proposed algorithm
coincides with the conventional STA (3)–(4). Considering
the unperturbed case, i.e., δ ≡ 0, and the first stage, the
following proposition provides an analytical solution to the
initial value problem (IVP) consisting of (6)–(7) and the given
initial conditions.
Proposition 1: Consider the IVP consisting of (6)–(7) with

δ ≡ 0 and an initial condition ε(t0) = (ε1(t0), ε2(t0)) ∈ R2,
denote its solution in [t0, ∞) by ε(t) := (ε1(t), ε2(t)) ∈ R2,
and recursively define the zero-crossing instants of ε1(t) as

tj ≜ inf Tj, j = 1, 2, . . . , nr , (9)
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where nr is the number of times ε1(t) has reset to zero and

Tj ≜

{
ζ ∈ R≥t0 : ζ > tj−1 and lim

t→ζ−
ε1(t) = 0

}
. (10)

On each time interval t ∈ [tj−1, tj), the solution to the IVP is
recursively given by

ε1(t) =
tc − t

(η − 2)(η − 1)
α(t) + β(tj−1)

(
tc − t
tc − tj−1

)η

, (11)

ε2(t) = ε2(tj−1) − κ2 s1, j−1
(
t − tj−1

)
, (12)

where si, j−1 ≜ sign(εi(tj−1)), and

α(t) ≜ s1, j−1
(
κ2(tc−t − (η − 2)(t − tj−1))

)
+ (η − 2)ε2(tj−1), (13)

β(τ ) ≜ ε1(τ ) −
tc − τ

η − 1
ε2(τ )

−
(tc − τ)2

(η − 2)(η − 1)
κ2 s1, j−1 . (14)

Proof: By the definition (9), tj, j = 1, . . . , nr , are the
instants that ε1(t) resets to zero and, consequently, sign(ε1(t))
switches its sign. Therefore, sign(ε1(t)) = s1, j−1 ∀t ∈

[tj−1, tj). Hence, the analytic solution of (7) in the interval
t ∈ [tj−1, tj) is given by

ε2(t) = ε2(tj−1) − κ2 s1, j−1
(
t − tj−1

)
. (15)

Still considering the time interval [tj−1, tj), by substitut-
ing (15) and (8) into (6), we obtain

ε̇1 = −
η

tc − t
ε1(t) + ε2(tj−1) − κ2 s1, j−1

(
t − tj−1

)
, (16)

which can be immediately integrated, yielding

ε1(t) =
tc − t

(η − 2)(η − 1)
α(t) + β(tj−1)

(
tc − t
tc − tj−1

)η

, (17)

where α(t) and β(.) are as defined in (13)–(14). □
Corollary 1: Consider the IVP described in Proposition 1

and assume that η ≥ 3. It holds that ε1(t) → 0 as t → tc.
Proof: From (12), we see that ε2(t) will remain bounded

in every finite time interval [tj−1, tj) if its initial condition
ε2(t0) and the switching gain κ2 are finite. Therefore,
from (11), we see that for any η ≥ 3, it holds that ε1(t)
approaches zero as t approaches tc. □
Corollary 2: Assuming that η ≥ 3, the unperturbed

system (6)–(7) is finite-time stable.
Proof: FromCorollary 1, it holds that ε(tc) = [0, ε2(tc)].

Consequently, it is also true that the system (6)–(7) assumes
the conventional STA behavior after tc with finite initial
conditions. Therefore, by satisfying (5), the system states
will converge to the origin in finite time and remain there
afterward. □
The following theorem demonstrates that sufficient condi-

tions exist for the parameters κ2 and η, which ensure that ε2(t)
also approaches zero as t approaches tc.

Theorem 1: Consider the IVP consisting of (6)–(7) with
δ ≡ 0, a known initial condition ε(t0) = (ε1(t0), ε2(t0)) ∈ R2,
and η ≥ 3. If the following conditions are satisfied

κ2 (tc − t0) ≥ |ε2(t0)|, (18)

−κ2 (tc − 2t1 + t0) ≤ |ε2(t0)| ≤

κ2 (tc − t0) , s1,0 = s2,0,

−κ2 (tc − 2t1 + t0) ≤ − |ε2(t0)| ≤

κ2 (tc − t0) , s1,0 ̸= s2,0 .

