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ABSTRACT Analog computing is based upon using physical processes to solve formal mathematical
problems. In the past, it was the predominant instrument of scientific calculations. Now, as the physical
limits imposed on digital devices compel research into alternate computing paradigms, a reexamination of
the potentialities of analog computing is warranted. This work studies the application of analog CMOS cells
toward the simulation of dynamical systems, and, more generally, solving sets of coupled time-dependent
ordinary differential equations. Following a brief review of the fundamentals of systems theory and analog
computing, the main set of computing elements is introduced, each comprising analog cells designed in
a 130 nm process. These are subsequently applied to the realization of practical, special-purpose analog
computingmodules. Illustrative systems from various fields are selected for simulation. Though by nomeans
comprehensive, these case studies highlight the capabilities of contemporary analog computing, especially
in solving nonlinear problems. Circuit simulations show good agreement with solutions obtained from
high-order numerical methods, at least over a limited range of system parameters. The article concludes
with a brief discussion of broader analog computing applications, offering future prospects toward further
exploration of its potentialities and limitations in a wide range of domains.

INDEX TERMS Analog computers, differential equations, dynamical systems, integrated circuits.

I. INTRODUCTION
Dynamical systems compose the set of mathematical tools
with which we model and analyze the world around us, and
are widely found in the natural sciences and the engineering
disciplines [1], [2]. These systems are commonly represented
in the form of time-dependent ordinary differential equations
(ODEs), the solution to which provides a description of
the system’s evolution through time. Generally, higher order
and/or nonlinear systems defy analytical treatment, and
their solution relies on application of numerical procedures,
such as the Euler or Runge-Kutta methods [1], [3]. The
discrete, stepwise nature of these algorithmsmakes themwell
suited for implementation in digital computers, especially
given the performance of modern machines. However,
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these computations still present considerable workloads,
demanding resources which are often not available in the
current trend toward low-power, high-efficiency embedded
systems. Further development of digital technology is also
increasingly hampered by the physical limits imposed on
transistor density and clock speed [4], [5], [6]. These issues
motivate the pursuit of alternative computation paradigms.
For the purposes of scientific and engineering calculations,
a shift back into the analog domain has not only proven to
be worthwhile, but also provided researchers with a whole
new set of tools with which to deal with otherwise intractable
problems.

An analog computer (AC) maps a mathematical problem
onto a set of physical quantities, thereby exploiting natural
processes in order to reach a solution [2]; since this procedure
doesn’t rely on traditional, sequential computation, the solu-
tion is obtained in real-time. Many physical representations
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are suitable for effective analog computation, and over the
course of their history, ACs developed from mechanical,
to electrical and eventually electronic apparatuses [7]. Unlike
digital computers, which are mainly geared toward data
manipulation, ACs are most suited to scientific computation,
namely solving sets of coupled time-dependent ODEs; as
explained previously, this is closely related to the problem of
predicting the behavior of dynamical systems. The ubiquity
of these problems in all areas of science and engineering
gives a sense of the wide applicability of analog computing
techniques. Though far too numerous to exhaustively list,
some of the fields in which ACs have found extensive
application include mechanics (both classical and quantum),
biology, computer science and applied mathematics, as well
as mechanical and electrical engineering [7], [8], [9], [10],
[11]. ACs excel in solving/simulating nonlinear systems,
which may be insurmountable using analytical or numerical
methods; they can also accommodate constrained variables,
as well as hybrid systems comprising both continuous and
logical variables. By coupling two or more AC modules,
interaction between multiple systems can also be imple-
mented, allowing for real-time simulation of closed-loop
dynamics.

Starting from the late 20th century, the booming micro-
processor industry pushed ACs into the background, where
they have largely remained. However, the increasing avail-
ability of mainstream, low-cost microelectronics fabrication
processes has enabled a new generation of integrated analog
computing devices. These most often take the form of
special-purpose analog processors aimed toward solving a
particular class of problems [5], [6], [12], although more
general-purpose architectures, like the field-programmable
analog array, have also been explored [13], [14], [15], [16],
[17], [18].

The following work presents an overview of the general
principles of AC operation and design in CMOS technology,
aimed toward the development of practical simulators for
(nonlinear) dynamical systems. While it is impossible to
achieve a complete account of this broad topic in such a
brief format, some typical techniques and implementations
have been selected in an attempt to showcase the capabilities,
and limitations, of AC technology. Furthermore, since all
computing elements are realized in standard analog cells, the
provided case studies can be readily generalized to suit a wide
variety of problems, in whatever fieldmay be of interest to the
reader.

The remainder of the paper is structured as follows:
Section II lays down the minimal theoretical groundwork
in systems theory and analog computing necessary for
understanding the subsequent discussion; Section III presents
CMOS realizations of the principal computing elements
required for analog computation; in Section IV, practical
concerns and limitations of electronic analog solvers are
considered; Section V showcases four analog solvers,
each dedicated to solving a different family of problems;
Section VI concludes the article with final remarks and future

prospects. All circuits were designed in the UMC 130 nm
process (1.2 V supply) within Cadence Design Systems’
Virtuoso environment, and simulations were conducted
with the Spectre electrical simulator using foundry-supplied
device models.

II. BACKGROUND
Understanding the scope and applicability of CMOS analog
solvers warrants a review of some underlying concepts.
Within this framework, the current Section first outlines
the basic theory of dynamical systems, insofar as it is
relevant to the remainder of the paper. The focus is placed
exclusively on continuous-time systems, for two reasons:
1) it is the most natural, and intuitive, description of
natural phenomena; 2) discrete-time formulations are mainly
useful for computations in a digital environment, and are
unnecessary for analog implementations. Following this is
a brief discussion of the operating principles of ACs, their
history and how they differ from today’s digital processors.

A. DYNAMICAL SYSTEMS
A dynamical system is characterized by an internal state
whose value changes over time, either autonomously or in
response to external input [19]. For an nth-order system with
m inputs and l outputs, the state, input and output vectors are
respectively defined as

x(t) =


x1(t)
x2(t)

...

xn(t)

 , u(t) =


u1(t)
u2(t)

...

um(t)

 , y(t) =


y1(t)
y2(t)

...

yl(t)

 . (1)

In its most general formulation, the system’s evolution is a
function of x and u, as well as time t ,

ẋ(t) = f(x(t),u(t), t) (2)

where f is known as the state function, and the overdot denotes
the time derivative of x. The system’s output may likewise be
described in terms of an output function h,

y(t) = h(x(t),u(t), t). (3)

Together, (2) and (3) form the system’s state-space model.
This formulation models dynamics with a first-order dif-
ferential equation, though systems involving higher-order
derivatives can still be converted into this form by appropriate
choice of x, f and h.
It’s useful to represent the system described by (2) and (3)

in the form of a block diagram. To do so, wewill first integrate
both sides of (2) with respect to time

x(t) =

∫ t

t0
f(x(t),u(t), t) dt + x0 (4)

where x0 = x(t0) is the initial state condition. With (3)
and (4), we may construct the diagram of Fig. 1; this is
an input/output representation of the system’s behavior, i.e.,
it completely abstracts the system’s inner workings. This
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FIGURE 1. Generic block diagram of a dynamical system.

abstraction can be quite useful, as it facilitates mapping
the system’s dynamics onto some physical medium, such
as electronic circuits, which may be completely distinct
from the system’s original depiction (for instance, think of
representing the position of a swinging pendulum by the
voltage of an LC oscillator).
The model of a dynamical system provides a mathematical

description of the system behavior and properties (e.g.
stability, observability, controllability, modal decomposition,
etc), as well as the means to predict its future behavior
based on the current state and external inputs. Modeling
real-world systems requires finding explicit expressions for
the state and output functions which accurately capture the
system’s dynamics, or a suitable portion thereof; this is
usually accomplished either by fitting experimental data
and/or through physical principles.

