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ABSTRACT Interdependent systems, under the management of multiple decision-makers, confront rapidly
growing cybersecurity threats. This paper delves into the realm of security decision-making within these
complex interdependent systems managed by multiple defenders. Each defender assumes responsibility for
safeguarding a specific subnetwork of the system against potential attacks. The relationships between these
assets are depicted through an attack graph, where edges connecting assets signify that the compromise of
one asset could expose vulnerabilities in another asset. These edges are associated with probabilities that
represent the likelihood of a successful attack, which can be reduced through security investments by the
defenders. Our approach involves modeling these systems using game-theoretic frameworks, accounting
for the impact of bounded rationality and imperfect best-response behavior—as frequently observed in
human decision-making within the domains of behavioral economics and psychology. We first establish
the existence of quantal response equilibrium in our interdependent security games. We present illustrative
examples to highlight the disparities between the solutions derived from the social optimal perspective and
those arising from quantal response equilibrium. Subsequently, we analyze the inefficiency introduced by
behavioral players with this type of bounded rationality in terms of the overall social cost of the system.
We adapt a widely recognized metric to quantify the extent of this inefficiency, providing bounds and
illustrating its exponential growth with an increase in the security budget. To assess our models, we employ
a representative real-world interdependent system and compare the game-theoretic optimal investment
strategies to those derived from a socially optimal standpoint.

INDEX TERMS Attack graphs, quantal response equilibrium, central planning, security games, cyber
security, human decision-making, interdependent systems, quantal errors, risk assessment.

I. INTRODUCTION
Interdependent systems face an ever-increasing threat of
sophisticated cyberattacks orchestrated by external adver-
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saries. These attacks pose significant risks to critical infras-
tructures on a large scale [1], [2]. The primary objective
behind such attacks is to gain control of vital assets within
these systems [3]. In pursuit of this goal, attackers often
exploit various vulnerabilities associated with each critical
asset. Consequently, there have been numerous efforts to
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enhance the cybersecurity posture of these interdependent
systems [4], [5], [6].

In this complex landscape, security executives responsible
for managing these interdependent systems must make
judicious allocations of their limited security budgets to
mitigate security risks. This resource allocation problem
is further complicated by the fact that large-scale systems
comprise multiple interdependent subsystems, each over-
seen by different operators. Each operator prioritizes the
security of their own subsystem, resulting in self-interested
decision-making behavior. This inherent selfish behavior is
a well-documented phenomenon in the literature on security
resource allocation [7], [8], [9]. Prior work has considered
such security resource allocation problems in interdependent
systems via both decision- and game-theoretic settings in
which the security risk faced by an operator (defender)
depends on her security investments and the aggregate
investments by other defenders [10], [11], [12].

Although there is a large body of security litera-
ture capturing security resource allocation problems in
interdependent systems, most of the existing work has relied
on classical models of decision-making (with few exceptions
that explored the impact of human prospect-theoretic atti-
tudes for interdependent security games [13], [14], [15], [16],
[17], [18]), where all defenders and attackers are assumed
to make fully rational risk evaluations, perceptions, and
security decisions [11], [19]. On the contrary, behavioral
economics and psychology have shown empirically that
humans consistently deviate from these classical (fully
rational) models of decision-making.

Notably, research in behavioral economics and psychol-
ogy has shown that humans consistently make errors in
choosing efficient (pure) strategies when making deci-
sions [20]. In contrast to classical decision-making, the
quantal response equilibrium takes into account the fact
that human decision-makers may not always make perfectly
rational decisions. Instead, it allows for decision-making
where the players in a game may not always choose
the best response with certainty, but their choices are
probabilistic and influenced by factors such as noise and
cognitive limitations. Many empirical studies have provided
evidence for this class of behavioral models [21], [22], [23].
The effects of this quantal behavioral decision-making are
relevant for evaluating security of interdependent systems in
which decisions on implementing security controls are made
through human decision-making, albeit with help from threat
assessment tools [24], [25].

Most of existing research that has considered behavioral
economics in security and privacy has the common theme of
considering user choices regarding privacy and how people
treat their own personal data [26] or entirely based on
psychological studies [27]. There are a few exceptions that
have leveraged mathematical analysis to predict the effect
of behavioral decision-making on the players’ investments
in organizational contexts with interdependent systems [13],
[14], [15], [16], [17], [18]. However, these works have

only focused only on prospect-theoretic attitudes and do not
consider quantal behavioral errors which is the focus of our
work. Several prior works have shown such quantal response
equilibrium for security problems, including defense of
isolated targets [28], and Stackelberg security games with
two players (one attacker and one defender) [29], [30],
[31], [32], [33]. However, this class of games does not
incorporate security externalities between multiple defenders
and network interdependencies that are the focus of the
current work.

