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ABSTRACT Class imbalance problems have received a lot of attention throughout the last few years.
It poses considerable hurdles to conventional classifiers, especially when combined with overlapping
instances, where the complexity of the classification task increases. In this study, we have proposed a novel
density-based method that combines the Ordering Points To Identify the Clustering Structure (OPTICS)
algorithm with the Naive-Bayes approach to effectively handle overlapped and imbalanced problems at
the same time, known as OPTICS-based k-Naive Bayes (Ok-NB). The Ok-NB method is used to correctly
identify and construct the training data into overlapping and non-overlapping groups based on their density
and reachability, while the Naive-Bayes technique is used to correctly map the test data samples to the
appropriate class for accurate output. It offers adaptability and reliability in classifying complex datasets with
overlapping and imbalanced properties. Cluster-based proximity assessment and probabilistic classification
are combined to improve classification accuracy and guarantee that the most reliable neighbours’ opinions
are given the greatest weight during the decision-making process. Extensive experiments were conducted
on 21 benchmark datasets and the experiment results demonstrate how effectively the suggested approach
works to achieve high classification accuracy. This proves the effectiveness and superiority of this proposed
approach compared to existing state-of-the-art methods in tackling overlapping and imbalance challenges in
classification tasks.

INDEX TERMS Classification, imbalanced data, overlapped data, OPTICS, Naive-Bayes.

I. INTRODUCTION
Class imbalance in the dataset is a prevalent and challenging
issue in machine learning, where the instances of the classes
are not evenly distributed [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11]. Most of the time, traditional machine
learning algorithms are more attracted to the majority class
(classes having a large number of instances [10], [12]),
and the minority class (classes having a few numbers of
instances [10], [12]) is ignored which results in reduced
accuracy and performance [7], [8], [13]. This problem is
encountered in a wide range of real-world applications like
medical diagnosis [14], [15], fraud detection [16], [17],

The associate editor coordinating the review of this manuscript and

approving it for publication was Jad Nasreddine .

fault prediction [18], [19], text classification [20], [21] etc.
To diminish the impact of class imbalance, various techniques
have been proposed which include data-level, algorithm-
level, and hybrid approaches. The data-level approaches
deal with data preprocessing, such as oversampling and
undersampling, to balance the class distribution. Although
it is effective in some scenarios, it may suffer from
overfitting problems, increased computational complexity,
or loss of information [4], [7], [8], [10], [13], [22], [23].
In contrast, algorithm-level approaches directly address the
class imbalance within the learning algorithm itself. These
approaches modify the algorithms’ learning mechanisms to
adapt the imbalanced data and improve performance across
all classes. By enhancing the base learning algorithms,
algorithm-level techniques seek to achieve a more balanced
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FIGURE 1. Noisy instance.

and accurate classification for both majority and minority
classes without compromising generalization capabilities [4],
[7], [8], [10], [13], [22], [23]. A hybrid approach combines
these two approaches to tackle this issue [4], [7], [8], [10],
[13], [22], [23]. While all the above-mentioned approaches
aim to address the challenges posed by imbalanced data,
the algorithm-level approach offers distinct advantages that
make it more effective and practical in various real-
world scenarios [24], [25]. The algorithm-level approach
directly alters the learning processes of the algorithm to
adapt imbalanced data, ensuring that the model is naturally
capable of handling class imbalance without the need
for extensive data preprocessing techniques. In contrast,
data-level approaches like oversampling or undersampling
might cause data duplication or loss, which could result
in overfitting or important data deterioration [12], [24],
[25]. By specifically taking into account class imbalance
throughout the learning phase, the algorithm-level approach
may more evenly distribute predictive performance across all
classes, enhancing accuracy and recall for both majority and
minority classes [12], [24], [25]. In the data-level approach,
the training data set may need to be altered, or synthetic
data may need to be created, which can greatly increase
training time and computer resources. Instead of requiring
considerable data modification, the algorithm-level method
makes use of the learning algorithm’s built-in features, which
makes this approach more effective [12].
Prediction accuracy is substantially hampered by the

presence of noise and overlapped instances in the data set.
An instance is considered noise if it does not belong to both
the minority class and the majority class and an instance is
considered an overlapped instance if it belongs to both the
majority and minority class [4], [7], [8], [13], [22], [23].
If Ⓢmaj and Ⓢmin are the two set of majority and minority
instance respectively then instance ι is considered noise if:

ι /∈ Ⓢmaj ∧ Ⓢmin (1)

An instance ι is considered an overlapped instance if:

Ⓢmaj ∩ Ⓢmin = ι (2)

Figure 1 represents noise instance, whereas Figure 2 repre-
sents overlapped instance. Noise magnifies prediction errors
and decreases model reliability, and overlapping blurs class
boundaries that lead to misclassification [26], [27], [28], [29].
The majority of research concentrates on finding new ways
to solve overlapping and imbalance problems individually.

FIGURE 2. Overlapped instance.

However, themerging of overlapping and imbalance concerns
in real-world applications makes the categorization task
extremely difficult. Even though some attempts have been
made to handle both issues simultaneously, implementation is
not feasible due to the complexity of the algorithm structures
[30], [31].

A. MOTIVATION
The proposed approach is initiated to provide a general
framework to deal with the complex problems caused
by imbalanced datasets with overlapping instances. Tradi-
tional classification approaches frequently fail to categorize
instances properly because of the inherent complications
associated with class imbalance and overlapping instances.
To efficiently tackle overlapped and imbalanced situations
at the same time, a density-based strategy called OPTICS-
based k-Naive Bayes (Ok-NB) is proposed that combines
two key components to address this problem. (i) Cluster-
based preprocessing using the Ordering Points To Identify the
Clustering Structure (OPTICS) [32] algorithm with a mod-
ified reachability distance function, and (ii) A probabilistic
classification method based on Naive Bayes [33] approach
incorporating a new weighted score concept along with the
consideration of the top k weight concept.
OPTICS is a density-based clustering algorithm that can

handle overlapping data in an imbalanced dataset [32]. It is
designed to locate clusters depending on the number of data
points present. As a result, even if the clusters are overlapped,
it can still capture regions of extremely dense data, which
makes it particularly helpful for handling overlapping data.
It works effectively in scenarios where it may be difficult
for typical distance-based algorithms to distinguish between
clusters [32]. In contrast to DBSCAN (a density-based
algorithm for discovering clusters in large spatial databases
with noise) [34], it does not rely on a fixed neighbourhood
radius. As an alternative, it employs an adjustable reachability
distance that enables it to capture clusters of all sizes and
forms, including overlapping clusters.

