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ABSTRACT The Internet of Things (IoT) is an emerging technology that allow smart devices to
communicate through various heterogeneous channels (wired or wireless). However, for conventional
networks, it has become a challenging task to efficiently control and manage the data flows of a huge
number of devices. Software-defined networking (SDN) is a newway of thinking about networking. Because
it is programmable, flexible, agile, and gives you a big picture of the network, it has tried to solve some
IoT problems, like scalability, heterogeneity, and complexity. In large-scale SDN-IoT networks, there is a
requirement for routing protocols that are both efficient and secure in order to ensure a superior level of
quality of service (QoS) and quality of experience (QoE). To address the above stated challenges, a novel
deep reinforcement learning (DRL) known as DQQSmodel is proposed. The aim is to achieve QoS and QoE
while also ensuring the security of the SDN-IoT network. The proposed DQQS model dynamically extracts
patterns from the past network history by interacting with the underlying network and generating optimized
routing policies. This article employs three network metrics—throughput, latency, and the probability of
avoiding malicious nodes—to measure the performance of DQQS. Simulations reveal that the proposed
framework outperforms four state-of-the-art routing algorithms: OSPF, L-L Routing, Sailfish Routing, and
RL-Routing in terms of both throughput and latency. For instance, in an attacked environment, the proposed
DQQS model achieved the highest throughput value of 14.5 Mbps, surpassing OSPF at 8 Mbps, L-L at
8.2 Mbps, Sailfish at 9 Mbps, and RL at 9.5 Mbps. Similarly, this model exhibited superior performance
in latency, recording the lowest latency value of 52 ms, compared to OSPF 88 ms, L-L 85 ms, Sailfish
72 ms, and RL 75 ms routing algorithms. The experimental results demonstrate that this new DQQS model
is a pioneering deep reinforcement learning-based technique that optimally addresses secure routing in the
SDN-IoT environment, ensuring enhanced quality of service and experience, and outperforming state-of-the
art DL methodologies in both security and network performance metrics.

INDEX TERMS Deep reinforcement learning, Internet of Things, malicious node detection, optimal network
management, routing optimization, software defined network, security.
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I. INTRODUCTION
The Internet of Things (IoT) encompasses a vast network
of diverse devices connected across multiple communication
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interfaces [1]. Notably, IoT devices are characterized by
high mobility and extensive coverage capabilities. However,
the intricate nature of these networks, coupled with their
heterogeneous composition and multiple communication
platforms, results in several challenges. These challenges
range from network load balancing, ensuring the quality
of service (QoS), optimizing routing processes, and safe-
guarding security measures. Software-defined networking
(SDN) emerges as a pivotal solution for the effective
management and control of large, intricate, and diverse
IoT networks [2]. The amalgamation of SDN with IoT,
aptly termed SDN-IoT, signifies a transformative shift in
networking paradigms [3]. The architecture of SDN-IoT can
be dissected into three main planes: the sensing plane, the
data plane, and the control plane, as illustrated in Fig. 1. The
sensing plane predominantly consists of varied IoT devices,
including but not limited to sensors and actuators. Through
SDN-enabled switches that are present in the data plane, these
devices relay the data they collect to the SDN-IoT gateway.
Meanwhile, the control plane serves as a distinction between
the SDN-IoT central controller and the fundamental network
components like routers and switches. This distinction allows
the controller to acquire an all-encompassing perspective
of the network, facilitating key network functions such as
channel resource administration and packet forwarding. It is
worth noting that the SDN-empowered switches within the
data plane function in strict accordance with the directives
from the SDN-IoT controller, ensuring precise forwarding of
IoT data clusters.

OpenFlow [4] is a traditional SDN routing protocol
commonly used for facilitating communication between the
data plane and the control plane through the Northbound
Interface (NBI) within the SDN-IoT environment. The
OpenFlow protocol enables the SDN centralized controller
to comprehensively manage the network, and dynamically
seek out and select routing paths. SDN’s key characteristics,
such as programmability, global network perspective, and
centralized control, empower it to effectively govern network
flows and behaviors in real-time [5]. However, as the number
of IoT devices grows and network traffic escalates within
the SDN-IoT landscape, the demand for Quality of Service
(QoS), Quality of Experience (QoE), and secure routing
have intensified [6]. Upon delving into the literature on
SDN routing, two primary limitations have been identified in
SDN and OpenFlow-based routing: 1) Security concerns, and
2) QoS and QoE issues. The SDNOpenFlow routing protocol
is susceptible to various security breaches, including Man-
in-the-Middle attacks, Distributed Denial of Service (DDoS)
attacks, and Bitrate Oscillation Attacks [7]. Consequently,
SDN-IoT routing also remains exposed to severe detrimental
attacks [8]. In the SDN-IoT architecture, the default routing
protocol employed within the SDN controller is the Open
Shortest Path First (OSPF), which operates based on the
shortest routing path strategy. In the SDN-IoT context, the
performance of the routing protocol degrades when security
attacks occur or the volume of packet forwarding requests

increases [9]. This degradation results in network congestion,
packet loss, latency, jitter, and other issues. The acronyms
used in this article are shown in Table 1.

In this article, we tried our best to address the above-
mentioned challenges. The proposed DRL-based novel strat-
egy addresses the secure routing optimization in SDN-IoT
and improves QoS and QoE. The proposed technique was
tested through extensive experimentation and simulation over
three important network metrics (throughput, latency, and
probability of avoiding malicious nodes).

TABLE 1. Acronyms used in paper.

The main contributions of this article are mentioned below.
• A novel deep reinforcement learning (DRL) technique
known as DQQS model is designed to optimize secure
routing while enhancing Quality of Service (QoS)
and Quality of Experience (QoE) within SDN-IoT
environments.

• The DQQS model specifically addresses security con-
cerns in the sensing and data layers of SDN-IoT
networks. It aims to establish secure routing by avoiding
malicious or compromised nodes, thereby maintaining
high standards of QoS and QoE. This approach is
identified as the first of its kind in usingDRL for tackling
security challenges in SDN-IoT routing while upholding
QoS and QoE.

• The model demonstrates superior performance in pro-
viding rapid and secure routing in SDN-IoT settings,
effectively countering security threats at both the sensing
and data layers. Comparative tests show that DQQS
outperform the state-of-the art routing protocols (OSPF,
L-L, Sailfish, RL-Routing) across all QoS and QoE
metrics. Additionally, it exhibits high accuracy in attack
detection and classification on NSL-KDD and IoT

VOLUME 12, 2024 60569



Zabeehullah et al.: DQQS: DRL-Based Technique for Enhancing Security and Performance

FIGURE 1. Illustration of SDN-IoT framework depicting the control plane, data plane, and sensing plane.

datasets, surpassing naive deep learning models like
LSTM and CNN.