(19)

then ε2(t) converges to zero at the prescribed time tc.
Proof: Consider a geometric set E(κ2) defined as

E(κ2) ≜ {(t, ε2(t)) : −κ2 (tc − t) ≤ ε2(t) ≤ κ2 (tc − t)} ,

(20)

for a given κ2 < ∞. This definition directly implies that if
the pair

(
tj−1, ε2(tj−1)

)
is in E(κ2) for all j = 1, . . . , nr , then

limt→t−c ε2(t) = 0. Consequently, ensuring the fulfillment of
this bounding condition guarantees the convergence of ε2 to
zero at the prescribed time tc.
From (20) and the known initial condition ε2(t0), we see

that choosing κ2 satisfying

κ2(tc − t0) ≥ |ε2(t0)|, (21)

ensures that (t0, ε2(t0)) ∈ E(κ2).
The next step is to ensure that (t, ε2(t)) belongs to E(κ2) at

the instant t1 that ε1(t) crosses the time axis for the first time.
From (12), this value is given by

ε2(t1) = ε2(t0) − κ2 s1,0 (t1 − t0) . (22)

Considering t = t1 and (20), it must hold that

−κ2(tc − t1) ≤ ε2(t1) ≤ κ2(tc − t1), (23)

which can be expanded using (22) to

− κ2
(
tc − t1 − s1,0 (t1 − t0)

)
≤ ε2(t0) ≤ κ2

(
tc − t1 + s1,0 (t1 − t0)

)
. (24)

Considering all the possible values that s1,0 and s2,0 can
assume, we can develop (24) further to obtain

−κ2 (tc − 2t1 + t0) ≤ |ε2(t0)| ≤

κ2 (tc − t0) , s1,0 = s2,0,
−κ2 (tc − 2t1 + t0) ≤ − |ε2(t0)| ≤

κ2 (tc − t0) , s1,0 ̸= s2,0 .

(25)

To compute the boundaries in (25), instant t1 can be calculated
by solving (11) for t , considering ε1(t) = 0 and adopting
parameters η satisfying η ≥ 3, and κ2 satisfying (5) and (21).
Note that by increasing η, ε1(t) approaches zero faster in (11),
reducing the value of t1. Additionally, increasing κ2 steepens
the slope of ε2(t) in (12), which also reduces t1. Therefore,
(25) can be satisfied by tuning either κ2 or η.

Given the linear time response of ε2(t) and satisfying the
conditions in equations (21) and (25), we can conclude that
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for all t within the interval [t0, t1), the pair (t, ε2(t)) lies
within E(κ2).

Following a similar mathematical procedure for the pair
(t, ε2(t)) at t = t2 yields the inequality

−κ2 (tc − 2t2 + t1) ≤ |ε2(t1)| ≤

κ2 (tc − t1) , s1,1 = s2,1,
−κ2 (tc − 2t2 + t1) ≤ − |ε2(t1)| ≤

κ2 (tc − t1) , s1,1 ̸= s2,1,

(26)

where s1,1 = − s1,0. The time instant t2 is similarly
determined using (11), with the state vector at t1 serving as
the initial condition. It can be inferred from the fulfillment of
the inequalities (25) and (26) that (t, ε2(t)) ∈ E(κ2) for all
t ∈ [t1, t2). Furthermore, it is worth noting that the value of
t2 obtained by solving (11) with the same parameters η and
κ2 that satisfy (25) also satisfies condition (26).
Consider now the generalization of (22) to evaluate ε2(t) at

every instant that ε1(t) crosses the time axis. With j ≥ 1 and
tj < tc, (23) can be rewritten as