In contrast to such studies, we consider general defense
allocation schemes that can be applied to any system
where failure scenarios are represented by an attack
graph while modeling human behavioral decision-making.
Our work introduces a rigorous framework that combines
three important threads of human decision-making for
distributed systems security research: game theory (modeled
by multi-defender security games against external adver-
saries), interdependent systems (modeled by attack graphs),
and behavioral economics (modeled by quantal response
equilibrium).

Throughout our paper, we consider two classes of players.

A. BEHAVIORAL DEFENDERS
These defenders make security investment decisions subject
to noise and probabilistically, as found in behavioral eco-
nomics decision-making. They are assumed to make errors
in choosing which pure security investment to allocate [22].
In particular, the probability of choosing any particular
security investment profile is positively related to the payoff
from that investment (in our setup, the lower the defender’s
cost, the better the investment profile).

B. NON-BEHAVIORAL (RATIONAL) DEFENDERS
These defenders make security investment decisions based on
the classical economics models of perfectly rational decision-
making. Thus, they correctly choose pure security investment
strategies to minimize their expected cost function(s).

C. PROBLEM SETUP AND QUANTAL RESPONSE FOR
INTERDEPENDENT SECURITY GAMES
We first model the effect that behavioral decision-making
(quantal response) has on interdependent systems with multi-
ple defenders. In these systems, each defender is responsible
for defending a set of critical assets (i.e., a subnetwork of
the whole network) against external adversaries. Due to the
nature of interdependent systems, these external adversaries
usually perform stepping-stone attacks to leverage vulnera-
bilities within the network in order to compromise critical
targets. These stepping-stone attacks can be captured via the
notion of attack graphs, which represent all possible attack
paths that the adversary takes to reach critical assets within
the system [19], [34].

We formulate such a scenario as a behavioral interdepen-
dent security game. We show that such a game has a quantal
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response equilibrium (QRE). We calculate the QRE where
the search strategy for each decision-maker adopts quantal
response dynamics [21], [22]. We then show the difference
under behavioral decision-making between the Pure-Strategy
Nash Equilibrium (PNE) (with rational players), the socially
optimal investment (with central planner), and the QRE (with
behavioral players) via multiple motivating examples where
we show the effect of behavioral level on the probability
of deviating from rational behavior and the interdependent
system’s security level.

We then propose a newmetric that we call Price of Quantal
Anarchy (PoQA) to measure the inefficiency arising from
the existence of behavioral players with quantal errors on
the social cost of the interdependent system. In particular,
we adapt the well-known price of anarchy concept [35]
to our interdependent security game modeled by attack
graphs and behavioral defenders (with quantal errors). The
PoQA captures the degree of suboptimality resulting from
quantal response equilibrium. We provide tight bounds for
the PoQA and show a fundamental result that PoQA grows
exponentially in the total security budget of the defenders.
We then develop an algorithm to compute the QRE under
many security investment strategies, in contrast to prior
works [29], [30], [31], [32], [33] that only considered limited
strategy space given their setup.

We finally evaluate our findings using an attack graph
that represents a realistic interdependent system and attack
paths through it. This system is a distributed energy resource
(DER.1) [25] (modeled by the US National Electric Sector
Cybersecurity Organization Resource (NESCOR)). In our
evaluation, we show the effects of different parameters (e.g.,
financial loss values of system’s assets and amount of security
budget). In conducting our analysis, we address several
domain-specific challenges in the context of security of
interdependent systems. These include augmenting the attack
graph with certain parameters such as sensitivity of edges to
security investments (Eqn. (1)), the success attack probabili-
ties (Section II-C), modifying quantal response formulation
for our interdependent security games (Section III), and
incorporating human behavioral errors in our formulations
(Section III).
In summary, this paper makes the following contributions:

1) We propose a security investment model for human
defenders of interdependent systems where defenders’
assets have mutual interdependencies and attack sce-
narios are captured by attack graphs.

2) We show the effect of an important human behavioral
error (probabilistic and noisy best response as modeled
as quantal response equilibrium) on security resource
allocation decision-making of human defenders for
securing interdependent systems.

3) We introduce a metric for quantifying the level of
inefficiency due to the existence of behavioral players.
We give bounds on this level of inefficiency.

FIGURE 1. Attack Graph of DER interdependent System.

4) We illustrate the effects of behavioral errors of
human decision-making on system security through
a real-world interdependent system. We also analyze
different system parameters that affect the security
level of interdependent systems under our behavioral
model.

