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ABSTRACT This paper introduces new insights into the integration of thermostatically controlled loads
(TCLs) as hybrid energy sources for grid ancillary and demand response services. Leveraging a generalized
virtual battery (VB)model emerges as an effective approach to determinemaximum reserve capacity of these
aggregated devices. Our research extends the VB model and endeavors to establish a pragmatic framework
for EWH control for peak shaving and managing the payback effect. The importance of aggregator capacity
in mitigating the impacts of TCL external control, such as customer comfort and safety, is emphasized.
Electric water heaters (EWHs) are used as the residential TCL device given their extensive availability
and thermal capacity. Two TCL control scenarios, OFF control and ON/OFF control are compared using
the Model Predictive Control (MPC) method. The ON/OFF control was found to improve peak shaving
capability by approximately 47% when compared to the more rudimentary OFF control mechanism. The
main contributions of this study are threefold: assessment of maximum reserve capacity using a modified
VB model, creation of a reference control signal based on this result, and development of effective control
strategies for managing the payback effect when maximal reserves are utilized. The robustness of the
maximum capacity estimation is analyzed through a sensitivity analysis mainly driven by variations in
hot water consumption and communication loss. Comprehensive and comparative simulation results show
improved capabilities in the utilization of the maximum reserved energy of loads, minimizing the expected
payback to avoid additional energy peaks and assessing the impacts of external factors that can affect the
expected maximum capacity of the VB.

INDEX TERMS Demand response, peak management, model predictive control, thermostatically controlled
loads, virtual battery.

NOMENCLATURE
N Number of TCLs.
θk (t) Temperature of the water in the k th EWH at time

instant t .
θkout (t) Ambient air temperature outside the k th EWH at

time instant t .

The associate editor coordinating the review of this manuscript and
approving it for publication was Ravindra Singh.

θkin (t) Incoming water temperature of the k th EWH at
time instant t .

Rk Thermal resistance of the k th EWH.
Ck Thermal capacitance of the k th EWH.
ρ Density.
cp Specific heat.
ωk (t) Demand of the k th EWH at time instant t .
Pkrate Rated power of element.
mk (t) State of the k th EWH at time instant t,mk (t) ∈

{1 , 0}.
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θkset Setpoint temperature of the k th EWH.
δk Mid-Hysteresis band width of the k th

EWH.
1t Small-time increment, 1t ≪ 1.
Pbase Baseline Power.
Pagg Aggregator Power.
Xagg (t) State of charge of the virtual battery at time

instant t .
U (t) Power charge/draw of the virtual battery at

time instant t .
Xmin,Xmax lower/upper energy capacity limits of the

virtual battery.
Pmin (t) ,

Pmax (t) Discharge/charge power limits at time
instant t .

α, β Parameters.
8 Virtual battery model.
Xref (t) Desired charging/discharging level

(Energy reference signal) at time instant t .
εx (t) Energy error signal at time instant t .
Pref (t) Power reference signal at time instant t .
εp (t) Power error signal at time instant t .
Nx , Np Prediction horizons.
PPp Shaving capacity to payback index.

I. INTRODUCTION
A. GENERAL
Peak power demands (referred to as ‘‘peak periods’’ in this
paper) can threaten electrical grid stability in a daily manner.
Typically, this occurs twice a day (morning and evening) in
the winter season when demand is more critical. Utilities
generally use more costly spinning reserves to meet peak
demands to ensure grid stability and customer comfort. This
can increase the customer electricity price [1], contribute
to harmful effects on the environment and result in poor
generation efficiency [2]. A solution to reduce these costs is
to control electric thermal loads through programs such as
Demand Response (DR). DR holds particular significance for
utilities as it offers avenues for cost reduction, enhancement
of grid stability, and effective peak management without sub-
stantial investments in additional capacity infrastructure [3],
[4]. The effective management of an TCLs aggregation often
requires a central higher-level control system denoted as a
virtual power plant (VPP) [5]. The VPP integrates the TCLs
and other resources into energy markets, while also providing
essential grid services [5], [6].

B. OVERVIEW OF THE DR IN RESIDENTIAL LOADS
DR controls a group of loads (i.e., aggregators [7]) such
as EWHs, heat pumps (HP), Air Conditioning (AC), base
boards (BB), electric vehicle (EV), and electric thermal stor-
age (ETS) systems. TCLs are commonly encountered in the
residential sector consumption, and for instance, about 20%
of the energy produced in the United States [8], [9], [10] is
utilized for such loads. The number of TCLs are also expected

to increase due to greater demands for heating, cooling, and
population growth. The opportunity exists for such devices
to contribute significant capacity for ancillary services such
as peak shaving [1], [2], [11], [12], [13], [14]. Their maxi-
mum capacity can be used as an emergency backup resource,
deployable at the utility level for peak shaving and frequency
restoration purposes. Substantial reductions in energy costs
can be achieved through optimal management strategies.
Moreover, such management practices have the potential to
incentivize customer participation in Local Energy Market
(LEM) schemes and peer-to-peer (P2P) trading, offering tan-
gible rewards and benefits. EWHs are particularly appealing
due to their ubiquity and aggregated thermal energy capacity.
In Canada, EWHs account for 19.3% of the average energy
used in the residential sector and 5.7% of the average energy
used in the commercial sector, thus accounting for 17% of the
total energy consumption [10], [15], [16]. According to [15],
this is the second highest energy consumption load in Canada.

