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ABSTRACT This paper introduces a novel approach for the detection of automated entities in online
environments through the analysis of mouse dynamics. Leveraging fractional derivatives and vector cross
products, our methodology scrutinizes the intricate patterns embedded in mouse movements. Fractional
derivatives capture the non-integer order dynamics, while vector cross products reveal deviations from
expected trajectories. The combination of these advanced mathematical tools offers a unique perspective on
distinguishing between human and bot behaviors. We present experimental results showcasing the efficacy
of our approach in various scenarios, demonstrating its potential in the realm of cybersecurity and online
integrity. Our findings contribute to the evolving landscape of bot detection methodologies, emphasizing the
importance of incorporating mathematical rigor in the analysis of digital behavior.

INDEX TERMS Bot detection, human-bot interaction, clusterization, feature engineering, feature
interaction.

I. INTRODUCTION
Bots are automated programs designed for the efficient
execution of repetitive tasks at maximum speed [1]. However,
malicious bots pose significant risks to network users,
causing substantial damage and creating potential threats in
the online environment [2].
Recently, the issue of bots mimicking human behavior [3]

has become particularly relevant. Cybercriminals actively
employ technologies that enable bots to emulate human
actions and interactions online [4]. This imitation complicates
the detection of malicious bots, as they become more
sophisticated in distinguishing from human behavior. In the
context of government programs, the threat of such imitation
can lead to data manipulation [5], disinformation [6], and
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other forms of cyberattacks [7], emphasizing the importance
of developing effective methods to protect against such
technological threats.

In various scientific literature, the significance of bot
detection is emphasized, as bots, prevalent on the modern
internet, pose a serious threat, influencing diverse aspects
from data falsification in online advertising to large-scale
attacks for harvesting user accounts. In [8] propose a
non-intrusive stress measurement method through routine
computer mouse operations, utilizing a simple model cap-
turing muscle stiffness during movement. The study [9]
investigates cursor trajectories of motion-impaired and non-
disabled users to enhance our understanding of impaired
movement, revealing distinctions such as increased pausing
frequency and duration The pivotal focus of work [10]
lies in proposing a semi-supervised method for effectively
distinguishing between bots and legitimate users on social
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networks. Study [11] describes the uniqueness of this system
lies in its utilization of fine-grained, point-by-point angle-
based metrics of mouse movements, which prove distinctive
across individuals and independent of computing platforms
The article [12] discusses the advantages of detecting bots
using mouse dynamics. Thesis [13] describes the distinction
between ‘‘good’’ bots, which are permitted and utilized
for specific tasks such as web indexing by search engines,
and ‘‘bad’’ bots, which scrape data without permission,
potentially leading to issues like skewed analytics and
misuse of information. Paper [14] underscores the issue of
malicious bots, posing a serious threat and introduces an
innovative approach, leveraging deep learning and a new
representation method based on mouse dynamics. Crucial
point of the study [15] lies in the evolution of mouse
dynamics as a biometric, particularly in web bot detection.
The key focus of the paper [16] is the introduction of the
SapiMouse dataset, designed for training and evaluating
systems in user authentication and bot detection based on
mouse dynamics. Article [17] highlights the central theme
of creating an end-to-end deep framework designed for
detecting bots through computer mouse movements. The
paper [18] introduces ReMouse, a unique real-world mouse
dynamics dataset, offering insight into combating session-
replay bots, a challenging issue in domains frequented by the
same genuine users

Kinematics pertains to the study of object motion without
considering the reasons behind this movement [19], and
in this case, the object is the mouse used for user input.
Typically, quantities such as velocity and acceleration are
used to describe motion. Fractional derivatives [20] in the
context of kinematics may include, for example, fractional
derivatives of velocity or acceleration over time [21]. Since
fractional derivatives can cover non-integer degrees, they can
be useful for capturing more complex aspects of motion.
When applied to the analysis of mouse movement, fractional
derivatives can help identify trajectory features that might be
overlooked when using only integer derivatives. For instance,
fractional derivatives can highlight changes in speed or
acceleration over small time intervals, which may be crucial
for detecting unusual or bot-specific movement patterns [22].
In the scope of our research, we went beyond limiting

ourselves to the second derivative and extended the analysis
to derivatives up to the sixth order. This includes derivatives
of higher orders, such as the third, fourth, fifth, and sixth
derivatives.