−κ2(tc − tj) ≤ ε2(tj) ≤ κ2(tc − tj), (27)

which analogously yields
−κ2

(
tc − 2tj + tj−1

)
≤

∣∣ε2(tj−1)
∣∣ ≤

κ2
(
tc − tj−1

)
, s1, j−1 = s2, j−1,

−κ2
(
tc − 2tj + tj−1

)
≤ −

∣∣ε2(tj−1)
∣∣ ≤

κ2
(
tc − tj−1

)
, s1, j−1 ̸= s2, j−1,

(28)

where s1, j = − s1, j−1. By induction, we can deduce that if
equation (28) holds true, assuming

(
tj−1, ε2(tj−1)

)
∈ E(κ2),

then (t, ε2(t)) ∈ E(κ2) for all t ∈
[
tj−1, tj

)
. Additionally, it is

noticeable that equation (28) is satisfied at every time instant
tj, computed from (11), utilizing the state vector at tj−1 as
the initial condition and the same parameters η and κ2 that
fulfill (25).
Therefore, a convergence rate η ≥ 3 and a switching

gain κ2 that ensure equations (21) and (25) are satisfied, are
sufficient to guarantee that

(
tj−1, ε2(tj−1)

)
∈ E(κ2), ∀j =

1, 2, . . . , nr . Consequently, limt→t−c ε2(t) = 0, thus conclud-
ing the proof. □
The proofs of Corollary 1 and Theorem 1 guarantee the

prescribed-time convergence of the complete state vector to
the origin of the undisturbed system (6)–(7).
Remark 1: The definition of E(κ2) makes it evident

that its bounding functions are directly influenced by the
switching gain κ2, which, as deduced from (21), relies on
the initial value of ε2(t). Consequently, since the system
parameters depend on its initial conditions, the proposed
methodology cannot be classified as fixed-time stable.
Furthermore, the initial states of the system are typically
unknown in practical scenarios. Nevertheless, it is still
feasible to empirically adjust the parameters η and κ2 to
satisfy equations (21) and (25).
Remark 2: Obtaining a convergence proof for the pro-

posed algorithm using conventional Lyapunov methods has

proven challenging. This difficulty arises because the method
is nonautonomous and discontinuous within the specified
interval [t0, tc). Motivated by the linear time-response of
ε2(t), we have explored an alternative approach to establish
convergence, which involves employing a bounding region
and utilizing the analytic solution of the algorithm in different
segments of the prescribed interval.
We present a mathematical analysis in three parts to

extend the results of Theorem 1 to disturbed systems. First,
we propose formulating two new second-order systems
perturbed by constant disturbances of amplitude L and −L.
Second, we define the parameter conditions that ensure
that the states of both systems converge to the origin at
the prescribed time tc. Finally, we demonstrate that the
original systemwill also present prescribed-time convergence
if we employ the same parameters that satisfy the conditions
obtained in the second part of the analysis.
Consider the IVP consisting of (6)–(7) with a known initial

condition ε(t0) = (ε1(t0), ε2(t0)) ∈ R2 and a bounded
disturbance |δ| ≤ L, with known bound L. The bounding
systems

˙̌ε1 = −σ (t, ε̌1) + ε̌2, (29)
˙̌ε2 = −κ2 sign

(
ε̌1

)
− L, (30)

and

˙̂ε1 = −σ (t, ε̂1) + ε̂2, (31)
˙̂ε2 = −κ2 sign

(
ε̂1

)
+ L, (32)

are obtained by replacing the disturbance δ(t) by its minimum
and maximum values, respectively. Consider also that these
bounding systems, as well as the original one (6)–(7), have
the same initial conditions and parameters.
The following theorem demonstrates that there exist

sufficient conditions for the parameters κ2 and ηwhich ensure
that ε̌(t) and ε̂(t) converge to the origin as t approaches tc.
Theorem 2: Consider the IVPs consisting of (29)–(30)

with a known initial condition ε̌(t0) = ε(t0), and (31)–(32)
with a known initial condition ε̂(t0) = ε(t0). Consider also
a common parameter η ≥ 3 for both IVPs. If the following
conditions are satisfied

(κ2 − L)(tc − t0) ≥ |ε2(t0)|, (33)