The remainder of the paper is organized as follows.
Section II provides background and preliminaries on interde-
pendent security games and the main components for such
games. Section III presents the proposed quantal response
equilibrium framework and establishes the existence of QRE
in interdependent security games. We provide motivational
examples to explain the different aspects of QRE in
Section IV. We measure the inefficiency of QRE and
provide its bounds in Section V. Section VI provides our
strategy pruning algorithm. We provide the evaluation of
our framework on a real-world interdependent system in
Section VIII provides the literature review. Section VII.
Section IX provides the main discussion and limitations of
current work. Finally, Section X concludes the paper and
presents prospective future research directions.

II. BACKGROUND AND PROBLEM SETUP
We begin by presenting a background on interdependent
security games, establishing a theoretical basis that can be
used to model any multi-defender interdependent system.
A motivating example for real-world interdependent system
is shown in Figure 1. Then, a simple example of our setup is
shown in Figure 2, which represents a system consisting of
three interdependent defenders and an external attacker who
seeks to exploit vulnerabilities within the network in order to
reach and compromise critical targets [25]. We formalize the
attacker and defenders’ utilities, and actions in this section.

A. MOTIVATING APPLICATION FOR INTERDEPENDENT
SECURITY GAMES
The security problems that we are addressing in this paper
arise in a wide spectrum of applications. We briefly describe
one example application here to motivate the main ideas in
the paper. Our research goals are to understand the effect
of behavioral errors for defenders (which is represented by
quantal response equilibrium) in such application to provide
a more efficient security resource allocation method in such
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systems. We will also quantify the degree of inefficiency of
behavioral security decision-makers and the effects of system
parameters on the overall system security.

Application: Optimal Security Investments in
Interdependent DER System. Consider the example of
distributed energy resource (DER) network illustrated in
Figure 10, based on the US National Electric Sector
Cybersecurity Organization Resource (NESCOR) guidelines
for electric grid [25]. In this example, there are two equipment
critical assets: a photo voltaic (PV) generator and an
electric vehicle (EV) charging station. Each equipment is
accompanied by a human machine interface (HMI), the only
gateway through which the equipment can be controlled.
The DER failure scenario is triggered when the attacker gets
access to the HMI. The vulnerability of the system may arise
due to various reasons, such as hacking of the HMI, or an
insider attack. Once the attacker gets access to the system,
she changes the DER settings and gets physical access to the
DER equipment which can cause serious physical damage to
the system.

There are interdependencies between the various assets in
the two subsystems, captured by an attack graph shown in
Figure 1. An edge from one asset to another indicates that if
the former asset is compromised by an attacker, the latter can
also be subsequently compromised.

Given the interdependency network associated with the
DER system, each defender in the network has to choose
how much to invest in security on edges in order to
reduce the probability that the physical equipment (PV for
defender 1 and EV for defender 2) are compromised by
the attacker. The security decisions made by a defender
will depend on the investments made by the other defender,
leading to a game-theoretic formulation of the resource
allocation problem. The key questions that we seek to
answer in this paper are: What is the effect of behavioral
defenders with quantal error?; How to quantify the degree
of inefficiency under behavioral decision-makers compared
to socially optimal security investments?; and How does the
system parameters affect the overall security level of the
system (social cost) under behavioral error? Our framework
in this paper revolves around encapsulating such scenario and
providing answers to the above questions.

B. THREAT MODEL
We study security games consisting of an attacker and
multiple defenders interacting through an attack graph G =
(V, E). The nodes V of the attack graph represent the assets
in the system, while the edges E capture the attack progress
between the assets. In particular, an edge from vi to vj ,
(vi, vj) ∈ E , indicates that if asset vi is compromised by
the attacker, it can be used as a stepping stone to launch
an attack on asset vj . The baseline probability that the
attacker can successfully compromise vj given that it has
compromised vi, is denoted by the edge weight p0i,j ∈
[0, 1]. The baseline probability is the probability of successful
compromise without any security investment on the edges for

FIGURE 2. An outline of interdependent security framework. The
connections between assets are depicted as edges. The objective of the
attacker is to compromise critical assets by initiating stepping-stone
attacks, commencing at node vs. The red edges illustrate a potential
attack path targeting asset vm.

protecting the assets.1 The attacker initiates attacks on the
network from a source node vs (or multiple source nodes),
and aims to reach a target node vm ∈ Vk, i.e., a critical node
for defender Dk.