Jerk (Je) [23], sometimes referred to as jolt [24], is the
third derivative over time of position j⃗ (t) =

d3 x⃗
d t3

and
represents the change in acceleration over time. The absence
of jerk in acceleration is essentially a manifestation of a
static load. Jerk, on the other hand, is the sensation derived
from alterations in force; it manifests as either an ascending
or descending force acting on the body [25]. The analysis
of jerk is crucial for understanding how these long-dwell
mechanisms generate intermittent motions with delay and a
holding position of the output member [26].

Snap (S) [27], also referred to as jounce [28], represents
the fourth derivative of the position vector concerning time
s⃗ (t) =

d4 x⃗
d t4

. Alternatively, it signifies the rate of change of
jerk with respect to time. In other terms, it can be expressed
as the second derivative of acceleration or the third derivative
of velocity. Snap is analyzed to comprehend its impact on the
kinematic performance ofmechanismswith long dwell times,
where higher-order time derivatives become essential for a
complete description of their motion [26].

Crackle (C) [29] is the kinematic parameter c⃗ (t) =

d5 x⃗
d t5

corresponds the fifth derivative of the position vector
with respect to time. For example, crackle represents a
higher-order kinematic parameter derived from the Doppler
radar measurements, specifically denoting the time derivative
of snap, and is identified as a potential indicator of cognitive
impairment during the sit-to-stand movement in elderly
individuals [30].

Pop (P) p⃗ (t) =
d6 x⃗
d t6

is the term that occasionally used to
describe the sixth derivative of the position vector concerning
time [31].

The study [32] primarily focuses on assessing the impact
of mouse device configurations on mouse dynamics metrics
through statistical evaluation. In contrast, our study takes an
approach by employing trajectory classification techniques
and analyzing time derivatives of mouse movements. Its
objective is to identify distinct user behavior patterns,
specifically targeting the differentiation between ordinary
users, clickers, and human mimic bots.

The aim of this study is to employ two types ofmetafetures:
trajectory classification approach, utilizing vector cross
product with trajectory length and session time, and time
derivatives up to the sixth order, including fractional deriva-
tives of semi-integer order. Through this unique perspective,
we seek to identify a clustering model for user trajectories
that effectively distinguishes ordinary users from clickers and
human mimic bots.

II. RELATED WORKS
When considering mimetic robotic systems observed in the
context of mouse movement, it’s important to acknowledge
the various approaches that have been proposed. Some
studies focus on employing statistical methods to ana-
lyze mouse movement patterns [32], [33]. Other research
endeavors focus on utilizing mouse temporal dynamics
features, such as velocity [34], acceleration [35], jerk [36],
snap [37]. Other research endeavors apply machine learning
techniques for mouse movement clusterization. Work [38]
introduces a novel approach to mouse trajectory analysis
through trajectory clustering, surpassing the limitations of
aggregation-based trajectory analyses. Paper [39] presents a
dynamic approach combining trajectory simplification and
clustering to address visual clutter in confined spaces like
soccer pitches. Certain approaches concentrate on analyzing
temporal characteristics of mouse movement, such as click
frequency [40] and duration [41]. Several studies have
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suggested the utilization of biometric methods [11], [42]
for mouse movement analysis. Additionally, some research
endeavors aim to combine various approaches [43], [44].
Consequently, currently developed approaches do not fully
explore all possible patterns of mouse trajectory movement
by creating new meta-features such as fractional derivatives
for highly effective analysis of non-human mouse movement,
addressing the gap in knowledge that this paper seeks to close.