Through the process of clustering, the imbalanced and
overlapped training dataset is partitioned into discrete clus-
ters, each of which represents a different subset of instances,
such as majority and minority noise, overlapped majority and
minority instances, majority instances (without overlap), and
minority instances (without overlap). This process enables
the proposed approach to properly distinguish between noisy
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data and overlapping instances, which provides a way for a
more precise categorization.

To perform the subsequent task, the preprocessed clustered
data is used as input for the Naive Bayes algorithm.
The Naive Bayes technique is used to correctly map the
test data samples to the right group for accurate output.
Naive Bayes is included in the OPTICS framework because
of its probabilistic foundation, which makes it possible
to describe complex relationships in the dataset. Naive
Bayes is especially well-suited for situations where features
may exhibit varying degrees of dependence. The proposed
approach leverages the advantages of probabilistic reasoning
to improve the precision of cluster assignments. Users can
comprehend the concepts behind classification judgments
by using the probability and weighted scores provided for
each class, which enhances interpretability. To customize
the approach for various datasets and settings, users can
modify the value of the parameter k, which determines how
many top-weighted clusters are taken into account during the
classification process.

The significance of the proposed strategy is the sys-
tematic methodology that allows it to manage imbalanced
datasets with overlapping classes successfully. It offers a
strong framework for precise classification even in difficult
situations with class imbalance and overlap by combining
cluster-based preprocessing and probabilistic classification
procedures. This method improves the overall reliability of
the classification process by increasing the accuracy of the
results and provides insights into ambiguous situations.

B. CONTRIBUTIONS OF THE STUDY
The primary contributions of this study are:

• Development of an approach that enhances data cluster-
ing by considering overlapping data in an imbalanced
dataset.

• Creating a strategy for effective classification.
• Development of an algorithm-level (two-step) approach
to deal with the overlapped and imbalanced problem at
the same time.

C. PAPER ORGANIZATION
This paper has been organized as follows: In Section II, the
relevant works in this area are discussed. The details of the
background study are included in section III. Section IV
provides a brief overview of this recommended strategy.
Extensive experiments on various datasets are presented
in Section V. The results and analysis are presented in
Section VI. Finally, Section VII presents the conclusion and
future works.

II. RELATED WORKS
Numerous machine learning and data mining systems
struggle with the issue of imbalanced data. When classes
are imbalanced in a dataset, it can lead to biased model
performance, where the minority class may be misclassified.

As mentioned in the previous section, there have been
many different strategies suggested to address this issue.
The data-level and algorithm-level approaches are the most
widely used techniques [35].

The data-level approach concentrates on altering the
dataset itself to adjust class distributions before supplying
the dataset to a classifier [10], [12]. Making synthetic
samples for the minority class, the Synthetic Minority
Over-sampling Technique (SMOTE) [36] is a pioneering
approach to solving the issue of class imbalance. By syn-
thesizing minority class samples, SMOTE provides an
effective solution for class imbalance; however, its efficacy
depends on robustness to high-dimensional feature spaces
and proper parameter selection [36]. SMOTE has undergone
numerous additions and modifications throughout time to
improve its functionality and suitability for a range of
situations. These variations include Borderline-SMOTE (B-
SMOTE) [37], Kernel-based SMOTE (K-SMOTE) [38],
Support Vector Machine -SMOTE (SVM-SMOTE) [39],
Adaptive Synthetic Sampling Approach (ADASYN) [40]
etc. These variations offer distinct advantages and disad-
vantages. Borderline-SMOTE identifies those instances of
minority class close to the decision boundary, where the
classification task is more difficult. Then it creates synthetic
instances for these borderline circumstances. Although it
decreased noise and enhanced classification performance,
its efficacy can differ based on parameter settings and
dataset properties [37]. By creating artificial minority class
instances in a high-dimensional feature space specified by
a kernel function, k-SMOTE enables the construction of
sophisticated and non-linear decision boundaries. Although
it offers enhanced classification performance and non-
linearity, it exhibits difficulties with computing complexity,
kernel selection, and interpretability [38]. SVM-SMOTE
combines the SMOTE technique with SVM classification
to create synthetic instances that are more informative for
the classifier. It may enhance classification performance
by creating synthetic instances in areas where the SVM
classifier has low confidence. While it combines the strength
of SMOTE and SVM, its effectiveness in some scenarios
may be limited by its sensitivity to classifier parameters
and computational cost [39]. ADASYN is considered a
prominent approach to dealing with the problem of class
imbalance. It concentrated on instances in the minority class
where accurate classification is more challenging. It creates
synthetic instances for minority classes where the class
distribution is most imbalanced. It has difficulties with
computational complexity, noise sensitivity, and parameter
selection, but it also provides flexibility and attention to
difficult instances [40].

The algorithm-level approaches can change the learn-
ing process and provide more accurate, impartial, and
fair models. Existing approaches like k-Nearest Neighbor
(k-NN) [41], Support Vector Machine (SVM) [42], and
Random Forest [43] have significantly inspired the creation
of new algorithms and strategies to address this problem.
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These algorithms have not only made way for cutting-edge
methods but have also directly advanced the processing of
imbalanced data.

In typical machine learning problems, the k-NN is one
of the most effective and straightforward classifiers but the
performance of k-NN suffers a lot if the data are imbalanced.
To solve this issue, the K Exemplar-based Nearest Neighbor
algorithm (ENN) [51] is proposed. As a pattern-oriented
strategy, it is characterized as relying on amplifying the
influence of minority class samples. The pivot minority class
instances are chosen and their boundaries are expanded into
Gaussian balls as part of the approach’s operation. Another
pattern-oriented approach that is comparable to ENN is
the Positive-biased Nearest Neighbor (PNN) [52]. However,
it does not include a training step. Compared to ENN,
PNN is a faster approach. The distribution-oriented methods,
which rely on collecting meaningful prior knowledge of
the data distribution, stand in contrast to the pattern-
oriented methods. One of these techniques is the Class-Based
Weighted k Nearest Neighbor, which balances the instances
based on the estimated k-NN misclassification rate [53].
Other examples of distribution-oriented approaches include
Class Conditional Nearest Neighbor Distribution (CCNND)
[54] and Informative k Nearest Neighbor-localized version
(Ll-kNN) [55]. k Rare Class Nearest Neighbor Classification
(K-RNN) [44] is one approach that focuses on locating and
classifying uncommon occurrences in an imbalanced dataset.
It seeks to enhance the classification of minority groups by
taking into account each data point’s k-nearest neighbours,
but due to the computationally demanding nature of k-nearest
neighbour identification, it might have scalability problems
when working with huge datasets. Additionally, it might not
function effectively when there is a strong class imbalance
since the rare class may not be sufficiently isolated from the
majority class in feature space. In order to choose a balanced
training set from imbalanced data and enhance model
performance, a Memetic Approach for Training Set Selection
in Imbalanced Data Sets (BQI-GSA) [46] was proposed that
combines genetic algorithms and simulated annealing but
the success of BQI-GSA depends on parameter settings,
which can be dataset-specific and computationally costly.
In order to specify a constant radius for closest neighbour
classification in imbalanced datasets, Gravitational Fixed
Radius Nearest Neighbor for Imbalanced Problem (GFRNN)
[47] uses the idea of gravity forces to increase the overall
accuracy of imbalanced data classification jobs by adjusting
the neighbourhood size for each data point based on its class
distribution, but it has trouble to handle regions with different
densities or high-dimensional data.