A significant number of research papers and pilot projects
support the use of EWHs as a good candidate for demand-side
management applications [17], [18], [19], [20], [21], [22],
[23], [24], [25]. EWHs exhibit commendable thermal pro-
ficiency and possess favorable thermal inertia, facilitating
the efficient storage of energy in the form of heat within a
relatively abbreviated timeframe. Moreover, these systems
can be briefly deactivated without detrimentally impacting
the comfort of end-users [18]. This attribute ensures a cer-
tain energy capacity depending on the thermal state of the
EWH. The study conducted in [17] summarizes experimental
solutions to reduce load demand of EWHs by motivating
customers to reduce energy consumption during predefined
peak periods based on pilot studies. The study reported a
peak reduction of 4.2% in Norway by utilizing 50% of EWHs
enrolled in a DR program. The investigation in [10] examined
a cohort of 20,000 EWHs participating in a DR program.
The findings substantiated that the morning peak demand
could be reduced by an average of 24%, with exceptional
cases achieving up to 31.3% reduction during the evening
peak period. The issue of uncertainty arising from the water
consumption patterns of EWH users is discussed in [16]
and [19]. The simulation outcomes indicate no discernible
adverse effects on customer comfort when implementing a
reduction of 500Wh per EWH per day. It is worth empha-
sizing that the study could be enhanced by conducting an
in-depth analysis of the optimal utilization of the maximum
capacity of EWHs. The study conducted in [20] provides an
economic analysis and compares the use of various TCLs
and batteries for peak shaving. The study achieved a 20%
peak reduction without determining the maximum limit of
energy storage. A scalable controller for better management
of EWHs is proposed in [21]. It provides 8.8% additional
cost saving and better peak shaving. A tool for quantifying
the reserve capacity of EWH and other TCLs is applied
in [19] by calculating availability curves of EWH. Although
the EWH aggregation literature is extensive, to this author’s
knowledge, the maximum theoretical reserved capacity for
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this type of aggregator has not been fully addressed. This
is a key contribution of this paper and will allow utilities
to assess the full dispatch capabilities provided by TCLs.
A comparative analysis of the existing literature is provided
in Table 1.

Another major focus of our paper is limiting the pay-
back effect after a peak-shaving event. This is characterized
by TCLs attempting to compensate for the previous OFF
period, thereby generating a new peak in energy demand.
Previous research has provided a limited analysis of this
phenomenon and how to best mitigate negative impacts.
Authors in [22] provide a Norwegian study on how to use
EWHs as a reserved capacity for frequency restoration and
peak demand curtailment without estimating or utilizing the
maximum aggregator capacity. Their results show a potential
power reserve of 53.9% at morning peak times that can last
for up to 61 minutes. The study also found that about 60% of
TCLs can contribute to the payback for various peak shaving
scenarios.

Large scale-aggregation of EWHs can be controlled to
reduce consumption in the megawatt scale. The authors
of [23] consider 10,000 EWH units, and their approach can
shave up to 5 MWh and dispatch 30–43 MW at any given
time. However, a system of this size will most likely expe-
rience a significant payback effect for multiple hours before
restoring normal aggregator behavior. These studies provide
several formulas to measure the payback effects but do not
provide any methods to limit secondary load peaks due to
this phenomenon. The researchers in [24] and [25] have
devised a system aimed at tracking power references within a
packetized energy management system. The functionality of
this system encompasses communication traffic and the direct
integration of TCLs with the VPP level.

The utilization of VB model serves multiple purposes
within the energy management landscape, it is employed
to aggregate capacity [8], and to facilitate frequency reg-
ulation [26], while also serving as the foundation for
management and planning tools [18], [27]. In comparison,
the integration of battery storage systems (BSS) at both
residential and community scales contributes to enhanced
control flexibility and cost savings [28], [29], [30]. Recent
research has focused on exploring the integration of BSSwith
LEM and P2P systems, as in [28], [29], [30], [31], and [32].
Battery systems, virtual or otherwise, represent a promising
avenue in energy management and trading in LEMs. This is
mainly based on the availability of prosumers (consumers
capable of generating energy through photovoltaic panels,
wind turbines, and BSS). Unlike BSS, which primarily com-
prises of dedicated battery units, the VB represents a broader
spectrum of household residential devices with energy stor-
age capabilities that are controllable. As expected, there are
significant challenges concerning the integration of TCLs and
their associatedVB capacitywithin LEM frameworks, aswell
as optimizing capacity trading to benefit customers, utilities,
and grid stability. However, the utilization of household TCL
devices for energy storage would serve as a valuable resource

for supplying the fundamental grid ancillary services with
marginal infrastructure costs. Moreover, it would increase
the energy capacity available for trading from the prosumers,
while promoting and expanding demand response programs
with accessibility to various distributed energy resources. It is
envisioned that customer participation will be incentivized
through rewards aimed at facilitating access by the VB to
their devices, thereby encouraging greater participation in the
program.

C. OBJECTIVES AND CONTRIBUTIONS
The primary objective of this paper is extend the original VB
model presented in [8], [18],and [26] to determine the max-
imum reserve capacity of an EWH aggregator. As expected,
the maximum reserved capacity serves as a critical determi-
nant of the aggregator’s capability for peak shaving. Also, the
payback effect is anticipated to be more pronounced due to
our focus on maximum capacity shaving during peak periods.
Our VB model will offer insight into the repercussions of
peak shaving and facilitate an algorithmic approach to effec-
tively manage any adverse effects. The contributions of the
research are:

1) Ensure the maximum utilization of aggregator capacity
during peak shaving operations through the incorpo-
ration of the VB model as an interface within the
higher-level control scheme where the energy bid is
ordered.

2) Administer and regulate the TCLs aggregator to mit-
igate the repercussions of payback linked to the peak
shaving process.

3) Development of a utility level framework showing
the maximum reserved capacity, anticipated pay-
back, durations of shaving and payback, charging/
discharging times and rates, and other relevant
parameters.

This paper is organized as follows. The background infor-
mation of EWH and VB models is given in Section II. The
control strategies are presented in Section III. A numerical
example to demonstrate the validity of the proposed approach
is analyzed in Section IV, followed by the conclusion remarks
in Section V.

II. BACKGROUND
For our research, we assume the utilization of a homogenous
EWH aggregator with a predefined water consumption pro-
file that is scaled to a city with 70,000 habitants in Canada.
The hot water consumption profiles are generated based on
statistical studies and assumed to follow different water con-
sumption profiles (i.e., morning, evening, and sparse users)
[33], [34]. Two modes of EWH control are considered for
the utilization of the maximum reserved capacity. The first
mode is achieved by generating only OFF signals where the
ON signal is controlled by the internal thermostat of the
EWH. The second mode generates both ON/OFF control
signals in addition to internal thermostatic control which
can be overridden. The VB model is utilized to define the
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TABLE 1. Summary of related works in peak shaving and proposed work.

aggregator performance in terms of peak shaving capacity
and the optimal deployment of TCLs.