III. METHODOLOGY
Drawing insights from the dataset on user trajectories
obtained from the e-commerce platform, we conducted an
analysis of mouse movements. This involved an examination
of keystroke and mouse dynamics, allowing us to distinguish
distinct behavioral patterns for humans and bots. For the
analysis of mouse movement in the experiment, data were
utilized containing records for each user session in a
sequential format xi, yi, ti, . . ., where xi, yi represent the
coordinates of the mouse position at time ti. Time values ti
were measured in milliseconds since January 1, 1970 (Unix
format). Each session had a varying number of coordinate
entries and included information about the session’s creation
time.

Initially, velocities, accelerations, and session times were
computed for each record. Subsequently, the pattern of
mouse movement was investigated using the cross product
of vectors.

One of the primary tools employed was Python [45],
renowned for its flexibility and robust data analysis libraries.
Specifically, for processing and analyzing mouse trajectory
data, the Pandas [46] library was used for handling tabular
data, NumPy [47] for array-based computations, and Mat-
plotlib [48] for result visualization.
For more complex operations, such as computing frac-

tional derivatives of mouse trajectories, the SciPy [49]
library was employed. SciPy offers a wide array of scientific
computing functions, including support for differentiation
operations.

A. UTILIZATION OF VECTOR CROSS PRODUCT FORMULA
The application of the vector cross product formula in
this context is associated with determining the collinearity
of three consecutive points (coordinates). The vector cross
product formula provides a method to check whether three
points lie on the same line in a two-dimensional space.

For three points A(x1, y1), B(x2, y2), and C(x3, y3), vectors
AB and AC are represented as:

AB = ⟨x2 − x1, y2 − y1⟩, AC = ⟨x3 − x1, y3 − y1⟩

The cross product of vectors is calculated as:

Cross Product = (AB× AC) = (x2 − x1)(y3 − y1)

− (y2 − y1)(x3 − x1)

If the points lie on the same line, the cross product
is zero. Otherwise, it is non-zero. Therefore, the vector

cross product formula allows determining whether a set
of points forms a line. A value close to zero (considering
the threshold value straight_line_threshold) may indicate
straight-line movement. Clicker bots (Fig. 1c), commonly
employed for automated actions online, exhibit distinctive
trajectories easily identifiable through vector cross product
analysis of their movement lines. This enables efficient
recognition of such bots by analyzing deviations in mouse
positions beyond typical user movements (Fig. 1ab).
If two lines emanating from the same point exhibit a

significantly large value in their cross product, it suggests
a sudden deviation in the mouse’s position amid seemingly
regular user movements, indicating a potential human mimic
bot. This distinct pattern (Fig. 2) suggests the presence of a
humanmimic bot, as the trajectory reflects characteristics that
deviate from typical user behavior.

Data on mouse movements were captured using user
activity monitoring methods, with coordinates recorded at
equidistant time intervals. The results revealed that a key
characteristic of such users is the large distance between
mouse coordinates on the computer screen. This pattern is
observed in users who mimic the behavior of real people
but employ mechanical methods for moving the computer
mouse. We hypothesize this because it is unlikely for a
human to move their mouse over distances significantly
greater than the average distance between coordinates of the
same user. It is speculated that the reason for the occurrence
of this pattern in human mimics may be an attempt to
deceive behavior analytics systems and overcome limitations
in estimating the speed and accuracy of mouse movements
inherent to real users. To better discern this pattern, vector
multiplication of adjacent vectors was conducted. Analyzing
such vector-related features can enhance the detection of bots
striving to mimic human interactions on digital platforms.
Analyzing such vector-related features can contribute to the
effective detection of bots attempting to emulate human
interaction on digital platforms.