For the particular case in which functions f and h are
linear with x and u, and do not depend explicitly on time,
the state-space model reduces to

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (5)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m are
constant matrices. The model in (5) describes a linear time-
invariant (LTI) system [20]. Similarly to the general case, the
system’s block diagram can be obtained through integration
of the state equation in (5), and is illustrated in Fig. 2. The
exact solution to the state equation of an LTI system is given
by [19]

x(t) =

∫ t

t0
eA(t−τ )Bu(τ ) dτ + eAtx0 (6)

where τ is the convolution dummy variable. Many systems in
engineering and industrial applications can be represented by
LTI models, at least as a first approximation. Because of this,
LTI systems have been the subject of in-depth study for many
decades, and a wide range of tools have been developed for
their analysis [20], [21].
Generally, however, functions f and h are nonlinear, i.e.,

they include terms which are themselves nonlinear functions
of x, u, and/or t , with some common examples being
products, polynomials and trigonometric functions [20]. It is
generally impossible to obtain analytical solutions to these
systems, which greatly complicates the analysis of their
behavior and properties.

In order to tap into the body of knowledge concerning LTI
systems, the study of nonlinear systems often begins with
some attempt at linearization. The most common strategy

FIGURE 2. Block diagram of an LTI system.

starts by identifying the system’s equilibrium points (i.e.
states in which the systemwill remain unless acted upon), and
assuming that, for sufficiently small variations around these
points, the system behaves linearly [19]. While this method
can provide insight into the system’s local behavior, it fails
to capture its global evolution, and certainly cannot account
for intrinsically nonlinear phenomena, e.g. multiple modes of
behavior and chaotic motion [22].
Another issue lies in the amount of computational

resources required for accurate numerical simulations of
these nonlinear properties. Though advances in numerical
methods and the increasing availability of sophisticated
computing platforms have made these simulations more
viable, they are still far too demanding for many resource-
constrained, low-power applications [23]. In this regard,
analog simulations warrant further exploration, since they
can replicate nonlinear behavior in real-time, often with
minimal power requirements.

B. ANALOG COMPUTERS
Whereas digital computers represent data symbolically,
ACs directly map a problem’s variables onto continuous
physical quantities, such that these are subject to the same
restrictions that define the problem [7]. In other words, the
AC exploits physical processes to create simulacra of abstract
mathematical constructs.

The earliest ACs were mechanical in nature, dating back
to Ancient Greece, where they were used for astronomical
and geometrical calculations [7]. The 19th century saw the
development of mechanical devices capable of performing
calculus, and even Fourier analysis [24], [25]. In the early
20th century came the first electronic ACs, though they
were quite limited, being developed solely with passive
elements (essentially RLC networks) [7]. Much more sophis-
ticated, active designs arose with the development of the
vacuum tube-based operational amplifier (op-amp), which
allowed for electronic implementation of the most common
mathematical operations, including integration and differen-
tiation [2], [8], [10], [26]. These computers found practical
application in artillery guidance systems duringWorldWar II,
and later integrated the navigational computers of the Apollo
space program [8], [27]. Concurrently, researchers were
realizing the AC’s potential for more general scientific and
engineering calculations, namely in the study of differential
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equations and dynamical systems [10], [28]. Eventually, the
development of increasingly sophisticated digital machines
would mean the supersedure of ACs, which were mostly
considered obsolete by the 1970s [7], [29], [30]. Partly to
blame is the often highly technical and specialized nature
of the AC: even in later ‘‘transistorized’’ iterations, these
devices were quirky, unwieldy and difficult to operate. The
so-called ‘‘patch-programming’’ methods involved turning
knobs and switching wires, necessitating knowledgeable
personnel [17], [30].

In the intervening decades, however, research into analog
computing would persevere, motivated by the development
of analog very-large scale integration (VLSI) technology and
the increasing interest in neural networks and neuromorphic
computation [31], [32], [33], [34]. Today, the availability
of low cost, scalable CMOS technology has rekindled
interest in analog computation. Recent works have explored
the solution/simulation of nonlinear dynamical systems
using integrated analog circuitry, often coupled with digital
interfaces for configuration and data sampling purposes [6],
[35], [36], [37]. Results are promising, with special-purpose
solvers displaying efficiency metrics far superior to those of
modern digital computers, though often at the cost of lower
precision [17], [18], [29], [37].

At their apex, general-purpose ACs would comprise a
large set of functional blocks, namely integrators, adders,
amplifiers and multipliers, which could be interconnected
and configured to suit a plethora of problems [7], [38].
As evidenced throughout its history, the AC naturally
lends itself to scientific computation, namely to solving
ODEs, with time as the independent variable. As seen from
Subsection II-A, by appropriate choice of the dependent
variables, this class of problems can be reformulated as
the description of dynamical systems. This interpretation is
useful, as it allow us to use the language and tools of systems
theory to replicate the differential equation’s dynamics in
another medium. In particular, block diagram representations
(such as the ones illustrated in Fig. 1 and 2) can act as guides
for designing/programming an AC, by simply mapping each
of the diagram’s blocks onto their analog equivalents. In this
way, the AC ‘‘simulates’’ the dynamical system by mapping
its variables/processes onto a set of physical quantities; in the
case of electronic ACs, these usually consist of voltage and/or
current.

Compared to numerical (digital) simulations, ACs do
not rely on discrete approximations of the system’s model,
as they intrinsically operate with continuous variables [2].
Instead, the main source of error in an analog simulation
is in the implementation of each functional block: practical
realizations, whether mechanical, electrical or electronic,
always carry limited precision, accuracy and operating range.
Hence, minimizing the overall error is often a matter of
tuning the design of each component, but also of properly
conditioning the problem to the specific capabilities of the
available hardware [7].