A. EWH HYBRID MODEL
The differential equation model of the thermal characteristics
of each EWH (indexed by k) with a single heating element is
described as follows:

θ̇k (t) =
1

RkCk

((
θkout (t) − θk (t)

)
+ρcpRkωk (t)

(
θkin (t) − θk (t)

)
+ Rkmk (t)Pkrate

)
(1)

This hybrid model is widely used in the literature [8], [10]
where the temperature of the water is assumed to be uniform
across the tank. Each EWH has a temperature setpoint θkset
with a hysteretic ON/OFF local thermostat control so that the
operating state of mk (t) is given by:

mk (t) =


1 θk (t) < θkset − δk

0 θk (t) > θkset + δk

mk (t−1t) otherwise

(2)

All the above parameters are known, except for the hot
water demand. This study uses past household data to develop
a water usage model for accurate prediction of individual
EWH temperature profiles [33].

It is important to note that when the EWH is operated by
its own thermostat control, the water heater element turns ON
in two circumstances: 1) the water temperature has dropped
below the minimum setpoint primarily due to conduction
heat losses; and 2) a large amount of hot water has been
drawn and replaced with colder incoming water. If the water
temperature associated with either case drops by θkset − δk ,
the element will be ON to re-heat the water to the set tem-
perature. In the first case, the ON duration is predictable and
relatively consistent. The second case is more complex where
the heating element is turned ON for a variable time duration
depending on the amount of hot water drawn and inlet water
temperature. For the latter case, water consumption profiles
are necessary to estimate the energy storage capacity of
the EWHs.

B. BASELINE POWER
Consider a continuous thermal model as an approximation to
the simple model in (1) where each EWH has a continuous
power input Pk (t) ∈

{
0,Pkrate

}
. Therefore, the continuous

thermal model in ON state (i.e., mk (t) = 1) can be written
as [8], [10]

θ̇k (t) =
1

RkCk

(
RkPk (t) +

(
θkout (t) − θk (t)

)
+ρcpRkωk (t)

(
θkin (t) − θk (t)

))
(3)

where the EWH temperature increases with the rate of
RkPk (t). The second term in (3) is the temperature decay
associated with the conduction heat loss and the third term
is related to the heat loss because of the hot water demand.
These heat losses are used to derive the baseline power
required to keep the temperature at the desired setpoint.
Equation (4) shows the power necessary to offset heat loss:

Pkn (t) =
1
Rk

(
θkset (t) − θkout (t)

)
+ ρcpωk (t)

(
θkset − θkin (t)

)
(4)

Consequently, the baseline power of a population of N
EWHs with the hybrid model can be approximated by the
aggregate baseline power with the continuous model as
follows:

Pbase (t) =

N∑
k=1

Pkn (t) (5)

Additionally, the aggregated power consumption of a col-
lection of EWHs at time t is given by:

Pagg (t) =

N∑
k=1

mk (t)Pkrate (6)

C. VIRTUAL BATTERY MODEL
The energy stored in each EWH is directly proportional to
the temperature difference between the current temperature
and the set point temperature. The EWHhysteresis bandwidth
between thermostat ON and OFF temperatures can be accu-
mulated to provide some insight to the aggregator capacity.
Using this idea, the VB model involves defining the State of
Charge (SOC) of the EWH aggregator, representing the com-
bined energy of the aggregator encompassing both baseline
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and reserved energy. The formulation for the aggregator SOC,
Xagg (t), is given by [8], [26], [35], [36]:

Xagg (t) =

N∑
k=1

Ck
(
θk (t) − θkset

)
(7)

The thermal constraint of EWH temperature as follows:

θkset − δk ≤ θk (t) ≤ θkset + δk (8)

The VB serves as a concise abstract representation accom-
modating both homogenous and heterogeneous aggregators
(i.e., various TCL types) [8]. The VB model is a valuable
tool for investigating the potential capacity inherent in fleet
of TCLs [18], [35], [37]. The first-order linear VB model is
defined as:

Ẋagg (t) = αXagg (t) + βU (t) (9)

Xmin ≤ Xagg (t) ≤ Xmax (10)

Pmin (t) ≤ U (t) ≤ Pmax (t) (11)

U (t) = Pagg (t) − Pbase (t) (12)

The parameters α and β are determined through the appli-
cation of system identification methods. Specifically, the
System Identification Subspace Method as detailed in [38] is
implemented in conjunction with the model to ascertain these
parameters. These parameters undergo adjustments in accor-
dance with the quantity and type of aggregated devices. The
VB model given in (9)- (12) is used to aggregate the reserved
capacity of each category of residential loads. It is inde-
pendent from complicated thermal dynamics represented by
equations (1)-(4). The constraints governing the VB capacity
limits are regulated by the δk in (8). The input power U (t) of
the VB is limited as illustrated in (11). The minimum allow-
able power Pmin (t) that can be charged or discharged from
the VB is constrained by the baseline power (13). Conversely,
the maximum power Pmax (t) that can be supplied to or drawn
from the VB depends on the power of EWHs that not part of
the baseline power (14), the VB parameters are as follows [8],
[18], [26]:

Pmin (t) = −Pbase (t) (13)

Pmax (t) =

N∑
k=1

Pkrate − Pbase (t) (14)

Xmax =

N∑
k=1

Ckδk (15)

Xmin = −

N∑
k=1

Ckδk (16)

Therefore, the VB model (8) defined in (7)-(12) is spec-
ified by the parameters in (13)-(16), and can be written as
follows:

8 := (X (t) , α, β,Pmin (t) ,Pmax (t) ,Xmin,Xmax) (17)