B. UTILIZATION OF FRACTIONAL DERIVATIVES
For a more in-depth analysis, we incorporate fractional
derivatives of semi-integer order in our study, allowing for
a nuanced examination of temporal dynamics. Fractional
derivatives [21] serve as a mathematical tool that generalizes
the concept of derivatives to non-integer orders. In physics,
they find applications in modeling complex phenomena
where changes cannot be adequately described by ordinary
differential equations. For instance, fractional derivatives
are employed in describing diffusion in porous media [50],
relaxation in intricate systems [51], and analyzing nonlinear
phenomena like fractal structures [52]. Their application
allows for a more precise consideration of nonlinear and non-
uniform processes, making them a powerful tool in physical
modeling.

We will refer to the derivative of order 0.5 as half-velocity
(hV), the derivative of order 1.5 as half-acceleration (hA),

VOLUME 12, 2024 56709



I. P. Malashin et al.: Detecting of Robotic Imitation of Human on-the-Website Activity

FIGURE 1. The coordinates of mouse trajectories along the X and Y axes: a), b) - trajectories of human, c) - clicker.

FIGURE 2. Trajectories of human mimic bots with area which filled between two lines with maximum vector cross product (examples).

and order 2.5 as half-jerk (hJe). Also we introduce the terms
half-snap (hS), half-crackle (hC), and half-pop (hP) to
denote derivatives of orders 4.5, 4.5, and 5.5, respectively.
These terms extend the concept of snap, crackle, and pop,
commonly used for the fourth, fifth, and sixth derivatives of
displacement in the context of motion analysis.

These terms are defined by the following formulas:

⃗̃v (t) = D1/2 x⃗ =
d0.5 x⃗
d t0.5

(1)

⃗̃a (t) = D3/2 x⃗ =
d1.5 x⃗
d t1.5

(2)

⃗̃j (t) = D5/2 x⃗ =
d2.5 x⃗
d t2.5

(3)

⃗̃c (t) = D7/2 x⃗ =
d3.5 x⃗
d t3.5

(4)

⃗̃s (t) = D9/2 x⃗ =
d4.5 x⃗
d t4.5

(5)

⃗̃p (t) = D11/2 x⃗ =
d5.5 x⃗
d t5.5

(6)

The fractional derivative of a signal f (t) of order q is
defined as follows:

Dqf (t) =
1

0(n− q)
dn

dtn

∫ t

0
(t − τ )n−q−1f (τ ) dτ

where 0(n) is the gamma function and n is the nearest
integer greater than or equal to q. This fractional derivative
provides insight into the rate of change of the signal with
respect to time, capturing more nuanced aspects of the mouse
movement.

To interpret the fractional derivatives, a computational
approach was implemented using Python. The function takes
a signal and an order as input and returns the fractional
derivative of the signal. It involves the following steps:

1) It initializes variables for the length of the signal (n)
and an array representing time (t).

2) Finds local maxima indices in the signal using SciPy’s
argrelextrema function [53], [54].

3) Creates an interpolator using cubic interpolation
between identified extrema.

4) Interpolates the signal at all time points using the
created interpolator.

5) Calculates the fractional derivative using cumulative
trapezoidal integration up to each time point.

6) Normalizes the calculated fractional derivative values
using the gamma function.

7) Returns the resulting array containing the fractional
derivative of the input signal.

In essence, the code numerically computes the fractional
derivative, a useful operation for extracting nuanced features

56710 VOLUME 12, 2024



I. P. Malashin et al.: Detecting of Robotic Imitation of Human on-the-Website Activity

FIGURE 3. Temporal derivatives including fractional of computer mouse
position: A comprehensive visualization for a single session.

from a signal, such as those relevant to the analysis of mouse
movement patterns.

All motion patterns, accompanied by the specified frac-
tional derivatives for a particular trajectory, are illustrated in
Fig. 3. Each subfigure in the diagram portrays the distinctive
characteristics of motion, capturing the nuances revealed by
various fractional derivatives, including half-velocities, half-
accelerations, half-jerks, half-snaps, half-crackles, and half-
pops. The comprehensive depiction aims to provide a visual
representation of the intricate features embedded within the
trajectory dynamics.