In order to improve the categorization of minority classes,
the Neighbors Progressive Competition Algorithm (NPC)
[48] gradually competes with neighbouring samples to
address the imbalanced data. This strategy encourages
the repeated adjustment of class borders and has demon-
strated potential for enhancing classification performance

on imbalanced data, but it is also sensitive to the initial
neighbourhood size selection, which may affect the overall
performance. Least Squares KNN-Based Weighted Multi-
class Twin SVM (LS-KWMTSVM) [49] combines the ideas
of K-nearest neighbours and twin SVMs and uses a least
squares method to apply various weights to the classes but
it is not suitable for large datasets. Density-Based Adaptive
K Nearest Neighbor (DBANN) [50] can handle overlapping
problems in imbalanced datasets by modifying KNN to
capture overlapped regions. In terms of high-dimensional
data or extensive overlaps, it may create difficulties.

SVM is another effective classifier that looks for the best
way to classify data points into distinct groups. One of
the most significant weaknesses of SVM is its tendency
to favour the majority class when handling unbalanced
datasets. A number of approaches have been proposed
based on SVM such as Fuzzy Support Vector Machines
(F-SVM) [56], Fuzzy total Margin based Support Vec-
tor Machine (FM-SVM) [57], Entropy-based Fuzzy Least
Squares Twin Support Vector Machine (EFLT-SVM) [58]
etc. The F-SVM algorithm is recommended primarily for
handling noise and outliers. Different fuzzy membership
values are assigned to the instances in this case to characterize
their significance. The performance of this method depends
on fuzzy membership value calculation techniques. Outliers
and noise typically have lower fuzzy membership values than
the other samples. It also struggles with issues related to
imbalanced data. Support Vector Machine-Based Optimized
Decision Threshold Adjustment Strategy (SVM-OTHR) [45]
improves the efficiency of support vector machines (SVM)
in datasets with imbalances by optimizing the decision
threshold. By tweaking the decision boundary, this adjust-
ment approach enables the SVM classifier to manage class
imbalances more effectively, but the kernel function and
regularisation parameters need to be carefully chosen. During
parameter adjustment, class imbalance may require special
handling. An overview of all the algorithmic-level approaches
explained above is summarized in table 1.

It can be observed from table 1 that each of the mentioned
approaches has made a substantial contribution to this
domain. There are still certain research gaps. The sensitivity
of these approaches towards parameter settings and the
requirement for robustness across different datasets and
complexity is one notable difference between them. For
instance, the definition of rare classes and the value of
k can affect the efficacy of K-RNN. The performance of
SVM-OTHR is dependent on the choice of kernel and
parameter adjustments. Likewise, approaches like BQI-GSA
and GFRNN face difficulties concerning convergence and
sensitivity to dataset properties, which restricts their use in
many problem domains. Furthermore, the complexity of LS-
KWMTSVM’s parameter tuning procedure and the difficulty
of NPC’s conflict mechanism design emphasize the need
for more flexible and scalable approaches. Though current
approaches provide useful solutions for class imbalance,
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TABLE 1. Literature summery Table.

they frequently ignore the complex nature of overlapping
instances.

III. BACKGROUND
A. OPTICS
A density-based method called OPTICS (Ordering Points
To Identify the Clustering Structure) [32] is a dominant
density-based clustering technique used in data mining and
machine learning. It has the potential to recognize noisy
instances and clusters of different sizes and shapes, including
clusters with irregular structures. It is an extension of the
popular Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [34] technique. While DBSCAN is
quite good at locating dense clusters, it provides a more
thorough picture of the clustering structure by generating a
reachability plot, which includes useful information about
the density distribution of the data set. The MinPts and
epsilon ε radius are the parameters used by this algorithm,
where ε describe the area around each point, and MinPts
is the minimal number of points necessary to construct a
dense region to determine how close points must be to one
another in order to associate with the same cluster [32]. The
fundamental ideas behind OPTICS are:

1) CORE DISTANCES
The local density surrounding a data point ι is measured by
its core distance. It is defined as the distance between ι and
its MinPts, where MinPts represents the lowest number of
data points needed to make a dense zone and is a user-defined
parameter. If a data point is a core point, it can be determined

using the core distance [32].

core distance(ι) = distance(ι, NMinPts(ι)) (3)

where, NMinPts(ι) is the collection of MinPts that are closest
to ι.

2) REACHABILITY DISTANCE (RD)
It calculates the density of the relationship between two data
points. A denser area is indicated by a shorter reachability
distance [32].

RD(ιi, ιj) = max(core distance(ιj), distance(ιi, ιj)) (4)

where, distance(ιi, ιj) = The Euclidean distance or another
distance metric between the data points ιi and ιj.

B. NAIVE BAYES CLASSIFIER
Bayesian statistics and probabilistic reasoning serve as
the foundation of the Naive Bayes method. It uses the
Bayes theorem and the ‘‘naive’’ assumption of feature
independence to determine the conditional probability of a
class given by the data. This enables it to classify objects
or make predictions based on the most likely class [33].
The fundamental job of this classifier can be considered as
follows:

1) DATA PREPARATION
Preprocess the dataset, ensuring features are independent and
identically distributed. Transform categorical variables into
numerical representations.
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FIGURE 3. Block diagram of the proposed Ok-NB method.

2) PROBABILITY ESTIMATION
Calculate the class probabilities (prior probabilities) and the
conditional probabilities for each feature given the class.
This involves estimating the probability distributions, such as
Gaussian for continuous data or multinomial for discrete data.

As this algorithm is based on Bayes’ theorem, therefore
based on predictor (prior probability) and observable data
(conditional probability), it determines the likelihood of a
hypothesis (class) [33].

P(ζ|~) =
[P(~|ζ) · P(ζ)]

P(~)
(5)

where, P(ζ|~) = Posterior probability of a class ζ given
predictor ~.

P(~|ζ) = Likelihood of predictor ~ of a given class ζ.
P(ζ) = Prior probability of class ζ.
P(~) = Total probability of predictor ~ (Normalization

factor).
To determine how likely a specific feature or attribute value

is given a class, conditional probabilities are used.