− κ2
(
tc − ť1 − š1,0

(
ť1 − ť0

))
+ L

(
tc − ť0

)
≤ ε̌2(ť0) ≤

κ2
(
tc − ť1 + š1,0

(
ť1 − ť0

))
− L

(
tc − 2ť1 + ť0

)
. (34)

− κ2
(
tc − t̂1 − ŝ1,0

(
t̂1 − t̂0

))
+ L

(
tc − 2t̂1 + t̂0

)
≤ ε̂2(t̂0) ≤

κ2
(
tc − t̂1 + ŝ1,0

(
t̂1 − t̂0

))
− L

(
tc − t̂0

)
, (35)

then both ε̌ and ε̂ converge to zero at the prescribed time tc.
Proof: The analytic solution to the IVP (29)–(30),

in each interval t ∈ [ťj−1, ťj), where ťj is defined analogously
to (9) considering the current system, can be obtained
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similarly to (11)–(12) as

ε̌1(t) =
tc − t

(η − 2)(η − 1)
α̌(t) + β̌(ťj−1)

(
tc − t

tc − ťj−1

)η

, (36)

ε̌2(t) = ε̌2(ťj−1) −
(
κ2š1, j−1 + L

) (
t − ťj−1

)
, (37)

where ši, j−1 ≜ sign(ε̌i(ťj−1)) and

α̌(t) ≜
(
κ2š1, j−1 + L

)
(tc−t − (η − 2)(t − ťj−1))

+ (η − 2)ε̌2(ťj−1), (38)

β̌(τ ) ≜ ε̌1(τ ) −
tc − τ

η − 1
ε̌2(τ )

−
(tc − τ)2

(η − 2)(η − 1)

(
κ2š1, j−1 + L

)
. (39)

Since the analysis in the proof of Corollary 1 is also valid for
system (29)–(30), it is also true that ε̌1(t) approaches zero as
t approaches tc.

Similarly to the proof of Theorem 1, let us consider a
geometric set E+(κd ) defined as

E+(κd ) ≜ {(t, x(t)) : −κd (tc − t) ≤ x(t) ≤ κd (tc − t)} ,

(40)

where x(t) is the evaluated state, and κd ≜ κ2 − L. Once
again, by ensuring that

(
ťj−1, ε̌2(ťj−1)

)
∈ E+(κd ) for all j =

1, . . . , nr , we guarantee that limt→t−c ε̌2(t) = 0.
From (40) and the known values of ε̌2(ť0) and L,

by choosing κ2 satisfying

(κ2 − L)(tc − ť0) ≥ |ε̌2(ť0)|, (41)

the pair
(
ť0, ε̌2(t0)

)
will belong to E+(κd ).

From (37), we can evaluate the value of ε̌2(ť1) as

ε̌2(ť1) = ε̌2(ť0) −
(
κ2š1,0 + L

) (
ť1 − ť0

)
. (42)

To ensure that
(
t, ε̌2(t)

)
∈ E+(κd ) at ť1, it suffices to use

the definition of E+(κd ) to obtain

−κd (tc − ť1) ≤ ε̌2(ť1) ≤ κd (tc − ť1), (43)

which can be expanded using (42), yielding

− κ2
(
tc − ť1 − š1,0

(
ť1 − ť0

))
+ L

(
tc − ť0

)
≤ ε̌2(ť0) ≤

κ2
(
tc − ť1 + š1,0

(
ť1 − ť0

))
− L

(
tc − 2ť1 + ť0

)
. (44)

The instant ť1 can be found by solving (36) for t ,
considering ε̌1(t) = 0 as well as parameters η ≥

3 and κ2 satisfying equations (5) and (41). Similar to the
undisturbed case, we ensure that

(
ť1, ε̌2(ť1)

)
∈ E+(κd ) if η

and κ2 are such that (44) holds true. Analogously, it can be
shown by induction that these parameters also ensure that

− κd (tc − ťj)

≤ ε̌2(ť0) −

j∑
m=1

(
κ2š1,m−1 + L

)
(tm − tm−1) ≤

κd (tc − ťj) (45)

for every instant ťj obtained by inverting (36) considering
ε̌1(t) = 0. Therefore, there exist parameters η and κ2 such
that

(
t, ε̌2(t)

)
∈ E+(κd ), ∀t ∈ [t0, tc).