Upon closer examination of the figure, intriguing nuances
and distinctions between integer and fractional derivatives
become apparent. For instance, on segments where the
derivative is increasing, the corresponding half-derivative
exhibits a decrease. Additionally, at points of inflection,
the values of the half-derivative are significantly larger
than those of the derivative. Moreover, as the order of the
derivative increases, the maximum values of the derivative
decrease, despite the heightened values at inflection points,
demonstrating a unique interplay of features across various
orders of derivatives.

In pivot points where the trajectory changes direction,
the distinctions between integer and half-integer derivatives
become particularly evident. Half-integer derivatives exhibit
higher values in these turning points since they account
for additional dynamics associated with changes in the
movement direction. Simultaneously, integer derivatives,
which fail to capture fine details in these points, may
demonstrate less pronounced characteristics.

For instance, the half-derivative may emphasize inten-
sive changes in velocity or acceleration at turning points,
which could be crucial in analyzing motions in terms of
their dynamism and maneuverability. Meanwhile, integer
derivatives, focusing on average values, might overlook these
aspects and show less pronounced peaks in these points. This
indicates that the use of half-integer derivatives can enrich
the motion analysis by capturing additional aspects related to
turns in the trajectory.

C. PIPELINE
The experimental pipeline involved a comprehensive analysis
of temporal coordinate data from user sessions. For each
coordinate sequence (xi, yi) with corresponding timestamps,
numerical derivatives were calculated over time, including
integer orders (velocity, acceleration, jerk, snap, crackle, pop)
and fractional orders starting from 0.5 (half-velocity, half-
acceleration, etc.).

For each user session, the average values of these
derivatives were computed, generating 12 new meta-features
in addition to standard ones (trajectory length, session
duration, session clicker status, and the number of coordinates
in the trajectory).

Subsequently, user trajectories were compared with their
clustering, averaging metrics across all trajectory-related
meta-features for each specific user. Results indicated
that dimensionality reduction did not alter the 3D t-SNE
distribution pattern but facilitated transitioning from a dataset
of 15,000 trajectories to one of 2,146 users with characteristic
metrics.

Next, an experiment was conducted to determine optimal
clustering parameters using four algorithms: DBSCAN,
Kmeans, GMM, Agglomerative, with variations in the
number of clusters from 3 to 10. The optimal algorithms
were found to be Kmeans, GMM, and Agglomerative with
variations in clusters from 3 to 6.

The goal of the experiment was to assess the impact of new
meta-features on user clustering characteristics. The sum of
all unique non-repeating combinations of 12 elements (n =

12), taken for all possible meta-features k from 1 to 12, can
be expressed as:

S =

12∑
k=1

(
12
k

)
Due to the unknown interplay of these meta-features, 4,095
unique combinations of 12 these features were explored,
resulting in 4, 095×3×4 = 49, 140 experiments. To identify
the best pipeline. Models were compared using metrics such
as Silhouette [55], [56], Davies Bouldin Index [57], [58], and
Calinski Harabasz Index [59], [60].

IV. RESULTS
Heatmap of correlations among the averaged characteristics
of time derivatives, including fractional derivatives, for our
analyzed dataset is presented in Fig. 5. Notably, the least
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FIGURE 4. Experiment Pipeline Overview: A Sequential Journey Through
Data Calculation, Processing, and Analysis.

correlated features with all others are the characteristics
of half-speed (hV), half-Crackle (hC), and half-Pop (hP).
Conversely, the features that exhibit the highest correlations
across the board are acceleration (A), half-acceleration (hA),
and Jerk (Je). This intriguing pattern suggests a unique
relationship between these motion descriptors, wherein
the former set may capture distinct aspects of motion
independent of others, while the latter set tends to co-vary
more consistently. Possible explanations for such behavior
could be rooted in the intrinsic nature of motion dynamics,
where certain characteristics align closely, while others
manifest greater independence. The observed correlations
provide valuable insights into the interplay between different
motion features, offering a foundation for more nuanced
interpretations of trajectory dynamics.