This model is an extension of the basic VB model and can
monitor the EWH aggregator energy level, as well as pro-
viding information about customer comfort. The aggregated
energy capacity of EWHs is the sum of the individual TCLs
ability to store energy between charge and discharge time.
The individual characteristics of each EWH, such as set point,
hysteresis band, size, energy demand, and daily consumption
profile, present a significant challenge for accurately mod-
eling the aggregator reserved energy. The limits of the VB
model are directly impacted by the unique characteristics of
each EWH, which must be accounted for in the development
of a dynamic algorithm that adjusts the aggregated limits.
For example, the group of EWHs that discharge beyond the
lower limit of hysteresis band cannot be turned OFF and
are unavailable for control. Consequently, the power limit is
continuously updated based on the current state of the EWHs.
The water temperature of a tank is another key factor in deter-
mining the energy capacity of the EWH. The aggregated state
of charge (SOC) is the stored energy available at each time
step given by (7) and is an indicator of the VB charge status.
If the aggregated SOC reaches the lower or upper VB limit, all
EWHs are at the boundary of the hysteresis band temperature
at the same time. These two limits exhibit a notably low
probability of occurrence, particularly in scenarios where the
number of EWHs is substantial. These inferences are drawn
from an analysis of the daily power profiles of the EWHs,
the corresponding random daily hot water consumption, and
gathered SOC results without affecting the user’s comfort.
The aforementioned factors result in a time-varying estima-
tion of the aggregator maximum capacity. In summary, full of
the VB capacity in practice cannot be achieved and utilizing
the maximum available capacity in peak shaving is another
challenge.

III. PROPOSED STRATEGY
This investigation assumes a peak shaving management
scheme that has three hierarchical levels: a load level (low
level), an aggregator level (intermediate level), and a vir-
tual power plant (VPP) level (high level). The present study
examines a potential trading agreement between the VPP
and VB aggregator, wherein the VPP submits its request for
peak management with an adequate lead time. This contract
encompasses provisions to allow the VB to lower the avail-
able capacity for inadequate lead times and in the event of a
communication loss with EWHs.

The agreement permits the VB to reject the commitment
if no capacity is available. The energy transaction between
these three levels is shown in Fig. 1 and conceived as follows.
First, each EWH at the load level sends its data (i.e., current
temperature, power rating, setting point, etc.) to the aggrega-
tor level. The activation of the aggregator level is contingent
upon receiving commands from the VPP, and undertaking the
following tasks: 1) construct the VB model for the connected
loads based on the received information, 2) estimate the
maximum of stored capacity that the aggregator can commit
to peak shaving based on the mathematical model and hot
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FIGURE 1. Data flow between the hierarchical levels.

water consumption profile, as given in equations (7)(15)(16),
and 3) share the information with the VPP level. The VPP
monitors the energy market dynamics, the forecasted load
consumption, and the available generation resources through-
out the day. The goal is to maximize load shaving using
TCLs during peak periods as this can yield substantial energy
cost reductions. The VPP also requires relevant information
(i.e., shaving percentage, discharge SOC, expected payback
period. . . etc.) for maintaining a smooth transition post-peak
period. TheVPP plays a pivotal role in allocating target power
profiles to the aggregator based on its stored energy and
the desired contribution level. Consequently, the aggregator
attempts to align itself with the dispatched power profile
received from the VPP. This requires direct control over
EWHs to adhere to the reference power signal sent by the
VPP.

A. PEAK PERIOD
The implemented management framework distinguishes
between two interrelated peak periods occurring at distinct
control levels. The initial period pertains to the utility level,
denoted as the VPP level peak, and initiates when the power
demand surpasses a predefined threshold as determined by
the VPP. Concurrently, the second period is specific to
the local aggregator, commencing during the timeframe of
highest demand, surpassing the average aggregator demand.
This study aims to strategically utilize the aggregator’s local
peak period to shave the VPP peak. The VPP level peak
aggregates demand from various loads, including EWHs,
Heating, Ventilation, and Air Conditioning systems (HVACs)
and others. In practice, the utility peak period occurs when
the cumulative load requires the activation of reserve energy
resources. From a technical perspective, the EWHs aggrega-
tor local peak interval should ideally align within the duration
of the VPP level peak. However, occasional variations may
occur, particularly in the presence of substantial load types
other than EWHs. The optimal benefit for the management
system is realized when the aggregator’s peak period aligns
with the VPP peak period, ensuring maximum capacity from
the aggregator during this crucial interval.

FIGURE 2. Schematic of proposed aggregator.

B. AGGREGATOR CONTROL
The simulations in this study consist of both off-peak periods
where peak shaving is not requested and the peak period
where shaving is requested. The control system assumes two
controllers, the first is the thermostat control representing the
EWH internal control. Thermostatic control is the default for
periods as given in (2) when no shaving services are required.
The second controller (i.e., OFF or ON/OFF) is activated
according to the desired reference signal and respecting the
individual management scheme discussed in (2),(8). This
paper proposes an aggregator level strategy to estimate the
maximum capacity that the aggregated EWHs can provide to
the VPP level during peak shaving functions. The schematic
diagram of the proposed aggregator control strategy shown in
Fig. 2 includes aMPC reference controller and a time varying
MPC load controller. TheMPC reference controller generates
power reference signal based on the VBmodel. The reference
profile respects the VB constraints and the aggregator power
limits and is fed to the load controller unit. The MPC load
controller acts as a central control unit. It is designed to
create control signals (regulation signals, mk (t)) such that
the aggregated power tracks the power reference signal of
maximum capacity. As stated earlier, this study considers two
scenarios in generating EWHs control signal.

1) OFF CONTROL SCENARIO
The control signals can only override the ON state of EWH,
and safety standards prevent the controller from overriding
the OFF state of EWHs. The EWHs are turned ON only by
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the internal thermostat (i.e., temperature decays to θkset − δk .
The controller’s goal during the peak period is to reduce the
energy consumption of the EWH by turning them OFF while
satisfying the comfort of users. Consequently, the VB is
depleted to a minimum (depending on the available capacity)
with a specified discharge rate. The payback control period
starts immediately after finishing the peak period. Normally,
when the peak shaving controller is removed, a significant
number of EWHs will turn ON to compensates the previous
outage. The SOC of the VB would be at its minimum value
and the VB should be charged gradually in the payback
period. Hence, employing a controller during this period
is crucial to prevent creating an uncontrolled peak and to
manage the changing states of EWHs in a gradual manner.