C. DEFENSE MODEL
Each defender Dk ∈ D, where the set D denotes the
set of all defenders in the system, has control of a subset
of assets Vk ⊆ V . This is motivated by the fact that a
large-scale interdependent system comprises a number of
smaller subnetworks, each owned by a different stakeholder.
Among all the assets in the network, a subset Vm ⊆ V
contains critical assets, the compromise of which entails a
financial loss for the corresponding defender. Specifically,
if asset vm ∈ Vm is compromised by the attacker, any
defender Dk for whom vm ∈ Vk suffers a financial loss
Lm ∈ R>0. Note that Lm is a scalar value representing the
financial loss of asset vm is compromised. The higher the
importance of the critical asset vm, the higher the financial
loss Lm if this asset is compromised.

To protect the critical assets from being reached through
stepping-stone attacks, the defenders invest their resources in
order to strengthen the security of the edges in the network.
Specifically, let xk

i,j denote the investment of a defender Dk

on edge (vi, vj) ∈ E , and thus xi,j =
∑

Dk∈D

xk
i,j is the total

investment on that edge by all eligible defenders. Then, the
probability of successfully compromising vj starting from vi

1In practice, Common Vulnerability Scoring System (CVSS) [36] can
be used for estimating initial probabilities of attack (for each edge in
our setting). For example, [34] takes the access complexity submetric in
the CVSS (which takes values in {low, medium, high}, representing the
complexity of exploiting the vulnerability) and maps it to a probability of
exploit (attack) success. The more complex it is to exploit a vulnerability,
the less likely an attacker will succeed. Similarly, [37] provides methods and
tables to estimate the probability of successful attack from CVSS metrics.
We refer also to Section IX for more detailed discussion.
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is given by pi,j(xi,j). In addition, let si,j ∈ [1,∞) denote
the sensitivity of edge (vi, vj) to the total investment xi,j .
The edges that are easier to defend have a larger sensitivity
(i.e., a faster decrease in attack success probability with
investments).

1) DEFENSE STRATEGY SPACE
The defense strategy space of each defender Dk ∈ D is
defined by

Xk := {xk ∈ R|E|≥0 |1
T xk ≤ Bk}.

In words, Xk is the set of feasible security investments
for defender Dk. It consists of all possible non-negative
investments on the edges of the graph such that the sum
of these investments is upper bounded by the defender’s
security budget Bk. This captures the real-world assumption
of limited security resources for human security decision-
makers. We denote any particular vector of investments by
defender Dk as xk ∈ Xk. Each entry of xk denotes the
security investment on an edge within the attack graph of the
interdependent system.

2) PROBABILITY OF SUCCESSFUL ATTACK
We let the probability of successfully compromising vj

starting from vi be given by

pi,j(xi,j) = p0i,j exp
(
− si,j

∑
Dk∈D

xk
i,j

)
. (1)

In other words, the likelihood of a successful attack on the
edge (vi, vj) diminishes exponentially as the total investments
made by all defenders on that edge increase. This probability
function belongs to a category frequently examined in the
field of security economics [9], [13], [18], [38].

D. COST MINIMIZATION
Let Pm be the set of all attack paths from vs to vm. The
defender assumes the worst-case scenario, i.e., the attacker
exploits the most vulnerable path to each target asset.2

Mathematically, this can be captured via the following cost
(total loss) function for defender Dk:

Ck(xk,x−k) =
∑

vm∈Vk

Lm

(
max

P∈Pm

∏
(vi,vj )∈P

pi,j(xi,j)
)

. (2)

Each defender Dk ∈ D chooses her security investments
xk := {xk

i,j}(vi,vj )∈Ek
to minimize her cost (total loss),

given by (2) where x−k is the vector of investments
by defenders other than Dk. Such cost minimization is
subject to her limited total security investment budget Bk

(i.e.,
∑

(vi,vj )∈E xk
i,j ≤ Bk), and non-negativity of the

investments, i.e., xk
i,j ≥ 0. It is easy to show that the total loss

function (2) is convex in the investment xi,j . Such convexity
follows from the second derivative of the loss function in (2)
with respect to xi,j .

2Our formulation also encompasses scenarios where each defender
contends with a distinct attacker who exploits the most susceptible
(vulnerable) attack path leading to that defender’s assets.

E. SECURITY GAME SETUP
After defining the threat and defense models and the main
goals of players, we now primarily design a security invest-
ment decision-making model for interdependent systems that
takes into account investments by all defenders.

1) GAME FORM
Our proposed interdependent security game will be formally
defined as follows: ` = ( D, (Xk)

|D|
k=1, (Ck(·))|D|k=1) with

D = {D1, D2, . . . . . . , D|D|} denoting the set of defenders
protecting the assets of the interdependent system, (Xk)

|D|
k=1

are the sets of feasible security investments of all defenders,
and (Ck(·))|D|k=1 are the defenders’ cost functions.