The prescribed-time convergence of ε̂1(t) and existence of
parameters that guarantee

(
t, ε̂2(t)

)
∈ E+(κd ), ∀t ∈ [t0, tc)

can be analogously deduced. In this case, it suffices to satisfy
the following inequality instead of (44)

− κ2
(
tc − t̂1 − ŝ1,0

(
t̂1 − t̂0

))
+ L

(
tc − 2t̂1 + t̂0

)
≤ ε̂2(t̂0) ≤

κ2
(
tc − t̂1 + ŝ1,0

(
t̂1 − t̂0

))
− L

(
tc − t̂0

)
, (46)

where t̂1 is obtained by inverting

ε̂1(t) =
tc − t

(η − 2)(η − 1)
α̂(t) + β̂(t̂0)

(
tc − t

tc − t̂0

)η

, (47)

considering ε̂1(t) = 0, and defining ŝ1,0 ≜ sign(ε̂1(t̂0)) and

α̂(t) ≜
(
κ2ŝ1,0 − L

)
(tc−t − (η − 2)(t − t̂0))

+ (η − 2)ε̂2(t̂0), (48)

β̂(t̂0) ≜ ε̂1(t̂0) −
tc − t̂0
η − 1

ε̂2(t̂0)

−
(tc − t̂0)2

(η − 2)(η − 1)

(
κ2ŝ1,0 − L

)
. (49)

Hence, if η and κ2 are chosen to simultaneously sat-
isfy (44) and (46), then the solutions ε̌2(t) and ε̂2(t) will
remain in E+(κd ). □
Corollary 3: Consider the geometric set E+(κd ), and the

IVPs (6)–(7), (29)–(30), and (31)–(32). The parameters
which ensure the prescribed-time convergence of ε̌ and ε̂ also
ensure the prescribed-time convergence of ε.

Proof: The proof of Theorem 2 readily implies that if
the solutions of the IVPs for two systems, subject to constant
disturbances whose amplitudes correspond to the maximum
and minimum values of an unknown disturbance δ, remain
bounded by the geometric set E+(κd ), then the solution of
the IVP for a system affected by the intermediate disturbance
δ will also remain bounded by this set. □

It is possible to obtain functions that delimit a similar
geometric set for (t, ε1(t)) by replacing ε2(t) in (6) by the
upper and lower line segments that bound E+(κd ). Denote this
set by Z(κd ) ≜ {(t, ε1(t)) : −λ(t, ε1) ≤ ε1(t) ≤ λ(t, ε1)},
where λ(t, ε1) is given by

λ(t, ε1) ≜

(
|ε1(t0)| −

κd (tc − t0)2

η − 2

) (
tc − t
tc − t0

)η

+
κd (tc − t)2

η − 2
. (50)

Thus, if inequalities (44) and (46) are satisfied, then the
trajectories of ε1 and ε2 are confined in Z(κd ) and E+(κd ),
respectively, for any instant t ∈ [t0, tc).
Corollary 4: Consider the σ -function in (8) and the

geometric sets Z(κd ) and E+(κd ). It holds that triggering the
behavior switch of σ at an instant t slightly earlier than tc
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FIGURE 1. State trajectories of the modified STA under different values of
disturbance, with the geometric sets Z(κd ) shaded in red, and E+(κd )
shaded in yellow.

is equivalent to starting a conventional STA with very small
initial conditions.