P(ζ|~) =
Number of instances with feature~ and class ζ

Total number of instances in class ζ
(6)

The likelihood of a class occurring without taking into
account any particular attribute is represented by the prior
probability.‘

P(ζ) =
Number of instances in class ζ

Total number of instances
(7)

With dependent feature vectors ~1 through ~n and class
variable, the probability ∀ i is:

P(ζ|~1, . . . , ~n) =
P(ζ)Πn

i=1P(~i|ζ)

P(~1, . . . , ~n)
(8)

These probabilities are determined by Naive Bayes for
each class, and the class with the highest posterior probability
is designated as the predicted class for a specific instance.
When doing a classification task, this procedure is repeated
for each class.

IV. PROPOSED METHOD
Previous studies have clearly demonstrated the importance
of query neighbors in k-nearest neighbors (k-NN) [41]
classification. These studies have repeatedly highlighted
that nearby data points play a vital role in the k-NN
base algorithm’s decision-making process. For reliable and
accurate classification results in k-NN, it is crucial to
understand and utilize the connections and properties of
surrounding data points [52], [59]. To deal with overlapping
data, the Adaptive k-Nearest Neighbours (A-kNN) [60]
approach dynamically changes the distance metric based on
how much the data points overlap and also calculates and
relies on a reliable coefficient (ri) for each training instance
(ιi). It is the distance from ιi to its closest neighbour ιj that
belongs to a different class.

ri = min_distance(ιi, ιj) (9)

Some studies also focused on dynamically modifying the
query neighbours based on the precise level of class
imbalance and data overlap in the dataset by considering ri
and the majority vote f(ι) for each training instance (ιi) for
classification [50]. This concept has inspired the addition of
a weighted score to the suggested approach, which will be
determined by the following equation.

W(ι) = P(ζ) · P(~|ζ) (10)

This adaptability guarantees that the neighbourhood selection
can change in accordancewith the distinctive properties of the
data, ultimately producing more accurate and reliable clas-
sification results in situations where conventional k-nearest
neighbour approaches may fail.

Motivated by this, the proposed OPTICS-based k-Naiv
Base (Ok-NB) approach has been designed that combines
the power of OPTICS [32] for cluster-based proximity
assessment and pairs with the probabilistic classification
capabilities of Naive Bayes [33] to identify and rank those
nearby data points that are most trustworthy and instructive
for making classification decisions. Naive Bayes is renowned
for its simplicity and computational efficiency. It can also
handle datasets with an extensive feature count that helps to
overcome issues with high-dimensional datasets.

To address imbalanced and overlapping situations simulta-
neously, the ri concept is adopted and utilized to modify the
reachability distance described in equation 4 of the OPTICS
algorithm and consider the equation 11 for overlapped
reachability distance (ORD) of this proposed approach.

ORD(γ) =
max(core distance(ιj), distance(ιi, ιj))

ri
(11)

With the new reachability distance, it is now possible
to accomplish finer-grained clustering, better separation
of overlapping clusters, better noise treatment, adjustable
control over reliability, effective handling of imbalanced data,
robustness to outliers, and increased cluster quality. These
benefits make it a useful method for grouping complex
datasets with overlapping and imbalanced properties.
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FIGURE 4. Imbalanced dataset with overlapped and noise.

The integration of Naive Bayes into the modified OPTICS
framework provides the capability to effectively represent
feature relationships that provide a scalable resolution for
sophisticated datasets. It also offers a sound foundation for
improving the precision of cluster assignments and strength-
ening the interpretability of the outcomes. To improve the
overall accuracy and reliability of the classification process,
the opinions of the most trustworthy neighbours are given
the greatest weight and the final classification is done by
considering the maximum k weight. This comprehensive
approach guarantees solid and dependable final classification
outcomes, even in difficult data situations.

This proposed method is a two-step process that consists
of the following phases:

1) Data Clustering using Modified OPTICS Technique.
2) Classification using Proposed k-Naive Bayes

Approach.
Figure 3 shows the block diagram for the suggested approach.

A. DATA CLUSTERING USING MODIFIED
OPTICS TECHNIQUE
In the first step, a binary imbalanced dataset with overlapping
and noisy instances is divided into different clusters using
the OPTICS algorithm with a modified reachability distance,
where the reachability distance is considered as mentioned
in equation 11. With this modification, it is possible to
take into account the accuracy of reachability when locating
clusters in an imbalanced dataset with overlapping data.
These categories are intended to capture various features
of the dataset, such as minority and majority instances
as well as overlapping, and noisy instances. Accordingly,
training data can be clustered up to six clusters. (a) Majority
noise, (b) Minority noise, (c) Overlapped majority instances,
(d) Overlapped minority instances, (e) Majority instances
(without overlapped), and (f) Minority instances (without
overlapped). Figure 4, demonstrates an imbalanced data set
with overlapped and noise.

Grouping the data into various clusters can reduce the
overlap and improve the ability to distinguish the classes

more precisely. It offers a detailed illustration of the dataset.
Because of its flexibility, the algorithm can successfully
detect differences between overlaps and imbalances andmod-
ify its approach as necessary.While some clustersmight place
more emphasis on areas with less overlap, certain clusters
might concentrate on areas with considerable overlap. With
distinct clusters, it can customize its classification strategy
to the traits of each cluster, enabling more context-aware
predictions. It will also help in making more accurate and
trustworthy predictions. This method can help to identify
instances of the minority class more precisely and reduce
misclassification.

Consider a two-dimensional dataset with data points A, B,
C, D, and E forming two clusters, X and Y. B belongs to both
clusters, but D and E do not belong to any clusters. Now to
recognize the overlaps and noise, please note the following:

• To measure the density of each point at first, the core
distances of each instance must be calculated.

• The reliable coefficient and the reachability distances
are calculated by taking into account both actual and
core distances.

• Reachability distances determine the density. Dense
places that have relatively low reachability distances are
considered clusters.

• The distance between an instance of one class and an
instance of another class is represented by the reliable
coefficient. Points with low reliable coefficients with
several clusters are frequently noticed as overlapping
instances, indicating that these examples are dense in
multiple clusters.

• Lower density is indicated by points with higher
reachability distances representing noise.

The reachability distance and reliable coefficient of B are
relatively small in both clusters (indicating that B is a
dense point for both X and Y), and if a point is dense in
several clusters, it results in an overlap. D and E have high
reachability distances with their neighbors and are recognized
as noise.