2) ATTACK ON INTERDEPENDENT SYSTEMS
In interdependent systems (such as cyber-physical systems),
the adversaries exhibit various capabilities and employ dif-
ferent attack strategies concurrently, aiming to compromise
different assets within the system. In Figure 2, where
attackers traverse a sequence of nodes along the network
edges until they reach their target asset. After all defenders
have allocated their resources (or security investments),
attackers select the path with the highest probability of
success for compromising each target asset. This selection
process is akin to identifying the most vulnerable path to
the target asset. Such attack models, where attackers choose
a single path to their target, have been studied in prior
literature [8], [18]. To capture this scenario, given a set
of security investments by defenders, the vulnerability of
an asset vm is defined as the maximum attack probability
among all possible paths leading to that asset. Formally, the
vulnerability of vm ∈ V is represented as:

vulnerability(vm) = max
P∈Pm

∏
(vi,vj )∈P

pi,j(xi,j).

Here, Pm denotes the set of all directed paths from the
entry node vs to asset vm, and pi,j(xi,j) is the conditional
probability of successfully compromising vj given that vi has
been compromised, as defined earlier.

3) DYNAMICS OF DEFENDERS’ SECURITY GAME
Each defender Dk aims to minimize her expected cost,
defined as the total loss incurred due to the highest probability
of attack among all available paths to each of their critical
assets. The expected cost for defender Dk is given by
equation (2). As the attacker decides on the optimal attack
paths to compromise critical assets, the objective of each
defender Dk ∈ D is to strategically allocate her investment
vector xk within the budget constraints Xk to minimize the
vulnerability of their assets, thereby reducing the expected
cost of potential breaches.
The game dynamics can be explained as follows: the

first defender D1 allocates her investment vector x1 to
minimize her cost C1(x1,x−1), then defender D2 allocates
her investment vector x2 given investment vector of defender
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D1 to minimize her cost function C2(x2,x−2). The same
process is done by each defender following best response
dynamics. Best response dynamics is a concept commonly
used in game theory, particularly in the study of strategic
interactions among decision-makers. It describes a process
where each player in a game continuously adjusts their
strategy to maximize their own payoff (here minimize the
security cost), given the strategies chosen by the other
players. In a best response dynamic, players iteratively
update their strategies based on their perception of the
strategies being employed by others. At each step, a player
evaluates their available strategies (here, security invest-
ment vectors in Xk) and selects the one that yields the
lowest cost, assuming the other players’ strategies remain
fixed.

This process of continual adjustment would eventually
lead to the convergence of strategies towards a pure strategy
Nash equilibrium (PNE), where no player has an incentive
to unilaterally deviate from her strategy, given the strategies
chosen by the other players.

4) EFFECT OF DEFENSE INVESTMENTS FROM SECURITY
GAME ON SECURITY LEVEL OF INTERDEPENDENT SYSTEM
This game dynamics in interdependent systems have sig-
nificant implications on the overall security posture of
the system. In particular, defenders’ investments on edges
influence the probabilities of successful attacks on edges.
The evolving nature of the gaming dynamics reflects
the interactions between multiple defenders, shaping the
resilience and vulnerability of the system over time. Another
important part in the context of interdependent security games
that in contrast to isolated systems, the edges of the attack
graph of the interdependent systems can be common across
different defenders (e.g., the red outgoing edge from vs

can be used to reach critical assets of the three defenders).
Thus, there are externalities between defenders under their
investments (i.e., one defender’s cost can be reduced by other
defender’s investments on edges that belong to attack paths
to that defender).

5) EXISTENCE OF PURE NASH EQUILIBRIUM
Having explained the best response dynamics of our game,
we next show that such a game would reach a PNE. A profile
of security investments by the defenders is said to be a PNE
if no defender can decrease her cost by unilaterally changing
her security investments. Under the probability of successful
attack in (1), the interdependent security game possesses
a pure strategy Nash equilibrium (PNE) since the feasible
defense strategy space Xk is nonempty, compact, and convex
for each defender Dk ∈ D. Furthermore, for all Dk ∈ D and
investment vector xk, the cost function C(xk,x−k) in (2) is
convex in xk ∈ Xk. As a result, the interdependent security
game is an instance of concave games, which always have a
PNE [8], [39].

Having defined the interdependent security game setup,
we next incorporate quantal response notion into our
framework, which is the main focus of the current work.