The number of functional blocks required for solving a
given problem is proportional to the number of dependent
variables, the maximum derivative order and the number
of nonlinear terms. In particular, integrators are placed in
parallel for each state variable, and cascaded with each
derivative order. Thus, apart from initial transients and prop-
agation delays, this architecture makes the ‘‘computation’’
time of an AC approximately independent of the problem’s
complexity (it is instead set by the circuit’s time constant,
as will be seen in Section IV). Because of this, the AC is
especially useful for solving/simulating nonlinear systems,
which may otherwise be prohibitively expensive, or outright
impossible, to solve in a digital environment. Furthermore,
convergence is not an issue: if a solution to the problem exists,
then the AC is guaranteed to find it [18], [39]. Of course,
an AC’s flexibility is ultimately limited by the variety of
nonlinear blocks which constitute it. In an electronic AC,
multiplier blocks are easy to achieve, and can be used
to implement products, roots and polynomials; coupled
with function generators (or even ‘‘arbitrary waveform
generators’’), multipliers can also implement time-varying
terms. Other nonlinear electronic blocks include exponential,
logarithmic and trigonometric functions, though these are
less common and usually suffer from limited operating range
and/or temperature sensitivity [40], [41], [42], [43], [44].

Analog computing is also suited to simulating closed-
loop dynamics, which are the subject of extensive study
in control theory. In a typical control application, two
dynamical systems interact in a feedback loop, with the
first attempting to drive the second to a particular state,
often set by an external reference. The former system is
known as the controller, and the latter as the plant [20].
Either, or both, of these systems may be simulated through
an AC, enjoying the perks described previously [8], [38].
Classical architectures, such as the proportional-integral-
derivative (PID) controller, are readily implemented in an
analog environment by simply connecting the corresponding
function blocks to a weighted sum node, configured with the
proper gain values (these have to be computed a priori, or at
least adjusted experimentally).

III. COMPUTING ELEMENTS
The following subsections describe the CMOS realization
of the fundamental blocks of an analog solver, with voltage
chosen as the main computing variable. The circuitry was
designed and simulated for 130 nm technology, though it is
highly scalable to other technology nodes. All device sizings
can be found in Appendix.

A. INTEGRATOR
The integrator is the basic building block of an analog solver,
as it relates a variable to its time derivative. In analog circuits,
integration is implemented by exploiting the relation between
current and voltage in a capacitor, which may be expressed in
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FIGURE 3. Operational amplifier realization of voltage-mode integrators.
(a) Single-ended integrator op-amp configuration. (b) Fully-differential
integrator topology.

the form [46]

VC (t) =
1
C

∫ t

t0
IC (t) dt + VC (t0) (7)

where VC and IC respectively represent the voltage and
current across a capacitance C , initially charged at VC (t0).
Though IC may be provided by a current source, using
an op-amp allows for voltage-mode integration by turning
a resistor into an approximately ideal voltage-controlled
current source, as in the circuit of Fig. 3(a). Assuming the
amplifier has infinite gain, the virtual ground at the inverting
input means IC is simply given by the ratio between the input
voltage Vi and the resistance R. Writing the output voltage as
Vo = −VC , (7) becomes

Vo(t) = −
1
RC

∫ t

t0
Vi(t) dt + Vo(t0). (8)

This principle may be extended into a fully-differential
topology, as in Fig. 3(b): this configuration retains the
functionality of the single-ended integrator, while offering
reduced even-order harmonic distortion, greater signal-to-
noise ratios and easily switchable signal polarity by cross-
coupling [47]. Whether in single-ended or fully-differential
configurations, the op-amp may also perform integration on
multiple inputs. The virtual ground nodes act as summing
junctions for the input currents. As such, the total voltage
across the feedback capacitor(s) is given by the sum of the
input voltages Vn(t) weighted by their respective resistors Rn,
such that (8) becomes

Vo(t) = −
1
C

∫ t

t0

∑
n

Vn(t)
Rn

dt + Vo(t0). (9)

One problem with the integrator arrangements of Fig. 3 is
that they lack stable DC operating points, as the capacitor’s

TABLE 1. Op-amp performance specifications.

infinite impedance at DC effectively places the op-amp
in open-loop operation; this issue is commonly mitigated
by placing a large resistor across the feedback capacitor,
which ensures proper biasing by turning the op-amp into an
inverting amplifier at lower frequencies [46]. However, in this
application, the integrator is part of a larger feedback network
that guarantees a DC path between the integrator’s input and
output, such that no further biasing techniques are required.

Fast operation and high accuracy are dependent upon op-
amp characteristics, namely gain-bandwidth product (GBW).
High output-swing is also desirable for preventing out-
put saturation. Among the most common CMOS op-amp
architectures, the folded-cascode amplifier provides a good
compromise between speed, noise and power consump-
tion [45], [48], [49]. The schematic for the folded-cascode
amplifier used for this work is shown in Fig. 4(a). Transistors
M1 − M4 form a differential cascoded pair, loaded by
two current mirrors formed by M5, M6 and M15 −M18,
respectively.M14 forms the tail current source, andM9 −M13
provide the necessary biasing voltages. The overall biasing
is set by the reference current source Ib. The output
DC level is set by the common-mode feedback circuitry,
which is detailed in Fig. 4(b). Operation of the circuit is
straightforward: if, for instance, the sampled common-mode
is higher than the reference voltage Vcm, the currents through
M2 and M3 will increase, resulting in a greater voltage
drop across M5; since this voltage sets the bias for the
output cascoded mirror, the currents through the output
transistors will increase, pulling the output common-mode
level down [45]. Resistors R provide source degeneration
to minimize the loss in output swing. M7 − M10 form
current sources and are biased by the voltage at node Vb in
the main op-amp circuit. The folded-cascode op-amp, along
with the common-mode feedback circuity, were simulated in
the Spectre software. The amplifier’s transfer function and
performance specifications are provided in Fig. 5 and Table 1,
respectively. All amplifiers used throughout the remainder of
this article are based on this op-amp design.

B. MULTIPLIER
Nonlinear terms and voltage-controlled gains are achieved
through the use of multiplier blocks. Four-quadrant analog
multipliers have traditionally been based on the Gilbert cell,
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FIGURE 4. (a) Complete schematic of the folded-cascode operational transconductance amplifier [25], [26]. (b) Common-mode feedback
circuitry (adapted from [45]).