The algorithm for clustering the instances is mentioned in
the algorithm 1.
In the initial stage, the imbalanced dataset is loaded

for the subsequent clustering task. After that, the OPTICS
algorithm is applied to process the dataset using a mod-
ified reachability distance stated in the equation 11. This
modification improves the clustering capabilities of this
approach, especially for datasets with a high imbalance ratio.
The threshold values for cluster density are also defined in
this phase. To produce specified clusters, parameters like γ
(maximum distance between two instances to be considered
neighbours) and MinPts (minimum number of points to
constitute a cluster) are used. Depending on the unique
properties of the dataset, these thresholds can be modified.
The lists for each category are then initialized after that.
In order to group instances into six aforementioned clusters,
six empty clusters are created. For the purpose of storing
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FIGURE 5. Flowchart of the proposed data clustering approach.

FIGURE 6. Clustering instances with the modified OPTICS algorithm.

instances and calculating the mean for each cluster, lists
are made. To keep track of the processed data, a blank set
is initialized. The reachability distance γ is determined for
each instance in the dataset by using equation 11. Based on
the separation of the instances, the reliable coefficient ri is
used to calculate the distance between the instances by using
equation 9. This phase modifies the distance calculation to

take the γ into account for the reliability of each instance.
For storing instances for further processing, a blank queue
is created. The clusters are eventually formed by using the
equations 3 and 11 and based on the following conditions.

• Clusters with majority class instances with higher
reachability distances γ are considered as majority
noise.

• Clusters with minority class instances with higher
reachability distances γ are considered as minority
noise.

• Clusters with majority class instances, low reachability
distances γ, and low reliable coefficient (ri) are consid-
ered as overlapped majority instances.

• Clusters with minority class instances, low reachability
distances γ, and low reliable coefficient (ri) are consid-
ered as overlapped minority instances.

• Clusters with majority class instances, low reachability
distances γ, and high reliable coefficient (ri) are
considered as majority instances.

• Clusters with minority class instances, low reachability
distances γ, and low reliable coefficient (ri) are consid-
ered as minority instances.

Finally, the aforementioned six clusters will be created.
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Algorithm 1 Data Clustering Using Modified-OPTICS
Input:
Dataset D, where ι ∈ D (ι is an instance) with class labels ιmaj
(majority instance) and ιmin (minority instance).
MinPts (Minimum number of points to form a cluster)
τ maximum distance between two instances to be considered
neighbors
Output:
Required clusters
Initialization:
Initialize six empty clusters.
∀ cluster, maintain a list of ι
Create an empty set E to keep track of processed ι.

Calculate the Euclidean distance between two instances
(ι1, ι2).
∀ ι ∈ DCalculate reliable co-efficient ri(ιmaj, ιmin) by using
equation no 9.
∀ι ∈ D Calculate core distance by using equation 3.
∀ unprocessed ι ∈ D:

Calculate γ(ι1, ι2) using equation 11.
Add ι to E.

∀ι ∈ D
if ι ∈ ιmaj then

if γ(ι) < τ then
if ri(ι) < τ then

Add ι to the ‘‘Overlapped majority instances’’ cluster.
else

Add ι to the ‘‘Majority instances’’ cluster.
if γ(ι) > τ then

Add ι to the ‘‘Majority noise’’ cluster.
end if

end if
end if

end if
if ι ∈ ιmin then

if γ(ι) < τ then
if ri(ι) < τ then

Add ι to the ‘‘Overlapped minority instances’’ cluster.
else

Add ι to the ‘‘Minority instances’’ cluster.
if γ(ι) > τ then

Add ι to the ‘‘Minority noise’’ cluster.
end if

end if
end if

end if
Return required clusters

Figure 5 illustrates the flowchart of the proposed data clus-
tering approach and figure 6 illustrates the clusters obtained
by the modified OPTICS algorithm from an overlapped and
noisy imbalanced data set. In addition to being clustered
together, these clusters are also distinguished by how
instances of the majority and minority classes are distributed

Algorithm 2 Proposed Ok-NB Method for Classification
Input:
New instance ιn ∈ Test data-set D≈
Clusters/Classes created by algorithm 1
User-defined value for k
Output:
Assigned class for instance ιn
Initialization:
Initialize a buffer P to store probabilities P(ζ) for each class.
Initialize a buffer W to store the weighted score f(ι) for each
class.

∀ ιn Calculate prior probability P(ζ) for ιn with respect
to each class using equation 7 by considering relevant
features.

Store P(ζ) in P for the class.
Calculate the class-conditional probability P(ιn|ζ) for the
features of instance ιn in class ζ using the equation 8.
∀ ιn Calculate the weighted score W(ιn) for each class
based on the P(ζ) using equation 10.

Store W(ιn) in W.
Sort f(ιn) in W in descending order.
Select the top k weighted scores with maximum

W(ιn).

if There is a clear majority among the top k clusters then
Assign ιn to the cluster with the majority weighted

score. AndDisplay the assigned cluster as the classification
result.
else

if There is no clear majority or a tie among the top k
clusters then

Display a ‘‘No Consensus’’ or ‘‘Ambiguous’’ result to
indicate the uncertainty.

end if
end if

within them. To allow the proposed approach to discriminate
between majority and minority noise, overlapping majority
and minority instances, and non-overlapped instances of both
classes, reachability distances are evaluated in a fashion that
reflects the underlying distribution of classes.

B. CLASSIFICATION USING PROPOSED K-NAIVE
BAYES APPROACH
After the data clustering stage, the procedure moves on to
the final classification task. A probabilistic approach called
Naive Bayes [33] is employed for the classification process.
It is renowned for its ease of use and effectiveness in pro-
cessing continuous or categorical data. Features are selected
based on their significance and ability to support precise
classification. The preprocessed clustered data created in the
previous step are used to train this proposedOk-NB approach.
Initially, it determines the prior probability P(ζ) for each
cluster, which is the likelihood that a given data point will
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FIGURE 7. Flowchart of the proposed Ok-NB approach.

belong to that cluster, given the total number of instances in
that cluster. For each feature of the new instance ιn in each
cluster, the class-conditional probability P(ιn|ζ) is calculated
using the Naive Bayes algorithm. Each cluster’s weighted
score,W(ιn), is determined by using equation 10. Importantly,
in the situation of imbalanced and overlapping datasets,
features are chosen according to their capacity to facilitate
accurate classification. This guarantees that the classifier is
strong and able tomanage the complexity found in these kinds
of datasets.

After that, the weighted scores of each cluster are sorted,
and then the top k clusters are chosen. The number of
top-rank values is specified by the variable k. If there is
a clear majority among the top k clusters, the instance is
assigned to the cluster with the majority weighted score,
which is the classification result. The approach shows doubt
by reporting ‘‘No Consensus’’ or ‘‘Ambiguous’’ if there
is no clear majority or tie among the top k clusters. This
method addresses scenarios when there might not be a
single dominant cluster for the new instance and permits
probabilistic categorization based on weighted scores. With
this approach, classification may be done in a customizable

FIGURE 8. Ok-NB method.

manner. The user can change the variable k to designate how
many of the maximum scores should be taken into account
when calculating the average score for each cluster, ensuring
that the most informative instance has the most impact on the
choice. The algorithm for Proposed Ok-NB is mentioned in
the algorithm 2.