III. QUANTAL RESPONSE EQUILIBRIUM
We start by presenting the proposed quantal response
equilibrium framework and then establish the existence of
QRE in interdependent security games.

A. BACKGROUND ABOUT QUANTAL RESPONSE
Quantal response equilibrium (QRE) is a solution concept in
game theory which provides an equilibrium notion [40], [41]
with bounded rationality [21], [22]. It provides a structural,
statistical model of human operators where humans consis-
tently make errors in choosing efficient strategies as shown
in behavioral economics and psychology when modeling
human decision-making [21], [22], [23]. In contrast to the
deterministic and perfect best-response behavior of Nash
equilibrium, in the QRE operators ‘‘better respond’’ and
choose strategies that provide higher payoffs with a higher
probability.

In the standard formulation of QRE (logit equilibrium),
player’s strategies are chosen according to the probability
distribution:

σkl =
exp
(
λEUkl(σ−k)

)∑
l exp

(
λEUkl(σ−k)

) , (3)

where σkl is the probability of player k choosing strategy l.
EUkl is the expected utility to player k choosing strategy l
under the belief that other players are playing according to
the probability distribution σ−k. Note that λ ∈ [0,∞) is the
behavioral level of the players. The larger the value of λ, the
more rational are the defenders.

B. QUANTAL RESPONSE IN OUR INTERDEPENDENT
SECURITY GAME
In our interdependent security game logit equilibrium, the
defender’s security investment profiles would be chosen
according to the probability distribution

σkl =
exp
(
−λk ECkl(σ−k)

)∑
xl∈Xk

exp
(
−λk ECkl(σ−k)

) , (4)

where σkl is the probability of defender Dk choosing
investment profile xl ∈ Xk, and ECkl (σ−k) is the expected
cost of defenderDk of choosing investment strategy xl under
the belief that other players are playing according to the
probability distribution σ−k which is given by

ECkl(σ−k) =
∑

xj∈Xk

σkj Ck(xk,x−k).

Here, the probability of player Dk choosing xl increases if
the expected cost for defender Dk under that xl decreases.
Based on such quantal responses, our search seeks to
find fixed points to achieve quantal response equilibrium
(σ∗k, σ∗−k) as in mean field theory [21]. In our evaluation,
we show the effects of the non-negative parameter λk
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which represents the rationality level of defender Dk. When
λk → 0, the defender becomes ‘‘completely non-rational
(behavioral)’’ and chooses each investment profile with
equal probability. As λk → ∞, players become ‘‘perfectly
rational’’ and the game approaches a Pure Strategy Nash
equilibrium.
Remark 1: The subscript k in λk allows each defender

in the interdependent Behavioral Security Game to have
a different level of rationality. Throughout the rest of the
paper, we will drop the subscript k when it is clear from the
context. ■

C. GAME DYNAMICS IN QRE
QRE is a refinement of the Nash equilibrium concept,
taking into account bounded rationality and stochasticity
in players’ decision-making processes. In interdependent
security games, incorporating QRE adds another dimension
to the strategic interactions between players. QRE allows for
a more realistic representation of human decision-making,
acknowledging that players may not always select the strictly
optimal strategy but instead exhibit a degree of randomness
or error in their choices. As defenders exhibit bounded ratio-
nality when allocating resources, considering factors such
as uncertainty in attacker behavior, incomplete information,
and cognitive biases, the inclusion of QRE enables a more
nuanced analysis of how players’ decisions are influenced by
their perceptions of the game environment and the strategies
employed by their counterpart. In our setup we use logit
QRE where defenders’ strategies are chosen probabilistically
(according to (4)), with the likelihood of selecting a particular
strategy influenced by its expected utility relative to other
available strategies and a noise parameter λ representing the
level of noise or randomness in decision-making. Defenders
adopt mixed strategies, allocating resources based on cost
function (2) and the stochastic nature of QRE introduces a
level of uncertainty into players’ decision-making, reflecting
the inherent unpredictability of real-world cybersecurity
scenarios [41].

One challenge we face here is that the strategy space
Xk in our game contains many possible security investment
vectors in contrast to the discrete strategies considered
in prior work [29], [30], [31], [32]. To tackle this,
we prune such vectors according to the expected cost to
reduce the search space for the quantal response dynamics
(via removing investment vectors that yield very high
expected cost). We outline our main pruning algorithm in
Section VI.

D. EXISTENCE OF A QUANTAL RESPONSE EQUILIBRIUM
We first establish the existence of a quantal response
equilibrium (QRE) for the class of interdependent security
games defined in Section III. Recall that a mixed strategy
of profiles of security investments by the defenders is
said to be a QRE when defenders assign probabilities to
their available security investment profiles, representing the
likelihood of selecting each profile. These probabilities are

TABLE 1. The security investment strategies for both defenders in our
mathematical analysis example in Figure 3.