The rest of the paper is organized as follows:
Section II outlines the related work of the proposed model.

Section III presents the problem statement, while Section IV
elucidates the workings and architecture of our proposed
model. Section V, assesses the performance of the proposed
model, and Section VI describes the results discussions, lim-
itations, and future research directions. Finally, Section VII
concludes the article.

II. RELATED WORK
This section discusses the relevant literature concerning
Deep Learning (DL) and Machine Learning (ML)-based
routing optimization for SDN-IoT, aimed at enhancing SDN-
IoT’s Quality of Service (QoS) and Quality of Experience
(QoE). In SDN-IoT, network traffic routing plays a crucial

role in ensuring efficient data transmission, minimizing
latency, enhancing security, and optimizing resource utiliza-
tion. In [10], the authors introduced a DRL-based routing
optimization technique in SDN. Their DRL agent learns
the interdependencies between network traffic load and
network performance, selecting optimal sets of link weights
to minimize latency and packet loss rates. Experimental
results of the proposed technique demonstrate the superiority
of their proposed approach over traditional hop count
routing across various network topologies. In [11], the
authors proposed both centralized and distributed DRL-based
routing techniques. Through extensive experimentation, they
determined that the centralized approach excels in managing
dynamic network traffic due to its remarkable reconvergence
capabilities. In [12], the authors put forward a routing
optimization algorithm founded on Quality of Service (QoS)
parameters, utilizing Deep Reinforcement Learning for
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SDN-based Data Center Networks. Their proposed technique
achieved 21% higher average throughput and 17% lower
average delay compared to Dijkstra’s algorithm. In [13],
the authors presented DeepMonitor, a framework designed
for SDN-based IoT networks, facilitating fine-grained traffic
analysis for distinct IoT traffic types at network edges.
Simulation outcomes highlight the efficacy of this technique
in addressing overflow issues within flow tables at edge
nodes. The average number of match-fields in a flow
rule,as achieved by this proposed technique, witnessed an
approximate increase of 37% and 41.9%.

In [14], the authors presented a routing optimization
technique in the context of SDN-IoT, leveraging traffic-aware
Quality of Service (QoS). Simulations reveal that this
approach effectively reduces latency and mitigates flows
that impact QoS. In [15], the authors introduced an
SDN-IoT routing technique grounded in application-aware
QoS principles. This method addresses QoS prerequisites
of high-priority applications while adapting to the current
network status to optimize routing paths. Simulation results
demonstrate the superiority of this technique over MINA
in terms of metrics such as jitter, packet loss rate, and
latency. As described in [16], a Deep Learning (DL)–based
model for predicting traffic load and managing channel
assignments is outlined. The utilization of a Convolutional
Neural Network (CNN) model has yielded promising results.
The work detailed in [3] outlines an SDN technique tailored
for IoT environments, dynamically tailoring distinct quality
levels to diverse IoT tasks within highly heterogeneous
wireless networking scenarios. In [17], a technique aimed
at controlling congestion in SDN is proposed. This involves
dynamic traffic splitting through the analysis of statis-
tics gathered by each network switch. Simulation results
showcase the success of this approach in reducing packet
loss rates and alleviating overutilized links. Elaborated
upon in [18], the authors devised a deep reinforcement
learning-based smart routing algorithm to render distributed
computing and communication infrastructure thoroughly
feasible. This is achieved while simultaneously adhering
to latency constraints imposed by service requests from a
diverse audience. Highlighted in [19], the authors introduced
a pioneering deep learning-based algorithm for predicting
Traffic Load (TL), forecasting future TL, and anticipating
network congestion. Simulation results robustly demonstrate
the superiority of our proposal over conventional channel
assignment algorithms.

In their work [20], introduced a novel deep learning
strategy, DLICA, designed for efficient channel assignment
in SDN-IoT environments to alleviate network congestion.
Reference [21] developed a comprehensive framework for
joint multi-channel reassignment and traffic control in the
core backbone network of SDN-IoT. Their primary goal was
to maximize throughput while minimizing packet loss and
time delays. Reference [22] asserted that SDN has effectively
addressed challenges in IoT, such as complexity and

heterogeneity. Reference [23] presented a machine-learning
model with SDN-enabled security for predicting network
resource consumption and enhancing sensor data deliv-
ery. Furthermore, they introduced a cost-effective central-
ized SDN architecture to mitigate network threats among
deployed sensors. Reference [24] applied a combination of
the Balancing Module (BM), Spider Monkey Optimization
(SMO), and Crow Search Algorithm (CSA) to improve
multi-path selection efficiency in SDN. The Balancing
Module incorporates Gaussian distribution principles to
achieve equilibrium between exploration and exploitation.
Such a balance aids in evading the pitfalls of local optima
and improving convergence speeds. In the research presented
by [25], deep reinforcement learning techniques were applied
to resource scheduling within the control plane of SDN.
The advanced algorithm was developed with the aim of
enhancing resource distribution, and it successfully exhibited
superior network performance. Specifically, it showcased
improvements in Quality of Service (QoS) metrics, notably
in delay and throughput, when compared to both random and
round-robin strategies.

Furthermore, [26] proposed a multi-agent reinforcement
learning framework in SDN-IoT to detect and mitigate
DDoS attacks and effectively manage route flash crowd
events without impacting benign network traffic. Another
noteworthy contribution was made by [27], where they
presented an SDN-centric efficient clustering mechanism
for IoT, leveraging the Improved Sailfish Optimization
(ISFO) algorithm. This innovative design promotes efficient
clustering of IoT devices and is adeptly incorporated into
the SDN controller to streamline the management of Cluster
Head (CH) nodes. The summary of the literature work is
presented in Table 2.

III. PROBLEM STATEMENT
This article focuses on addressing the challenge of efficient
and secure routing optimization in SDN-IoT environment.
The sensing and data layers of the SDN-IoT setup are
vulnerable to security attacks. Attackers can gain control
of the sensing layer (sensors) and data layer (switches)
devices and manipulate these devices by generating fake
traffic, disabling SDN-enabled switches for a specific period,
stealing sensitive information, and deleting flow entries
of switches to degrade network performance. This section
describes the problem definition and an overview of the
SDN-IoT network model. The symbols employed in the
network model are shown in Table 3.