Proof: Consider an instant te = (1 − 1)tc, where
1 ≪ 1 is a user-defined correction factor. With the proper
choice of parameters, the time responses of ε1 and ε2 will
be respectively enveloped by Z(κd ) and E+(κd ) for all t ∈

[t0, tc). Therefore, given that the functions that delimit these
sets monotonically converge to the origin as t approaches tc,
as illustrated by the dashed lines in Figure 1, it is evident
that any function enclosed by these sets will present a value
very close to the origin at an instant close to tc. From this
instant forward, the conventional STA ensures the finite-time
convergence of the system states to the origin. □
Example 1: Consider the systems (6)–(7), (29)–(30) and

(31)–(32), with initial conditions ε(t0) = ε̌(t0) = ε̂(t0) =

(3, 1) and t0 = ť0 = t̂0 = 0. Consider that the original system
is disturbed by δ(t) = L sin (50π t), with L = 3. Figure 1
illustrates the simulated state trajectories of the three systems
with parameters tc = 0.5 s, η = 5, κ1 = 5, and κ2 = 18,
which satisfy equations (5), (41), (44), and (46).

IV. STATE ESTIMATION OF A DISTURBED PENDULUM
In this section, the proposed algorithm is employed in
formulating a state estimator for a free damped pendulum
affected by a disturbance torque.

A. OBSERVER FORMULATION
The pendulum dynamics are described by

θ̈ = −a sin(θ ) − γ θ̇ +
ν

ml2
, (51)

where θ ∈ R, and θ̇ ∈ R are the pendulum’s angular position
and velocity, respectively, a ≜ g/l, γ ≜ b/

(
ml2

)
, m is the

pendulum mass, l is its length, g is the gravity acceleration,
b is the friction coefficient, and ν ∈ [−ρ, ρ] is a bounded
disturbance torque.

By defining the state vector x ≜ (x1, x2) ∈ R2, with x1 ≜ θ

and x2 ≜ θ̇ , and the disturbance input d ≜ ν/
(
ml2

)
∈ R,

we can rewrite (51) as

ẋ1 = x2, (52)

ẋ2 = f (x) + d, (53)

where f (x) ≜ −a sin(x1) − γ x2. Let us assume that d is
bounded according to d ∈

[
−ρ/ml2, ρ/ml2

]
.

TABLE 1. Simulation parameters.

Denote the state estimate by x̂ ≜
(
x̂1, x̂2

)
∈ R2 and

define the estimation error as ε ≜ x − x̂. By substituting
the estimation error definition in (6)–(7), considering the
pendulum dynamics in (52)–(53), the modified super-
twisting sliding-mode observer (ModSTSMO) is given by

˙̂x1 = σ (t,
(
x1 − x̂1

)
) + x̂2, (54)

˙̂x2 = f (x̂) + κ2 sign (ε1) . (55)

In this case, the disturbance term in (7) is represented by
δ ≡

(
f (x) − f (x̂)

)
+ d , thus containing both the model

uncertainty and the external disturbance. Let us assume that
δ is bounded by δ ∈ [−L,L], with known L < ∞. The
conventional super-twisting sliding-mode observer (STSMO)
is analogously obtained by substituting the estimation error
definition into (3)–(4) instead.

B. SIMULATION RESULTS
The simulation study is conducted in MATLAB using
the first-order explicit Euler method. First, we present a
numerical verification of the proposed observer’s robustness
and prescribed-time convergence properties. Next, we present
a comparative analysis between our proposed observer and
another state-of-the-art prescribed-time convergent observer.
Table 1 contains the adopted parameters.
The pendulum starts from rest and is disturbed by ν =

0.8ρ sin (2π t) + 0.2ρ sin (20π t), where ρ ≜ ml2, implying
that d ∈ [−1, 1]. To account for the bounds of the external
disturbance and model uncertainties in δ, we adopt L = 3.
Consider the observer parameters κ1 = 6, κ2 = 12, η =

5, and tc = 0.5 s. Figures 2–3 show the system states, their
estimates, and the estimation error, respectively. Verifying
that the chosen parameters satisfy the gain criteria (5)
and inequality (41) is straightforward. Also, by following
the procedure in Theorem 2, inequality (44) is reduced to
−1.04 ≤ ε̌2(t0) ≤ 5.37, whereas inequality (46) leads to
−1.51 ≤ ε̂2(t0) ≤ 4.5. Since ε2(t0) = ε̂2(t0) = ε̌2(t0) =

0.5 rad, both inequalities hold true.
The previous simulation is repeated with the same

parameters, except for the convergence instant, now set to
tc = 1 s. The results are shown in Figures 4–5. In all the
simulated cases, the prescribed instant tc is the exact settling
instant, and the states remain stable thereafter.
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FIGURE 2. Time response of the system states and its estimates obtained
with the proposed observer set with tc = 0.5 s.