Figure 7 illustrates the flow chart of the proposed approach,
and Figure 8 shows how the O-kNB method works. This
diagram illustrates the six clusters that were produced in the
earlier phase. The ‘New Queries’ instance is indicated by
the black box. To determine which cluster is appropriate for
the new instance, the Ok-NB first determines the likelihood
for each cluster. Subsequently, the algorithm determines the
weight of likelihood for every cluster. Following that, it will
take into account the top k weight and use the majority weight
selection to determine the outcome.

V. EXPERIMENTS
In this section, an attempt has been made to outline the exper-
imental setup and process for comparing the performance
of the proposed Ok-NB approach, with several well-known
state-of-the-art methods. The performance of the suggested
approach is assessed in three different categories: In one
category the comparison is made with a few recently pro-
posed algorithm-level approaches which are discussed above
in section-II like, K-RNN [44], SVM-OTHR [45], BQI-
GSA [46], GFRNN [47], NPC [48], LS-KWMTSVM [49],
and DBANN [50]. It will determine whether the suggested
strategy can compete with current developments in the
field while maintaining its applicability and effectiveness in
modern settings.

To evaluate the performance of the suggested approach
with different resampling techniques, in the next category, the
proposed approach is compared with a few resampling strate-
gies like SMOTE [36], B-SMOTE [37], K-SMOTE [38],
SVM-SMOTE [39], andADASYN [40]. Here Support Vector
Machine (SVM) is used as the classifier.

To establish a benchmark, finally, the comparison is
done with the traditional classifier like k-nearest neighbours
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TABLE 2. Details of used datasets.

(k-NN) [41], Support Vector Machine(SVM) [42] and
Random Forest (RF) [43].
The main objective of this comparison is to evaluate the

advantages, disadvantages, and overall efficacy in real-world
applications of this proposed approach. This is done by
thoroughly comparing the proposed approach with recent
algorithm-level approaches, resampling techniques, and con-
ventional classifiers using a variety of datasets with varying
degrees of class imbalance and real-world settings. To ensure
uniformity and fairness in comparisons, every experiment
is carried out in a setting with the same hardware and
software. The KEEL [61] open-source platform is used for
the development of all comparison methodology programs as
well as learning tools.

A. BENCHMARK DATASET
A detailed experiment has been done on 21 binary-class
imbalanced datasets taken from the KEEL [62] data set
repository to evaluate the effectiveness of this suggested
strategy. These datasets were frequently used to assess
the effectiveness of various techniques. The range of the
imbalance ratios is 3.36 to 129.44. Table 2 lists the specifics
of the descriptions of the experimental dataset.

B. PARAMETER SETTING
For performance evaluation, the proposed method, Ok-NB
is compared with other approaches that include state of
art classifiers like k-NN [41], SVM [42], RF [43] and a
few advanced algorithm level approach like K-RNN [44],
SVM-OTHR [45], BQI-GSA [46], GFRNN [47], NPC [48],
LS-KWMTSVM [49], and DBANN [50]. The parameter k
is picked from the original literature and set to 3, 3, and 1,
respectively, for the kNN-based methods kNN, DBANN,
and kRNN. According to the original literature, the other

parameter like Minpts is set to 4 for DBANN, and 10-fold
cross-validation is used to select eps as the best value from
the range [0.01, 200]. For SVM and Ada-SVM C, degree and
gamma are considered 1.0, 3, and auto, respectively.

The OPTICS base clustering requires two input param-
eters, which are the minimum number of points to form a
cluster (MinPts) and the maximum distance between two
instances to consider neighbors (τ), respectively. According
to earlier studies, (MinPts) has minimal effect on the
clustering outcomes [32]. For this reason, to examine its
effects on clustering performance, (MinPts) is set to 5, and
(τ) is adjusted between 0.01 and 0.1 in this phase. Three
real-world datasets were employed in these experiments, and
the outcomes are listed in a table 3. Figure 9 demonstrates
that (τ) is a sensitive parameter that greatly influences the
clustering performance.

The number of clusters tends to decrease as the (τ) value
increases, and the noise level also tends to decrease. This
shows that less clustering occurs when (τ) values are bigger.
Furthermore, it seems that the influence of (τ) on the number
of clusters and noise levels differs among datasets, suggesting
possible differences in data properties and clustering efficacy.
Although the three datasets had varying noise levels, the
suggested approach eventually produced the required number
of clusters at (τ) = 0.05. According to this, (τ) = 0.05 would
be a good value to use to get the desired clustering outcome
for subsequent tasks.

Finally, for the proposed Ok-NB, the threshold values for
(MinPts) and (τ) are considered 5 and 0.05, respectively.
The parameter k controls the number of clusters assessed for
categorization. It can be any value between 1 and 6. The
accuracy of the classification results is directly impacted by
the parameter k selection. A lower value of k could lead to
a more limited representation of the cluster and possibly a
more skewed result. On the other hand, a higher value of
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TABLE 3. Clustering results based on different (τ) values.

FIGURE 9. Clustering analysis with different(τ) values.

k might contain more clusters, which would allow the data
to show more nuances results. The possibility of running
across ambiguous instances is influenced by sensitivity to
parameter k. Due to restricted cluster representation, a smaller
value of k might lead to more instances being categorized as
ambiguous; conversely, a larger value of k might decrease
the frequency of ambiguous classifications but increase
computational cost. Computational efficiency is also affected
by the selection of parameter k. A higher value of k requires
more computational time and resources. Conversely, a lower
value of k minimizes processing cost, but it may result in
worse classification accuracy by ignoring important clusters.
For the final classification, the k is considered 3.

1) PERFORMANCE METRICS
AUC (Area Under the Receiver Operating Characteristic
Curve), F1 Score, and Accuracy are the evaluation measures
used to assess the efficacy of this suggested approach,
Ok-NB. AUC is especially important when contrasting the
ability of a suggested strategy to discriminate against alter-
native approaches. It analyzes how effectively a model can
discriminate between positive and negative instances [63].
In situations where there is a class imbalance, the F1-score
becomes very important. It strikes a balance between recall
and precision. It considers the significance of false positives
as well as false negatives in analysis [63]. A broad indicator of

overall correctness in some classification outcomes is accu-
racy. It is essential to understand the percentage of accurately
predicted events in every class. It is possible to evaluate a
given approach’s efficiency in producing accurate predictions
throughout the whole dataset by comparing its accuracy
with the accuracy of other approaches [63]. The main
objective is to offer a thorough assessment of the model’s
classification performance for the specified task. These three
measurements can offer a complete picture of how well the
suggested technique performs in the classification challenge.
They enable us to assess the model’s discriminative power
(AUC) [63], precision-to-recall trade-off (F1 Score) [63], and
overall prediction accuracy (Accuracy) [63]. By using these
measures, we want to offer a comprehensive evaluation of the
model’s effectiveness and applicability for the desired use.