It is important to note that while these correlation patterns
were observed within our specific dataset, their general-
ization to other datasets may vary. The characteristics of
motion dynamics are inherently influenced by diverse factors,
including the context of data collection, user demographics,
and specific tasks involved. Therefore, caution should be
exercised when extrapolating these findings to different
datasets, as the underlying dynamics of human behavior
and interaction with digital interfaces can significantly

FIGURE 5. Heatmap depicting the average Temporal Derivatives
meta-features across various sessions.

differ. Further research across diverse datasets is essential
to ascertain the robustness and generalizability of these
correlation patterns in various contexts.

In our study, we employed a comprehensive set of evalua-
tion metrics, including Silhouette Score and Davies-Bouldin
Index, to assess the quality of the obtained clusterings from
KMeans, GMM, and Agglomerative algorithms. Silhouette
Score, providing a measure of cohesion and separation
within clusters, allowed us to quantify the appropriateness
of the clustering solutions. Simultaneously, Davies-Bouldin
Index, assessing the compactness and separation between
clusters, offered valuable insights into the performance of
each algorithm in capturing distinct and well-separated
groupings. By leveraging these metrics, we gained a nuanced
understanding of the clustering outcomes, enabling a rigorous
comparison and selection of the most suitable algorithm for
our specific dataset and clustering requirements.

Comparative analysis of metrics of clustering algorithms
for 3, 4 and 5 clusters are shown on Fig. 6 respectively for
125 randomly selected dataset with diffrent combinations
of meta-features. including KMeans, GMM, and Agglom-
erative, focused on the evaluation metrics for three and
four clusters, as these configurations reveal common trends.
Notably, GMM exhibited inferior clustering performance
with elevated Davies-Bouldin Index scores. Silhouette Scores
demonstrated moderate consistency around 0.79 for KMeans
and Agglomerative with three clusters, declining to 0.75 with
four clusters and 0.7 with five clusters. This trend is more
apparent with three clusters and diminishes with increasing
clusters. The reliance on Silhouette Score as a similarity
metric may not consistently yield optimal clustering, as high
Silhouette Scores can result from grouping all points into one
cluster and isolating outliers in another, which may not align
with true cluster patterns.

To select optimal clustering models, the following
approach was employed:

1) Silhouette Score: Models were filtered based on
Silhouette Score, considering models with scores
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FIGURE 6. Comparative analysis of clustering algorithms KMeans, GMM and Agglomerative: evaluation metrics for different algorithms with diffrent
number of clusters.
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FIGURE 7. Euler diagrams of number of best scores for obtained models.

exceeding 80% of the maximum Silhouette Score
across all models.

2) Davies-Bouldin Index: Models were filtered based
on Davies-Bouldin Index, considering models with
indices less than 165%of theminimumDavies-Bouldin
Index across all models.

3) Calinski-Harabasz Index: Models were filtered
based on Calinski-Harabasz Index, considering mod-
els with indices exceeding 75% of the maximum
Calinski-Harabasz Index across all models.

Subsequently, an analysis of intersections among these
models was conducted, forming three new sets: res_12,
res_13, and res_23. Each of these sets represents models
that simultaneously meet different combinations of criteria.
res_12 includes models that satisfy thresholds for both
Silhouette Score and Davies-Bouldin Index, res_12 com-
prises models that satisfy the specified thresholds for both
Silhouette Score and Calinski-Harabasz Index, and res_23
includes models that satisfy the criteria for Davies-Bouldin
Index and Calinski-Harabasz Index simultaneously.

Fig. 7 illustrates Euler diagrams intersections of sets based
on selected clustering metrics. The sizes of each region
represent the number of models meeting specific criteria.
The sets include models with high Silhouette Score (red
area), low Davies-Bouldin Index (green area), and high
Calinski-Harabasz Index (purple area). The intersections
highlight models that simultaneously satisfy combinations of
these criteria.