2) ON/OFF CONTROL SCENARIO
The input controller in this scenario can override both ON and
OFF states of EWH thermostat. It gives the controller more
options as compared to the first scenario. Special attention
is required when overriding the thermostat control signal,
may affect user comfort and safe water temperature proto-
cols. Moreover, in addition to the peak period and payback
period, ON/OFF control can utilize a pre-charging period to
1) increase the number of EWHs available to be turned OFF
during peak period and 2) considerably reduce the payback
control duration and negative payback effects. Pre-charging
is the period when the EWHs are switched ON gradually
before the peak period starts as long as user comfort is main-
tained. The duration of this period depends on the aggregator
capacity, SOC of the VB, and charging rate. The goal is to
charge the VB at a specific rate to its maximum capacity prior
to an anticipated peak event.

C. REFERENCE GENERATOR AND MPC FORMULATION
The VB model given by equations (9)-(12) establishes a rela-
tionship between SOC and instantaneous power. It gives an
idea of the aggregator capacity to be allocated in every sam-
ple during peak shaving process. The VB capacity, Xagg (t),
is influenced by the input power and is limited by the hystere-
sis bandwidth and aggregation size. The input signal U (t),
represents the power drawn from the VB with the goal of
using the SOC to track the desired charging/discharging level
during all three control periods. The MPC was chosen due
to its established efficacy in optimizing the performance of
dynamic systems. Developed to address the intricacies of
complex and nonlinear systems, MPC iteratively predicts
future system behavior, informing control decisions based
on these predictions. The formulation of MPC begins with
constructing a mathematical model describing the system’s
dynamics and behavior, derived from physical laws, data-
driven techniques, or a combination thereof. Subsequently,
theMPC controller utilizes thismodel to forecast the system’s
response to diverse control inputs over a finite prediction
horizon. The controller seeks to determine control inputs
that minimize a cost function, representing objectives such
as trajectory tracking or energy consumption reduction. This

optimization problem is solved iteratively at each time step,
yielding a sequence of control inputs. This iterative process
enables MPC to dynamically adapt and respond to system
changes and disturbances, rendering it a versatile and robust
control strategy widely employed across diverse industries,
including robotics, process control, and autonomous vehi-
cles. The primary function of the MPC controller in our
specific scenario is to adhere to and synchronize with the VPP
requested capacity sent to the aggregator. The tracking error
of the VB energy level can be defined as:

εx (t) = Xref (t) − Xagg (t) (18)

Initially, the energy reference signal is created to achieve
VB charging gradually with a predetermined rate during pre-
charging period. This period is useful to charge the VB to
its maximum prior to peak shaving. The MPC controller’s
goal is to deplete the VB at a reasonable rate during peak
shaving and ensure that the stored energy is available for the
complete peak period. If the discharge rate is too high, the
available EWHs will turn OFF at the beginning of the peak
period and no capacity is left for the remaining of the peak
period. It is reasonable to set the VB discharge rate so that
the shaved energy is uniform during this period. Finally, the
reference energy signal again guides the proper VB charging
rate during the payback period. This charging rate should be
designed such that the probability of a residual peak is low,
or that the payback duration is not overly long. Therefore,
charging and discharging VB rates in all three control periods
is a challenging issue that should be investigated in more
detail. Now, by defining the objective function as:

Jx (t) =

∫ t+Nx

t
ε2x (τ ) dτ (19)

The input signalU (t) is achieved by solving the following
optimization problem:

min Jx (t)

Subject to


Ẋagg (t) = αXagg (t) + βU (t)
Xmin ≤ Xagg (t) ≤ Xmax
Pmin (t) ≤ U (t) ≤ Pmax (t)

(20)

Equation (20) indicates that the desired SOC will be
achieved if the power drawn from the VB is equal to desired
input signal U (t). The new reference is dealing with power
and labeled as demand power reference signal and is defined
as follows:

Pref (t) = U (t) + Pbase (t) (21)

The next step is to design a control strategy to determine
the status of EWHs such that their aggregated power can track
this new power reference.

D. LOAD CONTROLLER
A central controller unit should be designed to provide input
signals (mk (t)) such that the aggregated power tracks the
power reference signal in (22) as accurately as possible.
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TABLE 2. EWH parameters.

A time-varyingMPC controller is adopted since the first order
equation (1) is a linear and time-varying (due to θkin (t), θkout (t)
and ωk (t) terms). The power error is defined as

εp (t) = Pref (t) − Pagg (t) (22)

thus, the objective function is defined as follows:

Jp (t) =

∫ t+Np

t
ε2p (τ ) dτ (23)

Finally, this MPC control function can be found by solving
the following optimization problem:

min Jp (t)

Subject to θ̇k (t) =
1

RkCk

((
θkout (t) − θk (t)

)
+ρcpRkωk (t)

(
θkin (t) − θk (t)

)
+ Rkmk (t)Pkrate

)

mk (t) =


1 θk (t) ≤ θkset − δk

0 θk (t) ≥ θkset − δk

0 otherwise (OFF scenario)
0 or1 otherwise

(
ON

/
OFFscenario

)
k= 1, . . . ,N (24)

The optimization problem (24) is not a convex problem and
has input signals (mk (t)) with a Boolean constraint. Commer-
cial solvers (i.e., Gurobi) can tackle this type of problem and
is subsequently used in this study.

IV. SIMULATION RESULTS AND DISCUSSIONS
A numerical example is simulated to evaluate the effective-
ness of the proposed VB-based methodology described in
section III. This example considers a homogenous group of
four types of EWHs with their individual parameters and
manufacturing data being detailed in Table 2 The ambient
temperature of the EWH and inlet water temperature are ran-
domized around 20◦C and 10◦C respectively. The prediction
horizon in both the MPC and time varying MPC are assumed
to be Nx = Np= 3 minutes.
The nominal behavior of the EWH aggregator assuming

internal thermostat control is illustrated in Fig. 3. The figure
shows that the simulation starting at midnight lasting for
24 hours and two candidate peak periods are explicit (i.e.,
local aggregator peaks). The first interval is the morning peak
(i.e., 7:00–9:30 am) whereas the second is the evening peak

FIGURE 3. Nominal aggregator behavior.

FIGURE 4. Aggregated Power in OFF control scenario.