A. PROBLEM DEFINITION AND SDN-IoT NETWORKING
MODEL
First and foremost, we present some fundamental def-
initions to facilitate comprehension of the architecture
and packet flow processes within the SDN-IoT network.
Here, N(S, L) signifies the network configuration consist-
ing of S SDN-enabled switches and L undirected links
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TABLE 2. A table describes the state-of-the-art deep learning (DL) and machine learning (ML)-based routing techniques.

interconnecting these switches. Within the SDN-IoT network
environment, each SDN-enabled switch, denoted as si,
is equipped with a flow table, and overall network control
and management are executed by the SDN controller C.
The SDN controller furnishes packet forwarding rules to
the switches, enabling the transmission and reception of
data among neighboring switches. The operation of the
conventional routing protocol is depicted in Fig. 2.
In a conventional routing protocol, the sensing layer

dispatches a message to an SDN-enabled switch situated
in the data layer. Upon receiving the message, the switch

consults its flow table for a relevant flow entry. If a flow entry
is present, the switch acts in accordance with the specified
rule. However, in the absence of a corresponding flow entry,
the message is forwarded to the SDN controller to solicit
future instructions concerning this flow entry, as illustrated
in Figure 2. Notably, a significant concern arises due to
the lack of security and the vulnerability inherent in the
conventional routing protocol when faced with sophisticated
and contemporary security threats. In the presence of
malicious entities within the network, the performance of the
SDN-IoT network can degrade in terms of Quality of Service
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FIGURE 2. Workflow of conventional routing protocol and proposed DQQS technique.

TABLE 3. Symbols used in network model.

(QoS), leading to issues such as increased congestion and
reduced throughput, as well as adversely impacting Quality
of Experience (QoE) by introducing elevated levels of jitter
and latency.

It holds true that the advent of Software-Defined Net-
working (SDN), driven by its remarkable attributes including
programmability, flexibility, and global view of the network,
has led researchers to tackle the aforementioned challenges
by leveraging SDN’s capabilities. However, SDN-IoT is not
intelligent enough to efficiently deal with the heterogeneous,
dynamic, and unpredictable traffic flows and state-of-the-
art security challenges to optimize the routing optimization.
Fortunately, DRL can be implemented in SDN-IoT to make
the system more intelligent, efficient, and capable enough
to optimize routing to enhance QoS and QoE while dealing
with the latest security threats. In this article, the proposed
technique based on DRL is called DQQS. In the proposed
technique, DRL agent learns while interacting with the envi-
ronment. The agent engages in an iterative process of learning
through interaction with the environment, receiving rewards
for its actions. Over time, theDRL agent progressively refines
its performance by assimilating knowledge gained from its
environment.

B. CONSIDERING SECURITY THREATS
This article addresses two categories of threats: sensing layer
threats and data layer threats. We assert that this article is

distinctive in its nature, being one of the first to consider both
types of threats while simultaneously upholding Quality of
Service (QoS) and Quality of Experience (QoE) in the SDN-
IoT environment.

In SDN-IoT research literature, multiple efforts have been
made to confront this challenge. In [28], authors have
introduced a model termed DQSP, designed to achieve secure
routing optimization while preserving QoS within the SDN-
IoT environment. However, a notable drawback of this
proposed technique pertains to the absence of consideration
for sensing layer threats. Indeed, if accurate and reliable
data is not obtained from the sensing layer, the feasibility
of making informed and intelligent decisions based on
erroneous information becomes questionable. Therefore, it is
of utmost importance to address threats posed by both the
sensing and data layers to effectively realize efficient and
secure routing.

1) SENSING PLANE ATTACKS
In the SDN-IoT environment, IoT devices located in the
sensing plane gather ambient information and relay it to the
data plane. Within the sensing plane, numerous IoT devices
are present, rendering them susceptible to various forms
of attacks. Adversaries could exploit vulnerabilities in IoT
devices, thereby initiating diverse network attacks aimed at
compromising network performance in terms of Quality of
Service (QoS) and Quality of Experience (QoE). Examples
of potential attacks that could be executed within the sensing
plane encompass eavesdropping attacks, physical tampering
attacks, privilege escalation attacks, malicious node injection
attacks, and sybil attacks, among others.

• Eavesdropping Attack (EDA): EDA takes place when
intruders or hackers intercept, delete, or modify vital
information from the sensing plane while it is being
transmitted to the data plane. For instance, in the context
of Medical Internet of Things (MIoT), devices gather
sensitive patient information that must remain confi-
dential. Attackers could breach these security measures,
manipulate the sensitive data, and then transmit it to the
data plane. Consequently, such tampered data has the
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potential to undermine both the Quality of Service (QoS)
aspects of SDN-IoT, specifically trust and accuracy,
as well as the Quality of Experience (QoE), manifesting
as jitter.

• Physical Tampering Attack (PTA): PTA disrupts net-
work performance in terms of routing, Quality of
Service (QoS), and Quality of Experience (QoE).Within
PTA, one or more sensor nodes fall under the control
of attackers, which can then be manipulated to generate
fabricated, contradictory, and excessive information.
The objective of such manipulation is to degrade
network performance.

2) DATA PLANE ATTACKS
After the data plane has received genuine and accurate
information from the sensing plane, frequent communication
commences between the data plane and the control plane.
In the SDN-IoT domain, the control plane formulates rules
and routing policies that are subsequently implemented in
the data plane. Consequently, this recurrent communication
between the data and control planes renders the system
susceptible to a variety of attacks. Examples of attacks
targeting the data plane include the Man-in-the-Middle
(MITM) attack, Distributed Denial of Service (DDoS) attack,
and Bitrate Oscillation attack, among others.
• Man-in-the-Middle Attack (MIMA): In MIMA, attack-
ers gain control over one or more participating nodes
(such as switches or sensors) within the network and
exploit these nodes to degrade network performance.
For instance, a compromised node within the network
may intentionally discard critical packets at specific
times. Additionally, attacked nodes may intermittently
remain inactive, leading to network congestion. In the
context of the SDN-IoT environment, the MIMA attack
deliberately deletes flow entries of the attacked SDN-
enabled switch, thereby increasing the likelihood of
packet loss.

• Distributed Denial of Service Attack (DDoS): Through
the utilization of a DDoS attack, intruders disrupt net-
work performance, resulting in issues such as network
congestion, packet loss, and latency. In this attack,
assailants harness compromised nodes to inundate
the network with a barrage of meaningless packets,
effectively obstructing regular network communication.
Within the SDN-IoT environment, a malicious node
forwards flow requests to an SDN-enabled switch. How-
ever, if the switch’s flow table lacks the corresponding
entry for the received flow request, this situation can
precipitate a deterioration in network performance.

IV. THE PROPOSED MODEL ARCHITECTURE
In this section, we will discuss the architecture and algorith-
mic detail of our proposed model. Generally, the proposed
model is divided into four layers. Each layer has its own
responsibilities and functions. The working of our proposed
scheme is shown in a Fig. 3.