True – Positive – Rate(TPR) =
TP

TP + FN
(12)

False – Positive – Rate(FPR) =
FP

FP + TN
(13)

AUC =
1 + TPR – FPR

2
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 – Score =
2 · Precision · Recall
Precision + Recall

(17)

Accuracy =
TP + TN

TP + FP + TN + FN
· 100

(18)

where TP, FP, TN, and FN are true positive, false positive,
true negative, and false negative, respectively.

VI. RESULT AND DISCUSSION
A few comparable experiments on all of the datasets
listed in Table 2 with the other imbalanced classification
approaches described above have been done in order to
confirm the effectiveness of the proposed approach in
handling imbalanced datasets with different imbalance ratios.
For each experiment, the AUC, F1-score, and accuracy have
been calculated. With respect to each and every data set, the
AUC, F1-score, and accuracy rate of all the recently proposed
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FIGURE 10. The average AUC of various approaches over the dataset.

FIGURE 11. The average F1-Score (in%) of various approaches over the
dataset.

FIGURE 12. The average accuracy (in%) of various approaches over the
dataset.

FIGURE 13. The average AUC of various resampling approaches over the
dataset.

algorithm-level approaches are listed in the table 4, 5, and 6
respectively. Similarly, the AUC, F1-score, and accuracy
rate of various resampling approaches using the SVM as a
base classifier are listed in table 7, 8, and 9, respectively.
The table 10 consists of the same values for the traditional
classifier.

Figures 10, 11, and 12 present the graphical represen-
tation of the performance metrics - AUC, F1 score, and
Accuracy rate, respectively, for the recent algorithm-level
approaches. These figures illustrate how well the proposed
approach performs across different evaluation criteria over

FIGURE 14. The average F1-score (in%) of various resampling approaches
over the dataset.

FIGURE 15. The average accuracy (in%) of various resampling approaches
over the dataset.

FIGURE 16. The average AUC of various traditional classifiers and OK-NB
over the dataset.

FIGURE 17. The average F1-Score (in%) of various traditional classifiers
and OK-NB over the dataset.

the recent algorithm-level approaches. The AUC, F1 score,
and accuracy rate for the various resampling approaches are
shown graphically in Figures 13, 14, and 15 respectively.
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TABLE 4. The average AUC of various approaches over the dataset.

TABLE 5. The average F1-Score (in%) of various approaches over the dataset.

Compared to the resampling strategy, these graphs help to
understand how well the suggested approach performs across
several evaluation criteria. The AUC, F1 score, and accuracy
rate for the traditional classifiers are shown graphically in
Figures 16, 17, and 18, respectively. The performance of
the suggested approach in comparison to the traditional
classifiers is demonstrated by these figures across a variety
of evaluation criteria.

Based on the AUC, F1-Score, and Accuracy, the per-
formance of the proposed Ok-NB approach across several
datasets in the context of addressing imbalanced data is
shown in Table 4, 5, 6, 7, 8, 9 and 10. By addressing

several aspects of classification assessment, the combination
of AUC, Accuracy, and F1-score offers a comprehensive
assessment of the performance of the suggested approach.
Good discriminating ability is shown by a high AUC value,
overall correctness is indicated by high accuracy, and the
evaluation is robust across several dimensions when the
F1-score optimizes precision and recall.

The AUC value of Ok-NB varies based on the data
set. It receives competitive AUC values on large datasets
like Ecoli1 and Yeast5, demonstrating its efficacy in these
situations. On other datasets like Cleveland0vs4 and Vowel0,
the performance is average. It is able to efficiently handle
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TABLE 6. The average accuracy (in%) of various approaches over the dataset.

TABLE 7. The average AUC of various resampling approaches over the dataset.

FIGURE 18. The average accuracy (in%) of various traditional classifiers
and OK-NB over the dataset.

skewed data under any circumstances. On datasets like
Yeast4, Ecoli0267, and Glass016vs2, Ok-NB maintains

comparatively constant performance with AUC values in
the mid to high range. This consistency can be a sign
of its dependability for particular classes of imbalanced
datasets. On datasets with overlapping data, like Glass5 and
Yeast6, when the AUC values are good, this indicates the
technique performs better. This shows that Ok-NB is capable
of effectively separating classes that overlap. On various
datasets, Ok-NB often achieves a balance between precision
and recall. It keeps competitive performance while avoiding
excessive overfitting to the majority class, which can be a
problem in circumstances with imbalanced data.

The variability across several datasets is seen by the
F1-Score values for this proposed Ok-NB method. In some
datasets, like Cleveland0vs4 and Yeast5, the approach
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TABLE 8. The average F1-Score of various resampling approaches over the dataset.

TABLE 9. The average accuracy of various resampling approaches over the dataset.

performs exceptionally well and receives high F1-Scores.
In contrast, it performs an average in other datasets like
Yeast4 and Glass015vs2, where its F1-Scores are relatively
lower. In datasets where it performs well, it demonstrates
how well it can classify. The performance of this method
seems to be consistent. As evidenced by the high F1-Scores
for ‘‘Glass015vs2’’ and ‘‘Yeast2vs4’’, the approach performs
better in datasets with overlapped data. This shows that
Ok-NB can efficiently discriminate between classes that are
overlapped.

Across many datasets, the OK-NB method’s accuracy
shows a large amount of variability. In some instances,
it achieves excellent accuracy, like in ‘‘Glass2’’ and ‘‘Shut-
tlec0vsc4’’. However, in datasets like ‘‘Glass015vs2’’ and

‘‘Yeast2vs4’’, where accuracy is average, its performance
is average. High accuracy numbers show that it can
accurately categorize instances in datasets where it excels.
This demonstrates its capacity to handle skewed data well in
particular contexts. The sensitivity to dataset characteristics
is also better than the other approach. This implies that it
performs better than alternative methods.