FIGURE 5. VB SOC curve in OFF control scenario.

extends from 17:00 to 20:00 hours. For the sake of simplicity,
we assume the optimal benefit scenario where the local and
VPP peak period occurred concurrently. This assumption is
valid since the EWH aggregator is considered one of the
higher power consumption loads [15]. If ON/OFF control is
used, a pre-charge period from 5:30 – 7:00 am ensures the VB
to bemaximally charged prior to the peak shaving period. The
reserved aggregator capacity changes according to the EWH
control algorithm scenarios (i.e., OFF control or ON/OFF
control), see Fig. 5 and Fig. 7. These figures show that the
VB has the same upper/lower energy limits in both scenarios,
but the energy stored in VB changes dramatically depending
on the control algorithm applied. The SOC of the VB in both
control scenarios are plotted in Fig. 4 to Fig. 7. Three vertical
lines are shown in Fig. 4 and Fig. 5 to distinguish the different
control intervals (i.e., peak shaving and payback periods).
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FIGURE 6. Aggregated power in ON/OFF control scenario.

FIGURE 7. SOC curve in ON/OFF control scenario.

Fig. 4 shows the peak shaving process starting at 7:00 am
and flattening the desired peak with no dramatic change in
the power curve. Fig. 5 illustrates that the SOC of the VB is
half charged (i.e., EWHs temperature at the set point level)
for the OFF-control scenario. The ON/OFF control scenario
results as in Fig. 6 and Fig. 7 shows an additional pre-charging
time period prior to the peak shaving and payback time
periods. These control periods are separated by four vertical
lines in chronological order. The VB capacity and aggregator
power limits are made explicit by horizontal dashed lines.
The aggregator receives the VPP request at 5:30 AM, i.e.,
1:30 hours before the commencement of the peak period.
As stated earlier, the pre-charging time period is characterized
by the overriding of the thermostat signals with ON signals
to facilitate the charging of the VB to its maximum capacity.
Smooth charging of the aggregator capacity continues until
theVB reaches itsmaximum capacity at 7:00AM, as depicted
in Fig. 7. The energy reference signal is generated, consid-
ering the aggregated power and VB limits as constraints to
ensure uniform charging during this time period, as illus-
trated in Fig. 6 and Fig. 7. This reference signal follows a
linear approximation from the current SOC of the VB to its
maximum limit. During the interval of 5:30–7:00 AM, Fig. 6
shows that the aggregated power surpasses its nominal level
while still respecting the power limits.

The peak shaving process is performed uniformly in the
time period between 7:00 AM to 9:30 AM, achieving the
requested shaving capacity by forcing the available EWHs
to switch OFF. However, reaching the minimum SOC level
of the VB depends on the temperature level of each EWH.
The VB SOC does not necessarily track the energy reference

signal in the case where hot water consumption is minimal
and energy losses is mainly through conduction. This is seen
at the end of the peak shaving period, see time interval
(9:00-9:30 AM in Fig. 5 and Fig. 7. The power curve fluc-
tuations during the same interval in Fig. 4 and Fig. 6, are
the result of the controller actions implemented to track the
reference line. The controller switches OFF any available
EWH to achieve the requested capacity. The VB will be at
its lowest capacity if the controller cannot shave sufficient
energy.

During the payback time period, the VB is recharged
with adequate charging rate reaching to the average SOC.
The slope of charging curve determines how much power is
required over the baseline without creating a new peak. The
VPP control level determines the acceptable level of power to
prevent creating a secondary peak when outing together the
capacity contributed by all aggregators and system resources.
Payback duration is automatically calculated, and the con-
troller generates a reference profile that ensures compliance
with the power limits. The payback time is completed around
12:15 PM in the OFF-control scenario as seen in Fig. 4 and
Fig. 5, after which the EWHs will revert to internal thermo-
stat. The payback period with ON/OFF control scenario is
more complicated, as shown in Fig. 6 and Fig. 7. The ability
of this controller to generate ON/OFF signals creates power
curves with high fluctuations, especially at the end of peak
period. Extra resources and safety precautions (i.e., Short
Cycling (SC)) can be used to prevent these fluctuations. SC is
defined as the safe time the device holds its old state (ON or
OFF) before it can be altered by the controller. It should be
noted that SC was not utilized for our research results as the
main focus was the inherent controller performance.

Vital performance information gathered for the system
operator can be given as follows:

• The VB full storage capacity of the EWHs aggregator
is approximately 505 kWh.

• The capacity shaved in both control scenarios are the
maximum available as illustrated in Fig. 8.

• For ON/OFF control scenario:
- The energy earned during the pre-charge period
is 277 kWh with a charging rate of 184.6 kWh/h.
The VB is charged at 98% capacity.

- The average shaved capacity during the peak is
477 kWh which represents 94.7% of the VB
capacity with a VB discharge rate of 191 kWh/h.

- The payback time period registered a 185 kWh
above the nominal curve with a duration of
3:30 hours, see Fig. 8.b.

- The change per device does not reflect a dis-
cernible disparity on the daily energy consump-
tion leading to a reduction of less than 0.1kWh.

• For OFF-control scenario:
- The percentage of peak shaving achieved is
326 kWh representing 64.5% of the VB capacity
and 30.2% reduction as compared to ON/OFF
scenario, Fig. 8. a.
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FIGURE 8. Capacity comparison in two control scenarios, (a): OFF control,
(b): ON/OFF control.

- The energy gained in the payback period is
222kWh with charging rate of 81.8 kWh/h with
duration lasts for 2:45 hours, see Fig. 5.

- The daily energy consumption remains nearly
identical, with a recorded reduction per device of
0.39 kWh.

The simulation results for both control scenarios confirm
the objective of shifting the power to the Off-peak periods.
As expected, the ON/OFF control scenario has greater capac-
ity to share, almost 151 kWhmore than energy reserved in the
OFF-control scenario. This additional peak shaving capacity
is available to the ON/OFF controller due to the utilization of
the pre-charging interval. Approximately 55% of the energy
gained during the pre-charging is shaved during the peak
period. Both algorithms nearly experience the same payback
duration, but the energy payback is higher for the ON/OFF
control scenario, a penalty for greater peak shaving capacity.
The impact of payback can be assessed by introducing the
percentage of shaving capacity to the payback duration PPp
as in (25).