For the final evaluation of the selected models, a visual
analysis was performed using 2D and 3D t-SNE maps.
The distribution of users across different cluster counts
was examined, and statistics related to meta-features for
each of the selected models were analyzed. This approach
aided in identifying optimal models that exhibit the best
characteristics across various clustering quality metrics.

V. DISCUSSION
The stability of the 3D t-SNE [61] distribution pattern despite
dimensionality reduction can be attributed to the preservation
of essential geometric relationships among trajectories in
lower-dimensional spaces. The reduction process maintains
the relative distances and arrangements of trajectories,
emphasizing the dominant structural features within the
dataset. This allows for a more concise representation of the
user trajectories while retaining the key characteristics that
define their clustering. The transition from a larger dataset

of individual trajectories to a more compact representation
of user clusters is facilitated by this preservation of essential
geometric relationships, enabling effective analysis of char-
acteristic metrics for distinct user groups.

The process of selecting an appropriate clustering model
based on metrics may not always lead to a clear interpretation
of the obtained clusters. Specifically, interpreting clusters
becomesmore challenging as the number of classes increases.
A lower number of classes often facilitates the interpretation
of created meta-features for each cluster. However, it is
crucial to consider the adaptability of clustering to correlated
features, as similar features can significantly impact the
clustering results.

In the context of correlated features, it is essential
to note that closely related features may influence the
clustering outcome, leading to the formation of clusters
that represent similar aspects of the data. As the number
of correlated features increases, the risk of collapsing the
entire dataset into a single cluster becomes more pronounced.
Additionally, outliers may be highlighted as individual
clusters, especially when clustering with six or seven
meta-features.

Despite low silhouette and Davies-Bouldin Index metrics,
there are instances where the clustering model demonstrates
good interpretability. The visual examination of 2D and
3D [62], [63] cluster maps proves instrumental in identifying
and understanding the distinct clusters. For example, outliers
might appear as isolated points within the main cluster on
a 2D map but could be situated far away from the main
cluster on a 3D map. Such visualizations help uncover
nuances that may not be captured by traditional clustering
metrics, emphasizing the importance of incorporating visual
inspection in the evaluation process.

Fig. 8 shows 2D t-SNE maps the distribution of clusters
for 3 various clustering models. Each point on the map
represents a users’ trajectories, and the proximity of points
indicates similarity in the feature space. The distinctive
spatial arrangement reveals the clustering patterns produced
by different models, providing valuable insights into the
separation and cohesion of user trajectories based on the
chosen meta-features and clustering algorithms.

Fig. 9 is the 3D t-SNE (of the corresponding 2D maps)
offer a three-dimensional perspective of the clustering results
obtained from different models. Each point in the 3D space
represents a user trajectory, and the spatial configuration
reflects the model’s ability to separate trajectories based on
the chosen meta-features. The three-dimensional visualiza-
tion enhances our understanding of the cluster distribution,
providing a comprehensive view of the clustering patterns and
relationships among users’ trajectories.

Continuing with the analysis, when incorporating only
Velocity (V) as an additional meta-feature, the agglomer-
ative clustering model with 4 clusters identified distinct user
types among 2,146 individuals. Specifically, it categorized
1,616 and 451 users as regular users, differing only in the
average session duration–5 minutes and 4 hours, respectively.
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FIGURE 8. 2D t-SNE maps of users’ trajectories for dataset with additional features: a) V b) hSCP c) VhVhAShP with 4, 5 and 4 clusters respectively.

FIGURE 9. 3D t-SNE maps of users’ trajectories for dataset with additional features: a) V b) hSCP c) VhVhAShP with 4, 5 and 4 clusters
respectively.

TABLE 1. Cluster evaluation metrics.