FIGURE 3. Time response of the state estimation error obtained with the
proposed observer set with tc = 0.5 s.

FIGURE 4. Time response of the system states and its estimates obtained
with the proposed observer set with tc = 1 s.

FIGURE 5. Time response of the state estimation error obtained with the
proposed observer set with tc = 1 s.

Now, the proposed observer is compared to one of the most
recently developed methods for second-order estimators with
prescribed-time convergence, named here as prescribed-time
observer (PTO) [13]. This method uses time-varying gains
in both component state equations to drive the system to the
origin at precisely the specified instant. As the PTO has been
defined only in [t0, tc), for fairness of comparison, here we
extend it with the conventional STSMO in t ≥ tc, yielding

˙̂x1 = g1(t, ε1) + x̂2, (56)
˙̂x2 = g2(t, ε1) + f

(
x̂
)
, (57)

FIGURE 6. Comparative simulations: time response of the ModSTSMO
and PTO estimation errors with tc = 1 s.

FIGURE 7. Comparative simulations: time response of the ModSTSMO
and PTO injection terms, with tc = 1 s.

where the injection terms are

g1(t, ε1) ≜


(

ℓ1 + 2
m+ 2
tc − t

)
ε1, t ∈ [t0, tc),

κ1⌊ε1⌉
1/2, t ∈ [tc, ∞),

(58)

g2(t, ε1) ≜



(
ℓ2 + ℓ1

m+ 2
tc − t

+
(m+ 1)(m+ 2)

(tc − t)2

)
ε1,

t ∈ [t0, tc),

κ2 sign (ε1) , t ∈ [tc, ∞).

(59)

The following simulations consider that the angle mea-
surements contain additive zero-mean truncated Gaussian
noise with a standard deviation of 10−5 on support[
−5 × 10−5, 5 × 10−5

]
. Also, to compare the injection

terms, we consider that for the proposed method, g1(t) =

σ (t, ε1) and g2(t) = κ2 sign (ε1). Considering the parameters
η = 5, κ1 = 6, κ2 = 12, tc = 1 s, ℓ1 = 3, ℓ2 = 2, andm = 1,
we obtain the results shown in Figures 6–7.
The PTO method presents numerical problems near the

prescribed instant tc, as the gains go to infinity while
multiplied by a noisy estimation error [13]. Although a
similar behavior can be observed in the proposed method, the
PTO is shown to be much more susceptible to this effect, as it
uses time-varying gains to multiply the estimation error in
both observer equations. To mitigate this problem, we adopt
an earlier switching instant to the conventional STSMO
behavior, as introduced in Corollary (4). With a correction
factor 1 = 0.005, we trigger the behavior switch at te =

0.995 s. Although this approach sacrifices the exactness of
the converging instant, Figures 8–9 show that this change
eliminates the state divergence caused by the measurement
error.
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FIGURE 8. Comparative simulations: time response of the ModSTSMO
and PTO estimation errors with tc = 1 s, considering an earlier switching
instant te = 0.995 s.

FIGURE 9. Comparative simulations: time response of the ModSTSMO
and PTO injection terms with tc = 1 s, considering an earlier switching
instant te = 0.995 s.

V. CONCLUSION
The present paper introduced a modification of the super-
twisting algorithm. It showed that, with the appropriate
selection of parameters, the transitory behavior of its states
remains enveloped by time functions that approach the
origin as time approaches the prescribed instant of conver-
gence. Compared to a similar algorithm, our method shows
convergence at the prescribed instant, maintaining robust
stability thereafter, with a minor sensitivity to inaccurate
measurements. In future works, the effectiveness of the
proposed method will be evaluated in practical scenarios.
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