A. FOUR LAYERED ARCHITECTURE
1) SENSING LAYER
The primary and foundational layer of the proposed model
is the sensing layer. This layer comprises a multitude of IoT
devices in the form of sensors and actuators. Its primary
duty is to collect data and subsequently transfer it to
the succeeding layer. Given the significant diversity and
heterogeneity inherent in the sensors composing the sensing
layer, it becomes susceptible to a range of security attacks.
Ensuring the precise and reliable collection of data, followed
by its seamless transfer to the subsequent layer, stands as a
primary objective of our proposed model.

2) DATA LAYER
The second layer of the proposed model is known as the
data layer. This stratum encompasses various networking
devices, including SDN-enabled switches, routers, and more.
The primary function of this layer is to facilitate data
movement among switches based on the guidance and
directives emanating from the control layer. Consequently,
the data layer is often referred to as the ‘dumb layer.’ The
communication between the data layer and the control layer
is facilitated through the South Bound Interface (SBI).

3) CONTROL LAYER
The third and perhaps the most pivotal layer within our
proposed model is recognized as the control or controller
layer. This layer functions as the system’s central hub
and brain. Endowed with a comprehensive network-wide
perspective, the control layer oversees all state alterations
transpiring within the network. Its principal role lies in
orchestrating network functionality, encompassing the adap-
tation of routing strategies in response to instances of network
congestion, node failures, and link failures.

4) DRL LAYER
To imbue the network with heightened intelligence, effi-
ciency, security, adaptability, and responsiveness to the
dynamic and unpredictable flow of network traffic, we have
integrated a DRL layer into our proposed model. Interaction
between the DRL layer and the controller layer takes place
through the North Bound Interface (NBI). Owing to the
global network view inherent in the controller layer, the DRL
layer acquires comprehensive awareness of the underlying
network’s status. This enables the DRL layer to formulate
optimized routing policies by analyzing the rewards associ-
ated with multiple policies andmaking adjustments to diverse
performance parameters. Furthermore, the extensive training
undergone by the DRL agent using historical network data
empowers it to fashion an optimal routing policy for real-time
network scenarios.

B. DETAILED DESCRIPTION OF THE PROPOSED MODEL
In this section, we elucidate the intricate workings and algo-
rithms underpinning the proposed technique. As previously
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FIGURE 3. The Proposed DQQS Model‘s Structure: Sensing Layer, Data Link Layer, Controller Layer,
and DDPG Layer.

mentioned, conventional routing methods lack the aptitude
to effectively handle the ever-changing and unpredictable
nature of real-time SDN-IoT networks. Compounding this,
network attacks exacerbate the predictability of network

traffic and degrade both Quality of Service (QoS) and Quality
of Experience (QoE). The impact of network attacks extends
to the capabilities of SDN-enabled switches and the quality
of network links. To address these challenges, we have
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incorporated a DRL agent into our proposed technique to
optimize routing while ensuring security. The subsequent
section elaborates on the three components of the DRL agent:
state, action, and reward.

1) STATE
We consider routing as taking place within a unit of time, with
each unit equivalent to one time step. Consequently, the total
routing time between the source switch ss and the destination
switch sd is denoted as T. The DRL agent evaluates the
reward for a transmission task within a single unit time slot,
which encompasses determining the time required to select
the subsequent SDN-enabled hop switch and transmit data
to it. The DRL agent leverages three factors in the reward
calculation: 1) message input frequency λs(t), 2) message
holding rate of the flow table ρs(t), and 3) channel holding
rate between the SDN controller and the switch σs(t). For
a given switch node si, i = (1, 2, 3, . . .) during a unit time
t, t = (1, 2, 3, . . .), these three factors collectively define the
actual state of the system. Upon incorporating these three
factors:

s(t) = [λs1 (t), λs2 (t), λs3 (t), . . . .λsN (t),

ρs1 (t), ρs2 (t), ρs3 (t), . . . .ρsN (t),

σs1 (t), σs2 (t), σs3 (t), . . . .σsN (t)] (1)

Equation (1), ρsi =
Fsi(t)
Fsi signifies the capacity of the

flow table in the SDN-enabled switch si. In this context,
Fsi(t) represents the number of flow entries currently
accommodated within switch si at any given time (t), while
Fsi indicates the maximum number of flows that can be
supported by switch si.

2) ACTION
Smart and intelligent routing relies heavily on the selection
of the next hop (switch). In the action stage, the primary
responsibility of the DRL agent is to identify and choose the
next available switch for data transfer. This action stage is
depicted by Equation (2).

P(t) = Pprests1 (t), Pprests2 (t), Pprests3 (t), . . . .PprestsN (t) (2)

As shown in a Equation (2), Pprestsi (t) can be defined in the
vector form Pprestsi (t) = {Pprestsi,sj (t)|J ∈ {1, 2, 3 . . .N }, J ̸=
I }. Pprestsi,sj (t) shows the relation between the switch si and
the switch sj. Every element of Pprestsi,sj (t) ∈ [0, 1], where
Pprestsi,sj (t) = 0 means there is no connection between switch si
and switch sj at any unit time t andPprestsi,sj (t) ∈ [0, 1] shows the
switch sj weight that which is selected as next hop of switch
si.

3) REWARD
In Deep Reinforcement Learning (DRL), the efficiency and
effectiveness of the agent’s actions are assessed through
the reward function. Consequently, the reward associated
with each action varies. Within our proposed technique,

key parameters defining the reward function include switch
processing delay, switch forwarding delay, switch queuing
delay, switch packet loss rate, and flow table status. QoS
and QoE-related parameters impacting the reward function
encompass propagation delay, jitter, link packet loss rate, and
latency, respectively. The reward function is articulated in
Equation (4).

Attack(t) = α{RW attack(s99Kd)
IoTi (t)+ RW attack(d99Kc)

si (t)} (3)

RW (t) =
1

|Trans|

∑
i∈Trans

[Attack(t)+ βRWQoS
si (t)

+ σRWQoE
si (t) (4)

Equation (3) outlines the attacks on IoT device IoTi
and switch si during any given unit time t . The term
RW attack(s99Kd)IoTi(t)+ RW attack(d99Kc)si(t) accounts for the
potential occurrence of two types of attacks, aiming to
undermine QoS and QoE. One attack could arise from the
sensing layer to the data layer, denoted as s 99K d . The
other attack could stem from the data layer to the control
layer, denoted as d 99K c. We incorporate the value from
Equation (3) into Equation (4).