FIGURE 5. Bode plot of the folded-cascode op-amp’s transfer
characteristics.

which relies on the exponential relation between voltage and
current in PN junctions to realize multiplication in the current
domain [50]; when operating with voltage-mode signals,
voltage-to-current converters are required to achieve good
linearity over a reasonable range of input voltages [47].
Though the Gilbert cell may be realized with properly biased
MOS devices, linearity and accuracy are often limited [51].
As such, many alternative designs have been proposed for
CMOS-based multipliers [52]. Some topologies harness the
square-law behavior of the drain current in the saturation
region [53], [54], [55], [56], [57], while others use weak
inversion to create translinear loops [58], [59], [60], [61].
For this application, a voltage-mode transconductor-based

nonlinear cell was selected [32], [52], [62], [63], [64], [65],
[66]. The complete circuit is depicted in Fig. 6. The design
is based around two transconductor blocks, each comprising
four matched NMOS transistors operating in the triode
(linear) region. The input quad is driven by the differential
signals Vx = Vxp − Vxm and Vy = Vyp − Vym, outputting a

differential current I given by [32]:

I = −µnCox

(
W
L

)
i
VxVy (10)

where µCox is the NMOS intrinsic conductance and (W/L)i is
the input devices’ aspect ratio. Nonlinearities are effectively
cancelled by the transconductor’s symmetrical design. The
output quad is driven by Vz = Vzp − Vzm and the op-
amp’s output, and acts as a voltage-controlled resistor R given
by [32]:

R =
1

µnCox
(W
L

)
o Vz

(11)

with (W/L)o being the output devices’ aspect ratio. The op-amp
is effectively configured as a transimpedance amplifier,
having I as the input current and R as the feedback resistor.
Hence, the op-amp’s output voltage Vo = Vop−Vom is simply
given by:

Vo = −IR. (12)

Combining (10) and (11) into (12), yields:

Vo = −

[
−µnCox

(W
L

)
i VxVy

µnCox
(W
L

)
o Vz

]
=

(W
L

)
i VxVy(W

L

)
o Vz

. (13)

Thus, this cell is capable of performing both multiplication
and division; furthermore, as demonstrated in [32], it can
also compute the square root of a signal, by applying an
appropriate DC offset to Vz. In this application, however, Vz
will only be used as a DC control voltage, setting the gain of
the VxVy product; the gain tuning range is tailored by sizing
the input and output transistors’ aspect ratios.

The main condition for linear operation is that all
transistors remain in the triode region, which requires proper
DC biasing [63]. While the DC level Vy is kept at the op-
amp’s common-mode, those of Vx and Vz must be raised
to account for input gate threshold voltages [37]; a positive
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FIGURE 6. Schematic of the voltage-mode, fully-differential multiplier.

FIGURE 7. Analog level-shifting circuit, based on super source-follower
design.

shift of around 300 mV was found to provide a suitable
compromise between multiplier linear range and input/output
swing. A level-shifting circuit was designed for this purpose:
it comprises two so-called ‘‘super source followers’’, one for
each differential branch. The complete circuit is shown in
Fig. 7. The super source follower employs negative feedback
through an NMOS device to enhance the otherwise poor
linearity and unity-gain error of the classical source follower
topology [47]. To further improve gain accuracy, the body
terminals of the two input PMOS were tied to their respective
sources, thereby avoiding body effect. TransistorsM5 −M10
provide the biasing currents, which are set by resistor R.
The circuit was sized to provide minimal signal attenuation
(∼ 0.2 dB) and the required 300 mV DC shift. Though
using two single-ended source followers may introduce
matching errors between the two differential signal paths,
this solution is preferable to using a single fully-differential
source follower [67], [68], which displayed overall worse
performance in simulations, namely regarding distortion and
gain error.

The simulated DC and AC characteristics of the complete
multiplier (including level-shifters) are shown in Fig. 8 and
Fig. 9, respectively. For both simulations, the multiplier was
loaded with 10 pF on each output. The previously described
folded-cascode amplifier was reused as the op-amp in this
design. As this amplifier is not well-suited to driving resistive
loads, ratios of W/L = 1/10 were chosen for both the
input and output NMOS quads, to produce relatively high
equivalent resistances; the long channel lengths also improve

FIGURE 8. Multiplier DC transfer curves. Obtained by applying a 300 mV,
100 kHz sine wave to the Vx input and varying Vy between -300 mV and
300 mV; Vz was set to 300 mV.

FIGURE 9. Multiplier transfer function for multiple values of Vz ; Vx was
fixed at 20 mV and Vy set to 200 mV.

the accuracy of the strong inversion square-law model [47].
Fig. 9 shows some peaking occurring at high frequencies
(> 106 Hz); this is thought to result from coupling between
the op-amp’s output impedance and the capacitances from
the output quad and load. This resonance may also account
for the phase shift observed at the output, as seen by the
slight elliptical shape of the traces in Fig. 8. Simulations
also showed that the linear range of the multiplier is
highly dependent upon the gain control voltage, Vz. Namely,
decreasing Vz (hence, increasing overall multiplier gain) will
quickly degrade the input-referred total harmonic distortion
(THD). Therefore, if a gain greater than ∼10 is required,
it may be necessary to distribute it between the multiplier and
a further amplification stage, to ensure reasonable accuracy
and linear range from the multiplier.

IV. FUNCTIONALITY
The previous section described the building blocks of a
CMOS analog solver in a general context. It is now prudent
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to look at some of the ways in which these circuits can be
configured to suit a wide variety of conditions, in the context
of the capabilities and limitations of electronic ACs.

A. INITIAL CONDITIONS
The value of the state variables at the start of the computation
is determined by the initial voltage across the integrators’
capacitors, as seen in (8). To set this value, an arrangement
like that of Fig. 10(a) can be used. When switch S1 is closed,
the capacitor C is charged by voltage source VC through
resistor RC . The charging time is set by the time constant
RCC , and should be as small as is allowed by VC ’s driving
capability. As long as S1 is closed, the integrator’s output
Vo is locked at −VC , and the computation is kept on hold.
When S1 is opened, the integrator resumes regular operation,
starting atVo = −VC . Thus, S1 also behaves as a reset switch,
which can be toggled at any point during the computation
to force the system to a set of initial conditions. A transient
simulation is shown in Fig. 10(b), where the integrator is
reset to its initial conditions by closing the switch at t =

0.3 ms; normal computation is resumed when the switch is
released, at t = 0.4 ms. Though illustrated in a single-ended
configuration, this arrangement is easily adapted to a fully-
differential topology. For an integrated solution, the switch
and voltage source might be included on-chip, in which case
they could be set via external programming logic.

B. HOLD
Besides resetting, some applications demand that the com-
putation be held on the current value for an indeterminate
amount of time, e.g., for sampling by another circuit. This
can be accomplished by placing track-and-hold amplifiers at
the integrators’ outputs, as shown in Fig. 11(a). While switch
Sh is closed, the voltage on capacitor Ch tracks integrator
A1’s output; when Sh opens, Ch retains its voltage at that
moment, which is then buffered by the output amplifier A2.
To prevent the computation from proceeding when Sh is open,
the held output is fed back into the integrator through switch
Sset , forcing it to retain the current output value. A transient
simulation is shown in Fig. 11(b): the computation is put on
hold at t = 0.3 ms when Sh opens and Sset closes, then
resumes at t = 0.4 ms when both switch states.