PPp =
Shaved capacity kWh

samples of payback duration
(25)

The PPp represents the energy compensation at each sam-
ple time to safely restore the power balance during the
payback period. The value of PPp for ON/OFF scenario
is equal to 2.3 kWh/sample where for OFF control it is
1.34 kWh/sample. These results confirm that the ON/OFF
controller has a greater peak shaving capacity given the
pre-charging period but results in a higher energy recovery
return during the payback period.

FIGURE 9. Straight line energy reference signal and mismatch period
during the peak period.

FIGURE 10. Aggregated power and the spike for the valley period.

A. ENERGY REFERENCE SIGNAL ANALYSIS
The energy reference signal for the peak shaving period is
created to utilize the maximum available capacity through
the entire peak shaving period. It is only activated during this
period as shown in Fig. 9. The energy reference signal guides
the VB controller to discharge the energy by broadcasting
OFF signals to the TCL devices with a temperature within the
hysteresis band. Two forms of this reference signal have been
tested to find the maximum energy capacity. Fig. 9 illustrates
a straight-line model for the energy reference signal starting
from the current SOC till the minimum level SOC of the
VB. A mismatch occurs between the energy reference signal
and SOC level at the beginning of the peak shaving interval
(i.e., Fig. 9, 7:15–07:30 am). It can be explained by 1) the
abundant available energy capacity when the VB is charged to
themaximum. 2) the number of EWHs that turnedOFF by the
internal thermostat and 3) the power rating values of EWHs
that cannot be fractioned when it turned OFF. This results an
undesired power spike illustrated in Fig. 10 within the corre-
sponding time interval in the aggregated power profile. It is
apparent that the controller attempts to rectify the mismatch
by increasing the power consumption. As a result, the VB
SOC should track the energy reference signal as closely as
possible during the peak shaving period to limit the impact of
this unwanted event.

Reducing any mismatch periods also satisfies the desire
to achieve the maximum shaving percentage with mini-
mum impact on customer comfort. Hence, the capacity of
the aggregator should be properly distributed over the peak
period, especially for long peak durations. This will afford

VOLUME 12, 2024 67583



I. Arafat et al.: Maximum Reserved Capacity of Aggregated Electric Water Heaters VB

FIGURE 11. Energy reference signal and VB SOC during peak shaving
period.

FIGURE 12. Aggregated power during peak shaving.

sufficient time for other EWHs to become ready to share their
capacity. Ultimately, a valid energy reference signal should
meet the following conditions: 1) respect the initial SOC of
the VB, 2) uniformly distribute the reserve capacity through
the whole peak period, and 3) discharge the VB without mis-
match periods. Further analysis also shows that peak shaving
initially requiring a high VB discharge rate. A low decay
curve is then required at the end of the peak period where
the reserved capacity is at its minimum. These conditions
result in an energy reference signal that follows the parabolic
profile shown in Fig. 11. The formulation of this reference
signal under the forementioned conditions ensures precise
tracking of the maximum reserved energy. In other scenarios,
if the capacity of EWHs exceeds the reference requested
capacity due to reaching the upper temperature limit, the VB
SOC will fail to accurately track the reference, leading to a
substantial error εx (t), as shown in Fig. 9. Conversely, if the
aggregator lacks sufficient reserved energy, EWHs that are
activated due to reaching the lower temperature limit will sub-
sequently turn OFF again. The controller attempts to achieve
the requested capacity and subsequently may compromise
customer comfort. This scenario can occur with periodic
power interruptions in devices with minimal reserved energy.
This phenomenon can also prolong the expected payback
period, particularly if a significant number of EWHs finished
the peak period at the minimum temperature level. Fig. 11
depicts the desired operational behaviour, characterized by
minimal deviation betweenVBSOC and the reference energy
signal. The suggested energy reference profile during this
period is shown in Fig. 11 where no mismatch in tracking the
reference nor spikes are generated in the aggregated power
profile as shown in Fig. 12.

FIGURE 13. Reference signal and VB SOC behavior during payback period.

FIGURE 14. Aggregated power during payback period.

The energy reference signal and the controller continue to
shift the energy to the payback period. The payback period
starts immediately after the peak shaving period by providing
a consistent reference profile to charge the VB back to its
original nominal value. The controller ensures the optimal
shifting of energy, and the control ends before the next peak
period starts. The formulation of the energy reference signal
during the payback period directly depends on the VB status,
capacity available and customer discomfort index. The VPP
determines the requirements of the power curve and specifies
the consumption limits that must be respected during the
payback period. Rapid increases in the VB SOC can result
in the creation of a secondary peak in the aggregated power
profile and should be avoided. In other words, the goal of the
energy reference signal during payback is to ensure a steady
increase in the VB SOC without creating a new peak within
the VPP constraints. It should also avoid any abrupt changes
that may result in response oscillations in the VB SOC or in
aggregated power. The duration of the payback period is tied
to the power limits set by the VPP and contingent upon the
available capacity. Typically, the utility is susceptible to risk,
given that a significant portion of energy capacity is utilized
during peak periods. We assumed in this study that the power
limits during the payback period are within the same range
of the power profile during the peak period. The oscillations
observed in the payback power profile, as illustrated in Fig. 14
emanate from the controller’s attempt to restrain the rapid
escalation in the VB charging rate. This measure is taken to
avoid any breach of the maximum aggregated power thresh-
old. The payback reference signal and the aggregated power
response are shown in Fig. 13 and Fig. 14.
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FIGURE 15. The hot water demand profiles scaled to 70,000 habitants.

Fig. 13 illustrates the desired energy reference and the
intended tracking of the VB SOC to mitigate any nega-
tive impacts. The gradual increase observed initially until
10:00 AM serves multiple objectives, 1) restraining the rapid
escalation in the power profile and limit it to an acceptable
range, as illustrated in Fig. 14, and 2) establishing a safe
margin adjacent to the peak period. The slope of the refer-
ence signal ensures a smooth transition back to the internal
controller (thermostats) without any abrupt peaks.