Before delving into Equation (4), it is important to
acknowledge that the transmission task within any unit time
t encompasses two distinct phases. In the first phase, SDN-
enabled switch si transfers the data, and in the subsequent
phase, the data is directed to the SDN-enabled destination
switch sj via a communication link. In Equation (4), |Trans|
signifies the maximum number of data transmission jobs
during any given unit time t . Parameters α, β, and σ are
function tuning parameters, the values of which are adjusted
to optimize the function, either by maximizing or minimizing
it. Notably, the sum of these tuning parameters is constrained
to α + β + σ = 1. The term Attack(t) denotes the attack
reward affecting switch si and IoTi, indicating the severity
and intensity of security attacks on these entities. In essence,
severe security attacks diminish the reward, while less severe
attacks yield the opposite effect.

We break the Equation (3),

RW attack(s99Kd)
IoTi (t) = −FalsInfo− StealSenInfo (5)

RW attack(d99Kc)
si (t) = −DELprocesssi − DELqueuesi

− DEL forwardsi − PLRsi + FTSsi (6)

After dissecting Equation (3), we derive Equation (5)
and Equation (6). Equation (5) characterizes the impact
of sensing layer attacks on IoT devices. Attacks on these
devices can introduce false information into the system or
compromise sensitive data. Severe attacks on the sensing
layer can significantly disrupt system performance in terms
of QoS and QoE, thus leading to a reduction in the reward
value. Similarly, Equation (6) encapsulates the effect of an
attack on the data layer, targeting an SDN-enabled switch si.
Potential consequences of such a data layer attack on switch
si include switch processing delay, queuing delay, forwarding
delay, and packet loss rate.
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Now, QoS and QoE rewards are defined in Equation (7)
and Equation (8) respectively.

RWQoS
si (t) =

∑
j∈{1,2,3,4...N },j̸=i

[Pprestsi,sj (t)− DEL
propagate
si,sj

− LPLRsi,sj − Jittersi,sj ] (7)

RWQoE
si (t) =

∑
j∈{1,2,3,4...N },j̸=i

[Pprestsi,sj (t)

+ HighLatencysi,sj ] (8)

Equation (7), DELpropagatesi,sj − LPLRsi,sj − Jittersi,sj shows
that propagation delay DELpropagatesi,sj , Link packet loss rate
LPLRsi,sj , and jitter Jittersi,sj effect theQoS reward. Similarly,
Equation (8)HighLatencysi,sj shows high latency effects QoE
reward.

C. INTEGRATION OF THE PROPOSED TECHNIQUE WITH
DDPG
In this section, we discuss our proposed technique and its
application for efficient and secure routing. The integration
of the proposed technique with DDPG [29] and the global
view of the SDN-IoT environment enables the establishment
of secure routing mechanisms. This is achieved by defining
new states, actions, and rewards.

1) DDPG
DDPG is one of the most commonly used DRL techniques.
The fourth layer of our proposed model (DRL agent) utilizes
DDPG, as illustrated in Fig. 3. It employs the actor-critic
model of DRL, wherein the actor comprises the actor
network and the target actor network denoted as τ (s|θ τ )
and τ ′, respectively. Similarly, the critic includes the main
critic network and the target critic network η(s, a) and η′,
respectively. The structure of both the main network and the
target network is the same. The current policy is determined
by the actor-network τ (s|θ τ ), which maps states to actions.
The critic network η(s, a) employs the Bellman equation for
learning, and typically, the output of the actor serves as the
input for the critic.

2) SAMPLE COLLECTION
The exploration policy is employed to generate samples from
the environment, and sample records (s(t), a(t), r(t), s(t +
1)) are stored in a replay buffer B following the DDPG
mechanism. Here, s(t) and a(t) denote the initial state
and policy network output, respectively. Additionally, the
action a(t) is executed on the state s(t), resulting in the
corresponding rewards r(t) and the subsequent state s(t + 1).
The procedure for the sample collection process in SDN-IoT
is illustrated in Fig. 3 and also outlined in Algorithm 1.

3) TRAINING
The training process is represented in an Equation (9)

Train(θ) =
1
M

∑
t

(y(t)− η(s(t), a(t)|θη))2 (9)

Deep Q-learning is used to train the critic net. As shown in
equation (9), the actor network takes the state s(t) as input and
provides the action a(t) as an output. Then, the critic network
takes the action a(t) as input and provides η(s(t), a(t)|θη) as
an output.

η(s(t), a(t))←−η(s(t), a(t))+ ζ (r(s(t), a(t)))

+ ωa(t+1)η(s(t + 1), a(t + 1))

− η(s(t), a(t)) (10)

In Equation (9), target Q-value y(t) is defined as follow

y(t) = r(t)+ ωη′(s(t + 1), τ ′(s(t + 1)|θ τ ′ )|θη′ ) (11)

As shown in Equation (11), the summation of reward and Q-
value r(t)+ωη′(s(t+1)) gives the target value. The input state
s(t + 1) gives the output action τ ′(s(t + 1)|θ τ ′ ). By using the
policy gradient technique, the gradient of the actor-network
is given as:

δJ (θ τ )
δθ τ

= Zs[
δη(s, a|θη)

δa
δτ
′(s|θτ )

δθ τ
] (12)

Parameters updation process is explained in Equation (13)

`
θτ J≈ 1

M
∑

t
`
a η(s,a|θη)|s=s(t),a=τ (s(t))

`
θτ τ (s|θτ )|s(t) (13)

Against the same state s(t), main actor provides multiple
actions. Hence, different actions can be used as an input for
main critic to achieve different Q values. Equation (14) and
Equation (15) update the target network

θη′
←− φθη

+ (1− φ)θη′ (14)

θ τ ′
←− φθ τ

+ (1− φ)θ τ ′ (15)

The detailed trainingmechanism of the proposed technique
is elaborated in Algorithm 2.

Algorithm 1 Data Sample Collection Process From the
Underlying Environment
1: Initialization of buffer B
2: Initialization of both main critic and main actor networks

η(s, a|θη), τ (s|θ τ ) along with their weights θη, θ τ

respectively.
3: Initialization of target critic network η′ and τ ′ along with

their weights θη′
←− θη and θ τ ′

←− θ τ

4: for epic = 1 to Trans do
5: Initial state s(t)
6: for t=1 to T do
7: action selection a(t) = τ (s(t)|θ τ )
8: action execution a(t) and observe reward r(t)
9: new state observation s(t + 1)

10: Transition in buffer B (s(t), a(t), r(t), s(t + 1))
11: end for
12: end for
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Algorithm 2 Proposed DQQS Model Training
1: for epic = 1 to Trans do
2: for t=1 to T do
3: Transition from buffer B (s(t), a(t), r(t), s(t+1))
4: The training process is represented in an

Equation (9)
5: Target Q-value y(t) is defined in Equation (11)
6: Parameters updation process is explained in