C. SCALING
Since an AC attempts to map a problem onto physical
quantities, it is necessary to establish the mathematical
relation between the problem’s variables and their physical
representations. This is accomplished through the use of
scaling factors, in both amplitude and time [7], [9], [10].
Amplitude scaling (also known as magnitude scaling)

relates a system variable to its internal representation in the
computer. For example, when solving a heat transfer model,
a temperature difference in the system might be proportional
to a voltage difference in the solver. The relation between
the two variables is given by a scaling factor, s (in the
previous example, with units volts/kelvin). More generally,

FIGURE 10. (a) Integrator with setting and resetting functionality.
(b) Transient simulation of resettable integrator.

for a system variable x, the analog solver will compute the
quantity x ′

= sx [7]. The choice of s is dependent upon
the characteristics of both the simulated system and the
AC, itself. A large s will mean greater sensitivity to small
changes in the problem variable, improving the precision of
the computation; however, the solver may then not be able to
accommodate larger variations, due to saturation concerns.
On the other hand, a small s will improve the solver’s
dynamic range but sacrifice resolution due to the increased
effect of noise, offsets and other circuit non-idealities. For a
low-power CMOS analog solver, given the restrictions placed
on voltage (and current), s will often need to be a small
number, perhaps in the order of 1/10 to 1/1000 circuit unit
per system unit. The optimal scaling needs to be determined
for each problem individually, often requiring some previous
knowledge concerning the maximum expected values for
each system variable. Numerical simulations can be helpful
in this regard.

Amplitude scaling can be set by tuning the internal gains
of the analog solver circuit, namely in the integrators and
multipliers. Since a solver relies on global negative feedback
(due to the inherent relation between state variables and their
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FIGURE 11. (a) Simplified schematic of an integrator with output
track-and-hold amplifier. The dashed box around C represents a ‘‘reset’’
architecture similar to that of Fig. 10(a), where the ‘‘initial condition’’ (IC)
is set to the current value of Vo. (b) Transient simulation of the ‘‘hold’’
mode.

derivatives), larger gains translate to smaller scale factors.
To accommodate a wide range of problems and configu-
rations, it is useful that these gains be easily adjustable.
The multiplier described in Section III is especially suitable
for this since its gain can be set through a control voltage.
On the other hand, the integrators’ gain is set by the input
resistors, which makes adjustment less straightforward. One
option is to include a set of resistors that can be interchanged
through control logic. Another option is to implement
voltage-controlled resistors using MOS devices, albeit with
limited linear range. Finally, frequency-controlled resistors
can be implemented using switched capacitors, though their
application is limited in continuous-time circuits due to clock
feedthrough [49].
Time scaling is analogous to amplitude scaling, though

much simpler in practice, being set by the integrators’ RC
time constant. For instance, a time constant of 1 s means the
solver will simulate a system in real time. Faster computation
times can be achieved by decreasing the integrators’ feedback
capacitors and/or input resistors, as long as the operating
frequency remains well below the op-amps’ GBW.

V. APPLICATIONS
The building blocks described in Section III can be
employed to solve a wide range of problems in mathematics,

FIGURE 12. Simplified schematic of the van der Pol analog solver. ‘‘Plus’’
and ‘‘minus’’ signs denote signal polarity.

FIGURE 13. Time plot of the scaled output from the van der Pol analog
solver for µ = 1, compared to solution provided by a Runge-Kutta
algorithm.

science and engineering. Four nonlinear case studies were
selected for implementation in fully-differential CMOS
analog solvers/simulators. The most relevant results are
presented and discussed from a qualitative approach. These
problems are meant to illustrate some the capabilities of the
analog computing paradigm, though they are by no means
exhaustive. Each example should also be interpreted not just
as a concrete system, but as an entire subset of systems,
since the analog solvers presented herein are, in each case,
reprogrammable and easily expandable to accommodate a
number of problems. For the sake of compact notation,
all variables are assumed to be functions of time, unless
otherwise stated. Furthermore, circuit design values and
simulation parameters are included in Appendix.

A. VAN DER POL OSCILLATOR
The van der Pol oscillator was first proposed by the Dutch
electrical engineer B. van der Pol, while studying triode
circuits in the 1920s [69]. Since then, this equation has
found application in a wide range of areas; among them,
it has been used to model cardiac oscillations, neuron
action potentials, deterministic chaos and radio-frequency
electronic oscillators [1], [70], [71], [72]. Let x =

[
q v

]T be
the state vector, with q being the position, and v the velocity.
Then, the dynamics of the classical van der Pol oscillator are
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described by the nonlinear state-space model [3]

q̇ = v (14a)

v̇ = µ
(
1 − q2

)
v− q (14b)

whereµ is a positive parameter denoting the magnitude of the
nonlinear damping. For our purposes, it is more convenient to
describe the system solely in terms of q: by combining (14a)
and (14b), we can write

q̈ = µ
(
q̇− q2q̇

)
− q. (15)

Integrating (15) twice with respect to time yields

q =

∫ ∫ t

t0
µ

(
q̇− q2q̇

)
− q dt2 + v0t + q0 (16)

where q0 and v0 respectively denote the initial displacement
and velocity, at time t0. The model is now suitable for
implementation in an analog solver. A simplified schematic
of the circuit is shown in Fig. 12. The output voltage Vq
is related to q by a scale factor in units mV/m. Amplifiers
A1 andA2 act as (inverting) integrators, whileA3 is configured
as an inverting, summing amplifier. The integrators were
designed with 1 M� input resistors and 10 pF feedback
capacitors, producing a time constant of 10µs, i.e., the system
is simulated 105× faster than real-time. The resistors’ high
value allows for a wide range of integrator gain tunability,
without severely compromising the stage’s input impedance.
Multiplier U3 acts as a variable-gain amplifier and allows
µ to be set via an external DC voltage, Vµ. Another
way to implement voltage control of µ would be through
the multiplier gain control voltages. However, the current
solution provides better adjustment range and linearity, albeit
by using additional devices. The circuit dissipates a total
of 4.0 mW.

Transient simulations were conducted for multiple val-
ues of µ. The results were compared to those obtained
from the MATLAB function ode45, which employs the
Dormand-Prince pair of 4th- and 5th- order Runge-Kutta
methods to numerically integrate differential equations [3].
While ode45 is not among the most precise numerical
solvers available (even within MATLAB’s suite), it is still
more sophisticated than the numerical methods that are often
available in real-world resource-constrained applications.
Because analog solvers are particularly attractive in these
scenarios, since they can produce moderately accurate
solutions with minimal hardware requirements, ode45
constitutes a fitting benchmark for the accuracy and precision
of the analog-derived solutions. Time and phase-space plots
are presented in Fig. 13 and Fig. 14, respectively. In both
cases, the solver’s output was converted to the original
problem’s magnitude and time scales by multiplying it by the
appropriate factors, so it could be directly compared to the
numerical solution.