The experimental findings indicate that Ok-NB outper-
forms recently suggested algorithm-level approaches. The
AUC, F1 score, and accuracy metrics demonstrate its
improved performance, which highlights how well it can
address class imbalance and overlap issues to improve
classification accuracy. Therefore, the proposed approach
emerges as a promising solution for handling imbalanced
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TABLE 10. The average AUC, F1-Score (in%) and accuracy (in%) of various approaches over the dataset.

as well as overlapped data across various domains, offering
a robust and reliable approach. Regarding accuracy, F1
score, and AUC, it outperforms other resampling approaches.
Because of its intrinsic algorithmic architecture, it can obtain
improved classification results without requiring the creation
of artificial data or the alteration of already-existing samples.
Compared to conventional classifiers, it also performs better
on all metrics. The class imbalance problems can be
effectively tackled by its unique combination of probabilistic
classification and the modified OPTICS algorithm.

A. PERFORMANCE ON REAL-WORLD DATASET
In a variety of real-world application contexts, the Ok-NB
method shows potential, especially in fields where classi-
fication tasks face difficulties due to imbalanced data. Its
efficiency in tackling certain problems in these domains
is highlighted by its performance, which can be observed
in the tables 4, 5, 6, 7, 8, 9 and 10 that illustrate its
outcomes across various datasets. In datasets such as Ecoli1
and Yeast5, the Ok-NB algorithm’s competitive AUC values
show how well it can classify occurrences, which helps with
disease diagnosis and prognosis. It can handle imbalanced
biomedical datasets with reliability, as evidenced by its
consistent performance on a variety of datasets, including
Yeast4 and Glass016vs2. It can also distinguish between
classes that overlap, as demonstrated by its strong results
on datasets such as Yeast6 and Glass5, which makes it
appropriate for precisely detecting fraudulent transactions.
Furthermore, its competitive accuracy highlights its potential
in fraud detection applications, especially in datasets like
Shuttlec0vsc4 and Shuttlec2vsc4. The remarkably constant
performance of the algorithm on datasets such as Ecoli0267
and Glass4 indicates that it is a suitable method for accurately
identifying defective products. Its relevance in industrial

quality control tasks is further enhanced by its robustness in
striking a compromise between precision and recall, as shown
across many datasets.

B. TIME COMPLEXITY ANALYSIS
Although the main goal of the paper is to achieve efficient
imbalance classification, we present a method where the time
complexity of OPTICS is enhanced by providing the required
clusters obtained with modified readability distance with
overlapping instances only. Thus proposed method reduces
the run time to some extent.

The number of classes (C) and the amount of k are the
two key factors that determine the time complexity of the
proposed Ok-NB strategy for classification. It performs well,
with an O(ClogC) average and worst-case time complexity,
where C is the number of classes. For real-time classification
tasks, the technique is appropriate since its time complexity is
typically minimal and independent of the amount of the train-
ing dataset. The Ok-NBmethod offers a more straightforward
and computationally efficient way of classification compared
to other algorithms like k-nearest neighbours (KNN) or
support vector machines (SVM). This is especially true
when working with high-dimensional data. It works well for
real-time classification jobs where immediate choices are
necessary because of its low temporal complexity and high
computational efficiency.

VII. CONCLUSION AND FUTURE WORKS
It is particularly challenging to appropriately categorize an
instance because of the presence of imbalance and overlap
data in the training dataset. This study offered a novel
approach by combining the concepts of clustering and classi-
fication. It combines the advantages of both the OPTICS and
Naive-Base approach. Bymodifying the reachability distance
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function of OPTICS, along with incorporating a new weight
function and considering the top kweight inNaive-Bayes, this
approach produces classification results that are more reliable
and accurate in an imbalanced environment. Utilizing the
power of a modified OPTICS algorithm to cluster data into
identical groups and then makes use of the adaptable naive
Bayes classifier for class determination based on maximum
score count. The objective was to address the difficulties
of overlapping and imbalanced data simultaneously and
present a workable and effective solution. The outcomes of
in-depth experiments and analyses confirm the viability of
this suggested approach. The data are effectively divided into
identical clusters that more correctly reflect the underlying
structure, including regions of class overlap, by using a
modified OPTICSmethod that is optimized for density-based
clustering. The incorporation of the Naive Bayes classifier
made it possible to generate a proper prediction based on a
maximum score count inside these clusters, which improves
the overall predictive accuracy.

This approach has several significant benefits. It simplifies
the classification procedure for overlapping, imbalanced
data by eliminating the requirement for complex feature
engineering and resampling approaches. Additionally, the
clustering feature not only helps to balance out class
imbalance but also offers important insights into the fun-
damental structure of the data. It is crucial to understand
that not every issue involving imbalanced data can be solved
by using a single solution. Further study is required to
examine the constraints and adaptability of this approach
across other problem domains, as the inherent properties
of the dataset can affect the performance of any approach.
The proposed algorithm-level technique contributes sig-
nificantly to the categorization of overlapped imbalanced
data. In situations when the class overlap is a substantial
challenge, it may improve the performance of predictive
models.

Ok-NB has some limitations even though it provides an
easy-to-understand method for classification jobs. To achieve
its successful implementation in real-world circumstances,
careful consideration of parameter selection, data pretreat-
ment, and evaluation is required. The performance of the
proposed approach may vary depending on the user-defined
parameter k that is selected. Inappropriate value selection
for k could result in poor classification outcomes. The
computational cost of determining probabilities and weighted
scores for each class may decrease the performance of the
algorithm with datasets that have high-dimensional feature
space.

This study is only concerned with the binary class problem.
It may be possible to expand the Ok-NB approach in the
future to address the multiclass problem. Further study
could improve the state-of-the-art in multiclass classification
and aid in the creation of a more reliable and efficient
approach by tackling the particular difficulties presented by
multiclass imbalanced datasets with overlapping and noisy
instances.

A number of important factors and possible changes would
need to be taken into account while adapting themethodology
for multiclass classification, such as:

• The cluster representation
• The determination of prior probabilities for each cluster
• The class-conditional probability calculation
• The weighted score and Classification decision
This study establishes the groundwork for further inves-

tigation of hybrid algorithms that make use of clustering
methods for class separation and classification schemes
for accurate prediction. Future research could concentrate
on creating and improving clustering and classification
algorithms designed especially for noisy, overlapping,
multiclass-imbalanced data sets. This involves investigating
cutting-edge methods for feature selection, cluster identifica-
tion, and classification judgment in multiclass situations.

The proposed method is based on clustering datasets
that are imbalanced using the OPTICS algorithm and a
modified reachability distance. Future work may concentrate
on enhancing clustering methodologies to more effectively
manage the complexity of imbalanced data sets. This could
involve the investigation of alternate clustering algorithms or
the integration of ensemble clustering techniques to enhance
cluster quality and separation. It is assumed that this study
will inspire creative and practical responses to real-world
problems of overlapped imbalanced data, and open up new
directions for research and applications in a variety of fields
as the area of machine learning continues to develop.
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