Equation (13)
7: Updating the target network by using

Equation (14) and Equation (15)
8: end for
9: end for

V. EXPERIMENTATION AND THE PROPOSED TECHNIQUE
EFFICACY EVALUATION
A. EXPERIMENTAL PROTOCOL
We established the SDN-IoT environment using the Mininet
2.3.0 simulation tool [30]. Subsequently, we deployed a Deep
Learning model within the ONOS SDN controller, utilizing
the Python-based TensorFlow framework. Our environment
is equipped with the latest version of TensorFlow, v2.12.0.
The simulations were carried out on a laptop with an
8th-generation Intel Core i9 processor, 16 GB of RAM,
and a 1TB hard disk. The proposed model serves a dual
purpose: attack classification and routing optimization. For
attack classification, we employed two datasets, namely
the NSL-KDD dataset and the IoT dataset. We compared
the performance of our model with that of naive Deep
Learning models, using metrics such as Accuracy, Precision,
Recall, and F1-score. In the routing optimization task,
we evaluated the proposed technique using three key metrics:
throughput, latency, and the probability of avoidingmalicious
nodes. We also conducted a comparative analysis against
the four state-of-the art routing algorithms named Open
Shortest Path First (OSPF) [31], Least Loaded (LL) routing
algorithm [32], RL-Routing protocol [33], and sailfish
optimization algorithm [27]. To achieve this, we created a
simulated environment comprising 50 sensor nodes and 20
SDN-enabled switches. Within these 20 switches, we desig-
nated two nodes as the source node (si) and the destination
node (sj), respectively. It is important to note that certain
sensor nodes and SDN-enabled switches are susceptible to
attacks, potentially jeopardizing network performance and
effectiveness. As discussed in previous sections, our proposed
four-layer model is vulnerable to security attacks and threats,
particularly in two of its layers: the sensing layer and the data
layer. The parameters used in the proposed model are given
in Table 4.

B. COMPUTATIONAL COMPLEXITY
We have employed a DRL model within our proposed
framework to achieve both security and optimized routing
in the SDN-IoT environment. Measuring the computational

TABLE 4. List of parameters used in the proposed DRL model.

complexity of our model presents a considerable challenge,
as it relies on multiple factors, including network architecture
complexity, state and action spaces, and training iterations.
To estimate the computational complexity, we employed
two methods: Theoretical Analysis and Scalability Testing.
These techniques collectively demonstrate that the com-
putational complexity of our proposed model, from the
data pre-processing stage to the optimized routing policy,
is notably superior to OSPF, L-L Routing, and Sailfish
Routing in the context of a heterogeneous and dynamic
environment. The proposed technique takes 230 seconds to
perform routing optimization in an SDN-IoT environment,
whereas OSPF, L-L Routing, and Sailfish Routing require
350 seconds, 430 seconds, and 310 seconds respectively.

C. DESCRIPTION OF DATA SETS
The two datasets that we are going to describe are considered
as a benchmark in the domain of network security and SDN-
IoT security.

1) IoT DATA SET
IoT-23 [34] is a benchmark dataset of IoT traffic collected
from heterogeneous IoT devices. The proposed technique
will be tested and evaluated on this IoT dataset. Within the
IoT dataset, the division of sub-data is such that 20 sub-
datasets are gathered from malicious IoT devices, and 3 sub-
datasets are collected from benign IoT devices. In this dataset,
there are 23,145 traffic flows and four classes, where each
flow belongs to one of the four classes. These four classes
are: 1) Benign; 2) C and C; 3) DDoS; and 4) PortScan.
Among these four classes, only ‘benign’ belongs to the
normal class, and the other three are considered as security
attacks. Each record contains 21 columns, representing
various characteristics of traffic flow. The IoT dataset is
configured in such away that theDDoS class contains 14,294,
benign contains 100,000, PortScan contains 122, and C and
C contains 6,706.

2) NSL-KDD DATA SET
The NSL-KDD dataset is an updated version of the KDD-
cup99 dataset [35]. It contains 125,973 training records
and 22,544 testing records, with a total of 41 attributes.
The dataset comprises two main classes: 1) Normal class;
2) Attacked Class. The Attacked class is further divided into
four attack classes: 1) DoS; 2) Probing; 3) Remote to Local
(R2L); and 4) User to Root (U2R). A DoS attack targets a
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node by inundating it with a massive amount of traffic flows,
rendering the target node dysfunctional and unable to provide
an appropriate response. In a probing attack, the primary
objective of the attacker is to extract important information
from the target node. In an R2L attack, as the name suggests,
the attacker’s main objective is to gain local access through
a remote device. An example of an R2L attack is retrieving
a password. In a U2R attack, the attacker’s primary purpose
is to gain access to the root privileges of the target system.
Table 5 illustrates the class distribution of the NSL-KDD
dataset.

D. STATISTICAL ANALYSIS
In this subsection, we have used four metrics (Accuracy,
Precision, Recall, and F1-score) to compare the threat
identification and prediction capabilities of the proposed
model with other DL models (LSTM, CNN, DT, SVM). For
comparison and evaluation purposes, each DL model was
trained 150 times and then tested on a separate test dataset.
The results of each model with the best detection rate are
displayed. Now, let’s define each metric with their respective
formulas:
• Accuracy: It measures the proportion of correctly
classified instances (or data points) out of the total
number of instances in the dataset. In other words,
it quantifies how often the model’s predictions or
classifications match the actual labels or ground truth.
Mathematically, accuracy is calculated as:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(16)

In Equation 16, TP denotes True Positive, TN denotes
true negative, FP denotes false positive, and FN denotes
false negative.

• Precision: Precision is concerned with the proportion
of true positive predictions (correctly identified positive
instances) out of all instances predicted as positive,
including both true positives and false positives.
Mathematically, precision is calculated as:

Precision =
TP

TP+ FP
(17)

• Recall: It measures the ability of the model to correctly
identify all the relevant instances from the total actual
positive instances in the dataset.
Mathematically, recall is calculated as:

Precision =
TP

TP+ FN
(18)

• F1-score: is a metric used in machine learning to pro-
vide a balance between precision and recall, especially
in situations where there is an uneven class distribution
(class imbalance). It is the harmonic mean of precision
and recall.
Mathematically, the F1-score is calculated as:

F1− score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(19)

E. EXPERIMENT ANALYSIS
In this subsection, we have used four metrics (Accuracy,
Precision, Recall, and F1-score) to compare the threat
identification and prediction capabilities of the proposed
model with other DL models (LSTM, CNN, DT, SVM). For
comparison and evaluation purposes, each DL model was
trained 150 times and then tested on a separate test dataset.
The results of each model with the best detection rate are
displayed.