The analog solver matches the numerical integrator
within 3% error in both amplitude and frequency, however,
as evidenced by the phase plots, the circuit’s precision

FIGURE 14. Phase-space plot of the van der Pol solver, for various values
of µ. The grey traces correspond to the solutions obtained from
function ode45.

FIGURE 15. Simulation results of frequency and amplitude variation in
PVT corners, for the van der Pol solver. The darker colors indicate the
nominal specification.

degrades for higher values of µ. This loss of precision is
concomitant with the increase in signal amplitude, which
is especially prominent in the velocity component. These
results typify the compromises inherent in the design of an
analog solver, namely the trade-off between operating range
and precision. That is, in order to accommodate larger signal
swings (thereby increasing the computer’s dynamic range),
small scale factors are needed. However, these require large
gains, which in turn strain the circuit’s linear operating range,
harming precision. The balance between these two factors
should be considered for each individual case, according to
the designer’s priorities and the solver’s requirements.
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FIGURE 16. Simplified schematic of the Lotka-Volterra analog solver.

To assess the circuit’s robustness to process, supply voltage
and temperature (PVT) variations, corner scenarios were
also examined. Typical tolerances on process and operating
conditions were considered: the transistors were replaced by
worst-case variants with ±25% typical speed, the supply
voltage was made to vary by ±5% of its nominal value
of 1.2 V, and the temperature ranged from 0 to 100◦ C.
Overall, 12 different corners, plus the nominal case, were
analyzed. Noise was also included in these simulations,
up to a frequency of 100 MHz. The circuit’s robustness
was evaluated with respect to frequency and amplitude, and
the results are summarized in Fig. 15. While the frequency
remains within 5% of its nominal specification, the amplitude
declines by 27% in the case of low voltage coupled with
slower devices. However, these values are within the expected
range of variation, and do not compromise the circuit’s
function. Furthermore, peak-to-peak noise amplitude was
found to be < 400µV, and therefore to have negligible impact
on overall precision. Since subsequent systems were built
using the same analog cells as the van der Pol solver, it is
reasonable to assume these PVT results hold for those circuits
as well, thus obviating further analysis of the topic.

B. LOTKA-VOLTERRA EQUATIONS
The Lotka-Volterra equations describe the nonlinear dynam-
ics of biological predator-prey interactions [3]. This model
was originally proposed for the study of chemical reac-
tions [73], and has since proved relevant in other fields,
such as economics [74]. The system comprises a set of two
nonlinear, first-order differential equations [1]

ẋ = αx − βxy (17a)

ẏ = δxy− γ y (17b)

where x and y represent the prey and predator populations,
respectively, and α, β, δ and γ are positive constants relating
to the death and growth rate of both species. Following the
previous procedure, integrating both equations with respect

FIGURE 17. Time plot of the outputs from the Lotka-Volterra solver,
compared to solutions obtained by ode45.

to time yields the integral equations

x =

∫ t

t0
αx − βxy dt + x0 (18a)

y =

∫ t

t0
δxy− γ y dt + y0 (18b)

with x0 and y0 denoting the initial populations. The corre-
sponding analog solver is shown in Fig. 16. The two output
signals, Vx and Vy, are appropriately scaled representations of
the corresponding populations, while DC voltages Vα , Vβ , Vδ

andVγ set thematching constants. Time scaling is identical to
the previous example. The solver’s total power consumption
is 4.8 mW.

Transient simulations were conducted for various values
of α, β, δ and γ . Fig. 17 and Fig. 18, respectively, show
time and phase-space plots for parameters α = 2/3, β =

4/3 and δ = γ = 1, the latter for various initial conditions;
both plots were scaled in magnitude and time to match the
original system. The time plot includes a comparison with the
solutions computed by ode45, with coefficients and initial
conditions identical to those set on the analog solver. The
solver displays good accuracy, though worse precision than
in the previous example, as both signals’ amplitudes stray
significantly from the numerical solutions over the course of
the simulation.

This particular circuit presented many challenges for
successful simulation. Results varied extensively based on
choice of numerical integration algorithm, or convergence
criteria. As such, it was not always possible to make
meaningful comparisons with the numerical solutions. In par-
ticular, the phase plot of Fig. 18 should be taken as merely
indicative of the effect of initial conditions on the analog
solver’s trajectory, rather than an accurate representation of
the original system’s behavior. These difficulties may be
inherent to the application of numerical methods to nonlinear
systems, even in the case of analog circuit simulators. Further
investigation on the effects of different numerical algorithms
on nonlinear behavior, especially if compared to physical
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FIGURE 18. Phase-space plot of the Lotka-Volterra solver, for various
initial conditions.

FIGURE 19. Simplified schematic of the Lorenz analog solver.

implementations of analog solvers, could lend some insight
into the subject, and is a topic left for future research.

C. LORENZ SYSTEM
The Lorenz system was originally developed by meteorol-
ogist Lorenz in the study of convection phenomena in the
atmosphere [75], and is described by three nonlinear first
order equations [1]

ẋ = σ (y− x) (19a)

ẏ = x (r − z) − y (19b)

ż = xy− bz (19c)

where x is proportional to the convective motion, y is
proportional to the temperature gradient between opposing
currents and z denotes the nonlinearity of the temperature
profile; σ , b and r are constant system parameters [75].
For specific values of σ , b and r the system displays

FIGURE 20. Time plot of the Lorenz solver’s three outputs.

deterministic chaotic behavior, with the three-dimensional
phase-space trajectory spiraling around two points, known
as the attractors [1]. These trajectories are highly sensitive
to initial conditions, and never repeat themselves. Integrating
all three equations with respect to time (and rearranging some
terms) yields the integral equations

x =

∫ t

t0
σ (y− x) dt + x0 (20a)

y =

∫ t

t0
rx − xz− y dt + y0 (20b)

z =

∫ t

t0
xy− bz dt + z0 (20c)

where x0, y0 and z0 represent the initial conditions. Based
on (20), the analog solver shown in Fig. 19 was designed. The
voltages Vσ , Vr and Vb control the corresponding parameters,
which were set to those originally proposed by Lorenz: σ =

10, b = 8/3 and r = 28. The integrators’ time constant was
once more set to 10 µs. The circuit’s power dissipation is
6.1 mW. The plot from a time-domain simulation of the Vx ,
Vy and Vz signals is shown in Fig. 20; the x − z projection of
a portion of the phase-space trajectory is shown in Fig. 21.
The chaotic nature of these signals makes them difficult

to compare to equivalent numerical solutions, as small
variations in initial conditions or system parameters can
produce vastly different outcomes. Thus, such a comparison
is not presented for this example. Nevertheless, it is still
noteworthy how a relatively simple circuit can replicate such
complex behavior.