This distinction highlighted users who briefly accessed
the system and those who spent a significant part of
the working day within the system. Further categorization
revealed 47 users exhibiting a high Clicker index and
very short session times, on the order of fractions of a
second. Remarkably, these users had an average session
count of around 14, indicating frequent but extremely brief
interactions. Additionally, the model identified 32 users with
a significantly high session count, approximately 30 sessions
per user. Interestingly, within this group, there was a small
fraction of Clickers. This comprehensive analysis showcases
how the inclusion of specific meta-features, such as velocity,
refines the clustering outcomes and provides detailed insights
into diverse user behavior patterns.

Expanding the analysis to include the combination
of half-Snap, Crackle, Pop (hSCP), utilizing the

Agglomerative model with 5 clusters, results in the following
distribution of users across clusters: 1258, 810, 43, 32, 3.
Remarkably, the same set of 32 users was identified in the
Clicker category. The majority–1258 and 810 users–were
characterized as 5-minute and 4-hour diligent users, respec-
tively. Additionally, the 3 remaining users exhibited an
intriguing pattern, featuring exceptionally long trajectories
(approximately 6000 pixels, similar to regular 5-minute
users) combined with extremely brief system interaction
times (around 1 second) and notably high values of the
half-Snapmetric. This unique group showcases the ability
of the model to identify outliers and uncover distinctive
behavioral patterns within the user population. Moreover,
it is noteworthy that the average number of sessions for
users within this group is approximately 10. But clicker
value is 0.
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In the case of the Velocity, half-Velocity,
half-Accelerate, Snap, half-Pop (VhVhAShP)
combination with the Agglomerative model featuring
5 clusters, the distribution among user clusters reveals
2029 users in the normal category, 31 identified as clickers,
and 84 representing a blend of clickers and regular users.
Additionally, there is one user each characterized by short
session times and long trajectories. This detailed breakdown
exemplifies the ability of the clustering model to differentiate
among user behaviors, shedding light on distinct usage
patterns.

Index metrics for these models are shown in Tab. 1. When
considering the balance of these indices, one can obtain the
most optimal models.

VI. CONCLUSION
In conclusion, while clustering metrics provide valuable
quantitative insights, the interpretability of clustering models
depends on various factors, including the number of classes,
adaptability to correlated features, and the effectiveness
of visualizations in capturing the underlying structure of
the data. A holistic approach, considering both quantitative
metrics and visual explorations, enhances the understanding
of complex clustering results. This becomes particularly
crucial when extending the analysis to cluster users based
on mouse trajectories using combinations of new meta-
features, such as derivatives up to the 6th order and their
corresponding fractional derivatives. The incorporation of
these advanced meta-features not only deepens the analysis
but also introduces intricate patterns into the clustering
process. By synergizing quantitative assessments with visual
representations, our approach strives to unravel the latent
structures in user trajectories, providing a more nuanced
interpretation of the clustering outcomes. This nuanced
understanding, rooted in both metrics and visualizations,
is pivotal for discerning meaningful user behavior patterns
and optimizing the efficacy of trajectory-based clustering
algorithms.

Future directions for this work could include exploring
additional features or algorithms to further enhance the
analysis of mouse trajectory data. For example, exploring
the integration of machine learning techniques, such as
optimizing hyperparameters of clustering or classification
algorithms using genetic programming, could enhance the
accuracy and effectiveness of analyzing mouse trajectory
data. Additionally, expanding the scope of the study to
include a broader range of applications beyond web maps,
such as gaming interfaces or virtual reality environments,
could offer valuable insights into human-computer interac-
tion dynamics. Furthermore, integrating real-time processing
capabilities into the analysis pipeline could enable the
development of interactive systems for immediate feedback
and decision-making based on mouse trajectory data. Finally,
collaborating with experts in related fields, such as cognitive
psychology or human-computer interaction, could provide
interdisciplinary perspectives and lead to innovative advance-

ments in understanding and utilizing mouse movement
behavior.
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