1) EXPERIMENTATION ON IoT DATA SET
We conducted experiments on the IoT dataset to assess the
performance of the proposed systems in IoT environments.
For assessment purposes, we partitioned the dataset into
training and test sets using a random 7:3 ratio within
each class, resulting in 84,855 training samples and 36,367
test samples. The performance of all models was then
evaluated using the previously separated test data. Figure 4
evaluates and describes the confusion matrix for the proposed
framework using the IoT-23 dataset. The accuracy of attack
detection stands as a vital metric, measuring the performance
and effectiveness of the proposed framework. Utilizing
the confusion matrix as a technique to ascertain accuracy
levels proves to be highly effective. The IoT-23 dataset’s
confusion matrix, depicted in Fig. 4, clearly underscores
the excellent performance of the proposed framework in
accurately predicting the actual attack classes. Moreover,
the Receiver Operating Characteristic (ROC) illustrates the
degree of separation and assesses the model’s efficiency
in accurately classifying normal and abnormal classes.
We conducted a validation of our proposed framework on the
IoT-23 dataset, employing ROC analysis with and without
the feature selection approach. Fig. 5 and Fig. 6 showcase
the outcomes derived from the ROC analysis and accuracy
of the proposed framework respectively. Likewise, Fig. 7,
Fig. 8, and Fig. 9 depict the multiclassification comparison
between the DLmodels and the proposed framework. Table 6
provides a comprehensive display of the results obtained from
the proposed framework on the IoT-23 dataset.

2) EXPERIMENTATION ON NSL-KDD DATA SET
We trained and tested our proposed technique along with
other DL models on the NSL-KDD dataset. As mentioned
earlier, this dataset comprises distinct training and test sets.
We utilized 125,973 records for training and 22,544 records
for testing. All models were evaluated on the original test
dataset for an unbiased analysis. Fig. 10 and Fig. 11 display
the information regarding the confusion matrix and ROC
analysis of the NSL-KDD dataset, respectively. Additionally,
Fig. 12 illustrates the accuracy comparison between the
proposed framework and naive DL models on the NSL-KDD
dataset. For binary classification results on the NSL-KDD
dataset, Fig. 13 and Fig. 14 present detailed outcomes. Table 7
provides the detailed experimental results on the NSL-KDD
dataset.
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TABLE 5. NSL-KDD dataset distribution.

TABLE 6. Performance Comparison of LSTM, SVM, Decision Trees (DT), CNN Models with the Proposed Model on IoT-23 Dataset, DDoS, CandC, and
PortScan Tasks.

TABLE 7. Results of NSL-KDD test dataset.

FIGURE 4. Confusion matrix for the proposed framework on the IoT-23
dataset.

Table 8 showcases the processing time, learning time,
and detection time of various DL models and the pro-
posed technique across two benchmark datasets: IoT-23

FIGURE 5. Analysis of IoT-23 dataset with respect to ROC.

and NSL-KDD, specifically focusing on attack detection.
Five methods, including the proposed framework, underwent
evaluation on the IoT-23 dataset. For instance, SVM recorded
510 seconds of processing time, 25 seconds for learning,
and 22 seconds for detection, respectively. The DT model
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FIGURE 6. Performance comparison of the proposed technique with
naive deep learning models in terms of attack detection and prediction
Accuracy (%) on the IoT-23 dataset.

FIGURE 7. Multiclassification performance comparison of the proposed
technique with naive deep learning models in term of Recall, Precision,
and F1-score by classifying the DDoS attack on the IoT-23 dataset.

FIGURE 8. Multiclassification performance comparison of the proposed
technique with naive deep learning models in term of Recall, Precision,
and F1-score by classifying the C and C attack on the IoT-23 dataset.

demands 540 seconds for processing time, with 26 seconds
devoted to learning and 24 seconds for detection. LSTM,

FIGURE 9. Multiclassification performance comparison of the proposed
technique with naive deep learning models in term of Recall, Precision,
and F1-score by classifying the PortScan attack on the IoT-23 dataset.

FIGURE 10. Confusion matrix for the proposed framework on the
NSL-KDD dataset.

on the other hand, requires 370 seconds for processing,
accompanied by 17 seconds for learning and 16 seconds
for detection. In a similar vein, CNN utilizes 387 seconds
for processing, 23 seconds for learning, and 19 seconds for
detection. Notably, the proposed framework demonstrates
the shortest processing, learning, and detection times among
all DL models, clocking in at 290 seconds, 13 seconds,
and 6 seconds, respectively. On the NSL-KDD dataset,
the proposed framework also surpassed the DL models,
achieving optimal processing, learning, and detection times
of 300 seconds, 11 seconds, and 7 seconds, respectively.

F. EFFICACY AND EFFICIENCY EVALUATION
To assess the effectiveness and efficiency of the proposed
technique, it is evaluated and tested against four network
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TABLE 8. Comparing the computational processing time of the proposed framework with DL models across different datasets. Note: Processing Time,
Learning Time and Detection time are measured in seconds.

FIGURE 11. Analysis of NSL-KDD dataset with respect to ROC.

metrics: throughput, packet loss rate, and the probability of
routing through attacked nodes. These metrics are crucial for
network evaluation, especially when considering the influ-
ence of sensing plane attacks (Eavesdropping Attack (EDA),
Physical Tampering Attack (PTA)) and data plane attacks
(Man-in-the-Middle Attack (MIMA), Distributed Denial of
Service Attack (DDoS)). In the following subsections, the
proposed technique is comprehensively evaluated using these
metrics, and comparisons are made with the state-of-the-art
routing protocols.

1) THROUGHPUT
Here, the performance assessment of the proposed technique
in terms of throughput is conducted, and it is compared
with the state-of-the-art routing techniques (OSPF, LL, RL,
sailfish). Rigorous evaluations have been carried out in both
attacked and non-attacked environments. In the non-attacked
environment, all sensor nodes and switch nodes function
normally. On the other hand, the attacked environment

FIGURE 12. Performance comparison of the proposed technique with
naive deep learning models in terms of attack detection and prediction
Accuracy (%) on the NSL-KDD dataset.

FIGURE 13. Binary classification performance comparison of the
proposed technique with naive deep learning models in term of Recall,
Precision, and F1-score by classifying the normal traffic on the NSL-KDD
dataset.

involves random attacks on sensors and switches, lead-
ing to performance degradation in terms of QoS and
QoE.
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FIGURE 14. Binary classification performance comparison of the
proposed technique with naive deep learning models in term of Recall,
Precision, and F1-score by classifying the abnormal traffic on the
NSL-KDD dataset.

FIGURE 15. Comparison between the proposed technique and
state-of-the art routing algorithms on the network metric Throughput in a
non-attacked environment.