B. HOT WATER DEMAND
Hot water demand is the main factor that affects the power
demand of EWH aggregators. It is important to accurately
model hot water demand profiles since the consumption rate
and timing determine the percentage participation of the
aggregator [34]. We adopted a hot water demand profile that
is based on the consumption probability density function
(PDF) reported in [33]. The study divides the day into three
consumption periods (i.e., morning, evening, and disperse).
The total daily hot water volume is calculated according to
the number of occupants in residences and the average day
temperature. The daily hot water profile was generated based
on the averagemonthly temperature, number of occupants per
house, and demographic statistical data of the city. The aggre-
gated hot water profile for 70,000 users was separated into the
three categories mentioned above and are shown in Fig. 15.
The results show the average aggregated hot water demand
among the three different consumption periods. We randomly
selected 500 hot water demand profiles for this research
study.

C. SENSITIVITY ANALYSIS
A sensitivity analysis was undertaken to assess the robustness
of our proposed peak shaving mechanism. The objective is
to examine the variations in the maximum reserved energy
capacity in response to changes in other variables. The first
study investigated the influence of variations in hot water
demand profiles on the maximum reserved energy capacity.
Equation (26) shows the effect on water temperature resulting
from the increase in hot water demand (1ω), while the
corresponding alteration in VB energy is expressed in (27).
Four scenarios were examined, each representing a hot water
demand increase of 5%, 10%, 15%, and 20%. The results

FIGURE 16. Energy capacity change during control periods for OFF control
scenario.

FIGURE 17. Energy capacity change during control periods for ON/OFF
control scenario.

obtained from the OFF-control case, as illustrated in Fig. 16,
demonstrate that as the hot water demand increases, the
amount of shaved energy during peak periods also increases,
while the energy gained during payback remains relatively
unchanged. These findings suggest that additional peak shav-
ing capacity becomes available with more hot water usage
while satisfying power and energy limitations. As expected,
Fig. 17 shows that ON/OFF control resulted in more energy
savings when compared to the OFF-control scenario. More-
over, the energy required to restore balance during the
payback period was less with ON/OFF control compared
to the OFF controller. This outcome is primarily attributed
to that not all pre-charge energy is consumed in the peak
shaving process, allowing for the remaining energy to be
invested in the payback period. Both control scenarios exhibit
a positive linear correlation between shaved energy and hot
water demand. The ON/OFF control scenario demonstrates
nearly twice the peak shaving capacity in comparison to
the OFF-control scenario. Notably, the trend for payback
gained energy remains relatively constant across both control
scenarios despite variations in water demand.

θ̇k (t) +1θ̇k

=
1

RkCk

(
RkPk (t) +

(
θkout (t) − θk (t)

)
+ρcpRk

(
ωk (t) + 1ωk

) (
θkin (t) − θk (t)

))
(26)

Ẋagg (t) +1Ẋagg = α(Xagg (t) +1Xagg) + βU (t) (27)

Another study investigated the potential change in maxi-
mum reserved capacity in the event of communication loss
with several EWHs. Two scenarios were considered: firstly,
the loss of devices due to power outages, where a linear
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FIGURE 18. Energy capacity change due to communication loss during
control period for OFF control scenario.

FIGURE 19. Energy capacity change due to communication loss during
control periods for ON/OFF control scenario.

relationship was observed, indicating that any lost devices
would proportionally reduce the capacity by the same per-
centage. The second scenario involved only the loss of
communication, with affected EWHs being controlled solely
by their internal thermostats to meet the constraint outlined
in (8). The percentage loss in energy capacity as a function of
the percentage loss in communication with EWHs is depicted
in Fig. 18 and Fig. 19. The reference value representing the
energy capacity assumes no communication loss (denoted
as 0%) with a total of 500 devices. The findings indicate that
the aggregator can partially compensate for the loss in devices
communication by approximately 2%. The dominance of
the linear relation in the sensitivity results can be attributed
to factors such as the narrow hysteresis band width (δk )
of approximately 4◦ degrees, the algorithm of the external
controller, and the normal operation of the TCL device. More
noticeable variations in energy capacity would be expected
for a broader hysteresis band but this is considered imprac-
tical given the design tolerances of the modern EWH. The
algorithm of external controller prioritizes EWHs based on
their reserved energy during control periods. Therefore, a loss
in communication excludes these devices from the controller
pool, prompting the selection of alternative devices. Since
the goal is to maximize capacity, the outcome is expected
to remain relatively consistent. In essence, a loss of 10% of
devices results in an approximate 10% reduction in maximum
capacity. Themaximum recorded discrepancy in this relation-
ship due to communication loss was 2.5%.

V. CONCLUSION
This paper presents an optimized VB-based aggregator as a
solution to a challenging problem of estimating the maximum

reserved energy of an EWH aggregator required for peak
shaving functions. The VB capacity model is based on an
aggregation of EWHs with varying sizes and ratings. The
study employs a handshaking mechanism that relies on the
estimated energy requested and fulfilled between the VPP
and the VB. The maximum peak shaving capacities of two
EWH control scenarios, OFF and ON/OFF, were compared
through simulation. The results indicate that bypassing the
EWH’s internal thermostat control with ON/OFF control
allows for greater peak shaving capacity using the pre-
charging stage. The VB model represents a feasible solution
for estimating the maximum reserved energy required for
peak shaving functions. This is further supported by the
model’s ability to satisfy internal constraints for both control
scenarios, thus indicating its efficacy in regulating energy
usage. Additionally, the energy reference signal required by
the VB to discharge energy as uniformly as possible is deter-
mined. A sensitivity analysis is also conducted to convey
the robustness of the proposed TCL aggregation mechanism.
The correlation between energy storage capacity and both
increased levels of hot water demand and loss in device
communications are addressed. Future research will explore
alternative peak shaving reference signal shapes to increase
the flexibility of energy management and investigating dif-
ferent ancillary service capabilities of the VB aggregator,
particularly for services that require more dynamic TCL
behavior. Investigating the utilization of theVB as a backup to
assign more prosumers energy for P2P trading in the LEM is
crucial in future studies. Furthermore, the authors suggest that
potential grid stability issues resulting from these demand
response initiatives warrant further investigation.
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