D. ROTATIONAL MOTION IN TWO DIMENSIONS
The rotational motion of a rigid body can be described by
its orientation relative to an inertial frame of reference. For
motion inR2, let (u, v) be the body frame, (x, y) be the inertial
frame, and ux be the coordinates of u relative to x (and so forth
for the remaining permutations). Then, the rotation matrix is
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FIGURE 21. x − z projection of the Lorenz solver’s phase-space trajectory,
between 8 ms and 10 ms simulation times.

FIGURE 22. Simplified schematic of the rotational kinematics analog
solver.

defined as [76]

R =

[
ux vx
uy vy

]
. (21)

It follows from its construction that R is orthogonal, that is

RTR = I (22)

which also implies

tr(RTR) = 2. (23)

Furthermore, if we assume that all frames are right-handed,
it can be shown that [76]

det R = 1. (24)

The kinematics of rigid rotation inR2 are described by [77]

Ṙ = S(ω)R (25)

where S(ω) is a skew-symmetric matrix constructed from the
time-dependent angular velocity ω,

S(ω) =

[
0 −ω

ω 0

]
. (26)

For constant ω, the exact solution to (25) is given by [77]

R =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
. (27)

The solution to the general case where ω is a function of time
can be approximated through discretization, i.e., computing
the system’s behavior one step at a time, during each of which
ω is considered to be constant. The discrete-time form of (25),
for constant ω, is given by the difference equation [76]

R(k + 1) = eS(ω)1tR(k) (28)

where k is an instant of time and 1t is the sampling period
(interval between consecutive steps). By computing (28)
with sampled values of a time-varying ω, a general solution
to the dynamics of R can be approximated, with an error
proportional to the size of 1t .
In contrast, an analog implementation solves the general

case without any further approximations, as it can naturally
accommodate a time-dependent ω. To construct the circuit,
we’ll first note that (25) can be expanded into a set of four
ODEs, one for each element of R,

u̇x = −ωuy (29a)

v̇x = −ωvy (29b)

u̇y = ωux (29c)

v̇y = ωvx (29d)

which can be interpreted as describing a dynamical system
with one input (ω) and four outputs (one for each element
of R). Following the previous examples, integrating both
sides of (29) yields

ux = −

∫ t

t0
ωuy dt + ux0 (30a)

vx = −

∫ t

t0
ωvy dt + vx0 (30b)

uy =

∫ t

t0
ωux dt + uy0 (30c)

vy =

∫ t

t0
ωvx dt + vy0 (30d)

where the ‘‘0’’ subscript denotes initial conditions. The
system (30) is now readily mapped onto an analog solver,
shown in Fig. 22. The resultant circuit comprises two
independent solvers, each bearing resemblance to a voltage-
controlled, double-integrator oscillator, with quadrature sine
outputs and frequency set by Vω [72], [78]. The integrators
run with a time constant of approximately 1.4 µs, and the
complete circuit dissipates a total of 5.4 mW.

Two transient conditions were considered for simulation:
in the first, Vω was set to a constant voltage, and in the
second to a low-frequency sine wave. In both cases, the
circuit’s outputs were compared to the solutions computed
by ode45, as well as those provided by (28). For the latter
case, the sampling period was chosen to be very small (as
fine as Spectre’s own simulation timestep, < 0.1 s), in order
to best approximate an exact solution. As ode45 cannot
directly account for ω being a function of time, an approach
similar to that described for the discrete-time solution had to
be undertaken, where the total integration time was divided
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FIGURE 23. Time plot of the four elements of R for constant ω, generated
by the analog solver, ode45 and the discrete solution.

FIGURE 24. Time plot of the four elements of R for sinusoidal ω,
generated by the analog solver, ode45 and the discrete solution.

into smaller intervals of constant ω. Decreasing the length
of each interval, thereby increasing the total amount of
‘‘steps’’, improves the approximation, albeit at the expense of
computational resources; a step of 0.1 s was chosen, to match
that of the discrete-time solution. Comparisons between the
circuit, numerical integrator and discrete solution, for both
constant and time-varying ω, are plotted in Fig. 23 and
Fig. 24, respectively. The initial conditions were set to the
identity matrix, that is, ux0 = vy0 = 1 and uy0 = vx0 = 0. The
analog solver shows very good agreement with the numerical
and discrete solutions in the first case, but differs somewhat in
the second, as it fails to match the correct amplitude at every
other half-period of ω(t).

The accuracy of the analog and numerical solutions can
also be evaluated by how well properties (23) and (24) are
respected throughout the simulation time. Fig. 25(a) and (b)
plot the value of tr(RTR) and det R, respectively, for both
solvers. The results are presented for constant ω only,
since the approximation required for employing ode45
to a varying ω essentially prevents any significant error

FIGURE 25. Evolution of (a) the orthogonality and (b) the determinant of
R throughout 1000 s of simulation time, for constant ω. Results from both
solvers are compared.

accumulation, precluding meaningful comparison to the ana-
log solver. Nonetheless, for constant ω, the circuit presents
a significant improvement over the numerical integrator.
Though there is an offset at the start (due to inaccuracies in
setting the initial conditions), both the orthogonality and the
determinant of the analog solution stay within 1% of their
initial values. This represents a 6× improvement over the
numerical solution. It is important to consider, also, that the
analog solver’s error is a combination of both the circuit’s
intrinsic errors, and the simulator’s inaccuracies. Like the
example from Subsection V-B, this circuit’s behavior proved
to be highly dependent on simulator parameters and selection
of integration algorithm. The extent to which these choices
impact the accuracy and precision of the solver’s simulated
behavior is yet to be quantitatively described.

VI. CONCLUSION AND OUTLOOK
This work shows how a set of ODEs can be mapped onto
standard CMOS cells for realization of practical analog
solvers, aimed at the simulation of nonlinear dynamics.When
feasible, the results obtained from circuit simulations were
compared to those from numerical methods. The former
tend to lack in precision relative to the latter, and this
can be attributed to the accumulation of many small errors
throughout the circuits. One source of error is the op-amp’s
finite gain, which limits the precision of the integrator and
multiplier modules; additionally, given the prominence of
resistive loads throughout the circuits, it may be worth
investigating alternate op-amp topologies, with better driving
capabilities. The multipliers’ gain also introduces some
distortion, especially in larger signals, as the NMOS devices
leave the linear operating region. Yet another source of error
lies in the level-shifters’ slight attenuation, though this could
be compensated by downstream amplification stages, if nec-
essary. Finally, intrinsic MOS capacitances introduce phase
shifts in the signal paths, impacting the overall precision of
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the circuit. Some error sources which were not accounted for
in the simulations include imbalance between the differential
signal paths due to mismatches in the amplifiers and level-
shifters, and parasitic capacitances from physical layout. This
latter issue, which concerns the physical realization of the
circuits, also warrants discussion. Since all simulations were
conducted in an industry-standard environment with foundry-
supplied device models, the results presented throughout
this work should constitute accurate representations of real
circuit behavior, despite the lack of a validated physical
prototype. Time and financial concerns place integrated
circuit fabrication outside the scope of this contribution. Also,
while the proposed circuits could be adapted for discrete,
commercially available components and realized in printed
circuit-board format, their specifications would necessarily
differ so significantly from those presented herein as to
constitute entirely distinct entities, thus adding little value
to this discussion. Nevertheless, the design and testing of
prototypes for analog solvers, whether discrete or integrated,
will be pursued in future work.