Fig. 15 depicts the performance of both the proposed
model and related routing algorithms in a non-attacked
environment. The results demonstrate that all techniques
exhibit an excellent packet delivery rate. Fig. 16 display
the performance of the proposed framework and state-of-the
art routing algorithms in an attacked environment. Initially,
we set the reward parameters α, β, and σ to 0.3, 0.3, and
0.4, respectively. As depicted in Fig. 16, the packet delivery
rate of the proposed model is higher than the other routing
algorithms under the Man-in-the-Middle (MIM) Attack.
This improved performance of the proposed model can be
attributed to its intelligent decision-making, which enables it
to select secure routing paths.

2) LATENCY
The time taken by a packet to travel from the source node
si to the destination node sj is commonly referred to as

FIGURE 16. Comparison between the proposed technique and
state-of-the art routing algorithms on the network metric Throughput in
an attacked environment.

network latency. Higher latency indicates greater delay, while
lower latency implies minimal delay. Delay is influenced
by various factors including propagation delay, transmission
delay, queuing delay, and processing delay. In this subsection,
we will compare the latency of the proposed technique with
the four state-of-the art routing algorithms. Experimental
results indicate that in a non-attacked environment, both
protocols exhibit similar behavior and almost the same
latency value. However, when the environment transitions
from non-attacked to attacked, the number of attacked
nodes (sensors and switches) and malicious nodes gradually
increases. In an attacked environment, the latency value of all
routing algorithms increases due to the constant obstruction
and disruption caused by malicious nodes. Thanks to the
intelligent behavior and learning capability of the DRL agent
in the proposed model, its performance is notably better,
stable, and boasts lower latency compared to related routing
algorithms. The trained agent avoids malicious nodes by
learning from the underlying environment, thereby reducing
latency.

Furthermore, through extensive experimentation in an
attacked environment, we have observed that different
network attacks exert varying impacts on latency. The results
demonstrate that data plane attacks (MIMA and DDoS) have
a more pronounced impact on latency when compared to
sensing plane attacks (PTA and EDA). Among the data plane
attacks, DDoS has a greater impact on latency compared
to MIMA. Additionally, we have identified that altering
the values of the reward parameters [α, β, σ ] influences
latency. The outcomes of our experimentation in non-attacked
and attacked environments are depicted in Fig. 17
and Fig. 18.
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TABLE 9. Performance comparison between the proposed framework and state-of-the art routing algorithms.

FIGURE 17. Comparison between the proposed technique and
state-of-the art routing algorithms on the network metric Latency in a
non-attacked environment.

3) THE PROBABILITY OF AVOIDING THE ATTACKED
SWITCHES
In this subsection, we assess the probability of successfully
avoiding malicious and attacked nodes when the SDN-IoT
network is under attack. Our experimentation results clearly
indicate that the proposed technique exhibits a significantly
higher probability of successfully avoiding malicious and
attacked nodes compared to the other state-of-the art routing
protocols. This is evidenced by Fig. 19, which portrays our
experimental findings.

VI. RESULTS AND DISCUSSION
The proposed technique has demonstrated excellent perfor-
mance compared to the four state-of-the art routing algo-
rithms (OSPF, L-L, Sailfish, RL). In an attacked SDN-IoT
environment, the performance comparison of the proposed
technique with these four algorithms across three network
metrics is shown in a Table 9. The results indicate that the
four routing protocols have failed to tackle security attacks,
and dynamic, and unpredictable traffic flows and hence

FIGURE 18. Comparison between the proposed technique and
state-of-the art routing algorithms on the network metric Latency in an
attacked environment.

unable to provide secure routing with high-quality QoS and
QoE. On the other hand, the proposed technique steadily
improves its performance through continuous interaction
with the underlying environment and the generation of
optimized policies. This is evident in the third performance
metric (Probability of avoiding malicious nodes) in Table 9,
where the proposed technique outperformed all four routing
algorithms comprehensively by the value 0.81%.

Despite the excellent performance of the proposed tech-
nique, there are some limitations in the proposed model.
The first limitation concerns the hidden layers of the
proposed model. This model contains three hidden layers
to address security attacks as well as to optimize routing.
However, it is a fact that complex problems are solved more
efficiently with an increasing number of hidden layers. Thus,
increasing the number of hidden layers can improve the
efficiency of the proposed model in terms of throughput
and by avoiding the present malicious nodes. The second
limitation of the proposed model pertains to security attacks.
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FIGURE 19. Comparison between the proposed technique and
state-of-the art routing algorithms on the metric of the probability of
successfully avoiding the attacked nodes.

All experimentation and testing were conducted using
well-known and older security attacks. However, it is impor-
tant to acknowledge that the performance of the proposed
model may be adversely affected when exposed to state-of-
the-art and the latest security attacks. The third limitation of
our proposed technique pertains to the utilization of datasets
for attack detection and classification. We employed two
datasets, namely NSL-KDD and IoT-23, for this purpose.
While these datasets are not particularly large, they do contain
a fair number of records. In the future, it would be valuable to
assess the effectiveness of the proposed technique on larger
datasets. The fourth limitation concerns dataset imbalance.
Our evaluation involved testing the proposed technique on
both balanced and imbalanced datasets. Notably, the results
on balanced datasets were significantly superior to those on
imbalanced datasets. Therefore, future work should focus on
enhancing the efficiency of the proposed technique when
dealing with imbalanced datasets.

VII. CONCLUSION AND FUTURE WORK
In this article, we proposed a Deep Reinforcement Learning
(DRL)-based efficient and secure routing technique named
DQQS designed for the SDN-IoT environment. The core
functionality of this proposed model is to ensure secure
routing while maintaining both Quality of Service (QoS)
and Quality of Experience (QoE) within the network.
To validate its accuracy in identifying and classifying attacks,
we conducted experiments using four AI metrics (Accuracy,
Precision, Recall, and F1-score) and compared it with
naive DL models (LSTM, CNN, DT, SVM). Subsequently,
we evaluated the technique against three QoS and QoE-
related metrics: Throughput, Latency, and Probability of
avoiding attacked nodes. The simulations demonstrate that
the proposed model exhibits excellent accuracy in identifying
attacks and surpasses the state-of-the art routing models by a

significant margin, particularly when nodes are under attack.
This exceptional performance in the SDN-IoT attacked envi-
ronment can be attributed to the intelligent DRL agent, which
formulates secure, optimized routing policies by analyzing
rewards and interacting with the underlying environment.
While discussing future research directions, the first future
research direction is the usage of activation functions in
the proposed algorithm. The proposed model uses three
activation functions: ReLU, Tanh, and Softmax. In future
research work, new activation functions or combinations of
these three activation functions can be employed to enhance
the security and efficiency of the proposedmodel. The second
future research direction is the exploitation of other DL
models, such as Autoencoder (AE), Deep Belief Network
(DBN), and Generative Adversarial Network (GAN).
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