FIGURE 3. An attack graph for an interdependent security game instance
with two defenders where both defenders seek to defend critical asset vt
which induces a unit loss for both defenders if compromised by the
attacker (starting from vs).

determined by the players’ quantal response function (4),
which describes how sensitive players are to the differ-
ences in expected costs between those different investment
strategies.
Proposition 1: Suppose the quantal response function for

each defender Dk ∈ D is given by (4) and that the attack
success function pi,j(x) is a twice-differentiable, convex,
and decreasing function in x for all edges (vi, vj) ∈ E .
Then, the Interdependent Security Game possesses a quantal
response equilibrium (QRE) when λk ∈ [0,∞) for each
defender Dk.

Proof: The feasible defense strategy space Xk is
nonempty, compact and convex for each defender Dk.
Furthermore, for all Dk ∈ D and investment vectors x−k,
the cost function Ck(xk,x−k) in (2) is convex in xk ∈ Xk.
Thus, the logit quantal response function in (4) is interior,
continuous, monotonic, and responsive [40]. Therefore, for
all Dk ∈ D, the logit quantal response function in (4) is
a regular quantal response function [40]. As a result, the
interdependent Security Game considered in our work in
Section II possesses a quantal response equilibrium (QRE)
[41].

E. MATHEMATICAL ANALYSIS ILLUSTRATION OF FINDING
QRE IN INTERDEPENDENT SECURITY GAMES
Having provided our quantal response model and shown
the existence of QRE for our interdependent security game,
we start by performing a mathematical quantal response
analysis for a simplified example with two defenders with
two strategies each to explain the concept of quantal
response in our context. The goal of limiting the strategies
in this mathematical analysis is to give the reader the
main insight about how the QRE solution work when
applied into our interdependent security games modeled
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by attack graphs. We refer to Section V and Section VII
that show our main mathematical results and experimental
evaluation findings under continuous set of strategies,
respectively.

Consider the attack graph of Figure 3, which has two
defenders. Both defenders are protecting the critical asset vt.
We assume that defenderD1 has investment strategiesX1 and
X2, and defender D2 has strategies X3 and X4 as shown
in Table 1. The probability of successfully compromising vj

starting from vi is given by (1) where pi,j(xi,j) = exp
(
−xi,j

)
.

To simply focus on the effect of quantal behavioral response,
we consider p0i,j = 1 and sensitivity si,j = 1 in this example.
We first show the joint defense strategies for both defenders.
Then, we calculate the quantal response equilibrium of the
defenders’ joint strategies under different behavioral levels
(i.e., different values of λ).
Recall that we consider a worst case scenario (as given

by the cost function (2)). Suppose that each defender has
a unit loss for the critical asset vt (i.e., Lt = 1). The
four joint defense strategies for the two defenders and the
corresponding expected costs for both defenders would be
given as follows:

X4 X3

X1 exp(−17.5), exp(−17.5) exp(−15), exp(−15)
X2 exp(−12.5), exp(−12.5) exp(−10), exp(−10)

Let p be the probability that defender D1 chooses investment
strategyX1 and q be the probability that defenderD2 chooses
X4. Then, the quantal response of defender D1 to a given
mixed strategy by defender D2 (parameterized by q) is to
choose investment strategyX1 with probability p andX2 with
(1 − p). In particular, when applying the quantal response
function in (4), such probabilistic choice of strategyX1 would
be given by

p =
exp(−λ · (exp(−17.5)q + exp(−15)(1− q)))
exp(−λ · (exp(−17.5)q + exp(−15)(1− q)))
+ exp(−λ · (exp(−12.5)q + exp(−10)(1− q)))

.

(5)

Similarly, the quantal response of defender D2 to a given
mixed strategy by defender D1 (parameterized by p) would
be to choose investment strategy X4 with probability q and
X3 with (1− q). The mixed strategy of defender D2 is given
by

q =
exp(−λ · (exp(−17.5)p + exp(−12.5)(1− p)))

exp(−λ · (exp(−17.5)p + exp(−12.5)(1− p))) +
exp(−λ · (exp(−15)p + exp(−10)(1− p)))

. (6)