As other works have shown, despite generally lower
precision, analog computations can be orders of magnitude
faster and more power efficient than those on even the
best digital computers [17], [18], [30], [37]. This is largely
attributable to the parallel architecture of ACs, which allows
for multiple computations to be performed concurrently; this
feature contrasts with the inherently sequential algorithms
executed on digital devices, where parallel computing (i.e.
running multiple processing units simultaneously) may be of
limited benefit in solving multidimensional problems with a
large degree of inter-variable coupling [31], [36], [37].
While the present work followed a traditional approach to

analog computation, this comprises only a small subset of
the possibilities allowed by contemporary technology. For
instance, besides multiplication, different nonlinear terms,
such as trigonometric functions and logarithms, can be
realized in integrated circuit by various approximations [40],
[41], [43]. Likewise, constraints in state or input/output vari-
ables can be enforced by using nonlinear components, such
as diodes, or even through amplifier saturation [10]. Hybrid
dynamical systems with continuous- and logical- variables
might also be implemented by employing comparators and
other digital circuitry [7]. With suitable modifications, the
presented topologies may also be adapted to discrete-time
switched capacitor designs [12], or even current-mode
operation [5], [17], [18], [79], both of which might produce
higher precision solvers. Finally, the use of ACs as analog
‘‘co-processors’’ or ‘‘accelerators’’ as been explored in the
past [5], [17], [18]. In these systems, computations are
performed by using a low-precision analog solution as
the starting point for a high-order numerical solver. Such
architectures attempt to harness the best of both technologies
to achieve very precise solutions using less resources than
a purely digital processor, but also requires a meticulous
synchronization scheme to ensure optimal performance.

These hybrid arrangements also raise the question of analog-
digital interfaces, and how digital structures like memory and
data converters can be exploited, not only to interact with
external devices, but also enhance analog performance and
capabilities.

The scope of AC applicability, which may initially seem
limited to the study of physical systems, is greatly expanded
if one begins to consider the multitude of problems in all
areas of science and engineering which can be reformulated
as time-dependent ODEs. For instance, it has been shown
that the nonperiodic Toda lattice equations can produce
a set of ODEs describing a ‘‘smooth’’ sorting problem,
i.e., a dynamical system whose outputs settle on a sorted
arrangement of the inputs [80], [81]. Optimization, too, has
been reframed as the solution to a set of ODEs, encompassing
linearly-constrained, quadratic programming problems [82],
[83], [84], [85], [86]. Other, non-dynamical, formulations
of linear and quadratic programming have also been proven
suitable for implementation in analog circuitry [39], [84],
[87], [88], [89], [90], [91], [92], [93], [94].

Continuous optimization architectures have already found
application in some areas, including optimal and predictive
control. An optimal controller attempts to find the plant
trajectory that will minimize (or maximize) a performance
criterion over a given time horizon, while subject to a set
of constraints defined by the plant’s model and any existing
physical limitations [19], [95], [96]. Predictive control
extends this idea by incorporating known information about
upcoming external stimuli to solve a ‘‘receding-horizon’’
optimal control problem at each time instant, allowing it
to anticipate (and compensate for) future events [97], [98].
In recent years, predictive control has garnered attention
for its performance in constrained multi-input, multi-output
systems [23], but its high computational demand still
limits the scope of possible applications. Recent works
have attempted to apply analog optimization strategies to
design fast and efficient discrete-time optimal/predictive
controllers [93], [94], [99], [100], [101], [102], [103], [104],
[105]. Results are promising, but remain largely academical.
A pervasive issue with these controller designs is the very
large number of components necessary for implementing any
reasonable prediction horizon, all the more so for higher
order systems. Analog computing techniques may play a role
in simplifying, and indeed extending, these designs toward
more widespread application. Still, the interaction between
analog-simulated systems and analog predictive controllers
appears to remain largely unexplored, particularly in the
nonlinear domain. It is especially interesting to consider
how an analog system model might be incorporated directly
into a controller’s design, perhaps in a closed-loop config-
uration, so as to automate gain calculation and adjustment.
Continuous-time optimal, and predictive, controllers are a
natural extension of this rationale, and also warrant closer
attention in future research. All in all, analog techniques
and tools undoubtedly offer many exciting possibilities
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TABLE 2. Device parameters for the folded-cascode amplifier of Fig. 4(a).

for the future of fast, low-power and portable control
applications.

As device scaling approaches fundamental physical limits,
it becomes increasingly important to search for alternatives to
the modern computing paradigm. The mathematical descrip-
tion of dynamical systems, namely through differential
equations, provides fertile ground for the exploration of
analog computers in scientific and engineering applications.
Reinvigorated by VLSI design, the AC has proven to
still have a role to play in contemporary technology. The
body of knowledge compiled throughout the 20th century,
coupled with more recent innovations, provides a compelling
foundation for further progress. Yet, the AC’s capabilities
seem to remain underdeveloped. This neglect may be due to
a general lack of exposure outside the electronics research
community. A common thread throughout this article has
been the framing of analog computing as a cross-disciplinary
instrument, highlighting its application in a variety of
subjects. While the issue of what problems are, and aren’t,
computable by analog means remains an open question, it is
clear that the scientific research community only stands to
benefit from raised awareness of these devices, whose long
history and well-established principles still remain relevant
today.

APPENDIX
SIZINGS AND SIMULATION PARAMETERS
Tables 2 and 3 contain the sizing values for the
folded-cascode amplifier and common-mode feedback
circuit, respectively, from Fig. 4. Table 4 lists the nominal
device sizings for the multiplier of Fig. 6, though these
were tuned on a case by case basis. Table 5 holds the
sizings for the level-shifter of Fig. 7, and Table 6 indicates
component values for all four analog solvers of Section V.
Finally, Table 7 summarizes the Spectre configurations used
in Section V; any unlisted parameters were kept at their
default values. The ‘‘Error Preset’’ and ‘‘Relative Tolerance’’
parameters provide the software with an indication of the
number of steps and the convergence criteria required

TABLE 3. Device parameters for the common-mode feedback circuit of
Fig. 4(b).

TABLE 4. Nominal device parameters for the input and output quads of
the multiplier circuit of Fig. 6.

TABLE 5. Device parameters for the level-shifting circuit of Fig. 7.

TABLE 6. Design specifications for the four analog solvers.

TABLE 7. Simulator parameters for the four analog solvers.

for each simulation. Meanwhile, step-size is dynamically
adjusted by the numerical integration method according to
circuit behavior, in order to keep the error within tolerance
specifications.
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