Figure 4 shows the quantal response of the defenders
under different behavioral levels. Such quantal response is
given by the intersection of the two solid curves (red and
blue lines), where each line shows the mixed strategy for
one of the defenders. These solid curves are obtained by
plotting the above equations (5) and (6). This figure shows the
following insights. First, Figure 4a shows that each defender
chooses randomly from the two defense strategies with equal

probabilities when the defenders are highly behavioral (with
very low λ, here λ = 10). Second, Figure 4c shows that
as defenders become more rational (where λ increases),
they choose better defense strategies (with lower cost).
Finally, Figure 4d emphasizes that QRE achieves PNE (from
best responses) for the given strategies for extremely high
values of λ. We also show the evolution of the effect of
behavioral level (λ) on the QRE solutions in Figure 4e. The
mathematical analysis and graphical representation of this
example show that the defenders act randomly when they
are more behavioral (with low λ) and they act rationally
(according to best response) when they are more rational
(with high λ).

1) EFFECT OF BEHAVIORAL LEVEL (λ)
In our above example, each defender chooses two defense
strategies from Table 1. We extend such example by
considering five defense strategies instead of two (i.e., each
defender can choose any of the five investment strategies in
Table 1). Under such strategic choices, the QRE probabilities
of choosing a particular investment strategy is similar for
both defenders. However, when increasing the behavioral
level (λ) of the defender, the defender becomes more rational
and thus the QRE probabilities approach the best responses.3

Figure 5 illustrates this relationship of QRE probabilities with
different defender’s behavioral levels.

2) EFFECT OF FINANCIAL LOSS AMOUNT OF CRITICAL ASSET
We then measure the effect of increasing the amount of
financial loss of the critical asset (i.e., increasing Lt).
Figure 6a shows such an effect where the same defender
(i.e., with same behavioral level) acts more rationally when
the asset vt has much higher financial loss. In particular,
Figure 6a shows the QRE probabilities approach PNE choices
faster (lower λ) when the financial loss of the critical asset is
higher (red-colored line) compared to the case of lower loss
(blue-colored line).

3) SOCIAL COST OF THE SYSTEM
Again, to consider a more complex setup extension of the
example considered for mathematical illustration of finding
QRE, we consider that both defenders have five possible
strategies in Table 1 including the social optimum investment
strategies. Here, the quantal response analysis yields the
equilibrium approaching the social optimum solution for very
high behavioral level. This QRE is given by the joint strategy
of both defenders choosing X1 investment profile. We show
the social cost of all joint investment strategies in Figure 6b.

3Note that the five strategies outlined in Table 1 include the PNE in
which defender D1 chooses strategy X1 and defender D2 chooses strategy
X1. In this example, we perform the quantal analysis to study effects of
behavioral level on QRE’s probabilities and the relationship between QRE
and PNE. Thus, we intentionally keep the PNE solution to our set of
investment strategies to test whether QRE approach to PNE or not. In our
experimental evaluation, we consider large set of investment strategies (see
Section VII).
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FIGURE 4. Quantal response analysis of two defenders with two investment strategies each on the attack graph of Figure 3 for
our mathematical analysis illustration. We show the effect of behavioral level on the probability of choosing security
investments.

It shows that the system under the social optimum (X1, X1)
has the lowest social cost. We reemphasize that the QRE also
approaches such social optimum with increasing λ for both
defenders (as shown in Figure 5).
Remark 2: We emphasize that this is a special case

where the social optimum is also the PNE. This is not
guaranteed in our proposed interdependent security games
with externalities across defenders. We show this intuition
that social optimal can be different from PNE in interde-
pendent security games in our motivational examples in
Section IV. ■

IV. MOTIVATIONAL EXAMPLES
Having provided the game notations and the quantal response
equilibrium, we now provide a couple of examples to
evaluate the different aspects of QRE and its relationship
with behavioral level, investment strategies, best response (or
PNE) and socially optimal solutions.
Example 1: Consider the attack graph in Figure 7.

DefenderD1 aims to defend asset v1 and defenderD2 aims to
defend asset v2. Both defenders have unit loss for their critical
assets (i.e., D1 will have L1 = 1 if asset v1 is compromised

FIGURE 5. QRE probability of Defender’s investment strategy with varying
behavioral levels for the attack graph of Figure 3.

and D2 will have L2 = 1 if asset v2 is compromised).
We consider symmetric security budget where we have B1 =
B2 = 10. This attack graph is an instance of line graph
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FIGURE 6. QRE probabilities evolution under different behavioral levels
and the corresponding social costs for the interdependent security game
instance considered in attack graph of Figure 3.

FIGURE 7. The line attack graph of interdependent security game
instance considered in Example 1.

where we have only one attack path to all critical assets.
Thus, defenders’ budgets are allocated along this one path
(vs−v1−v2). Here, defenderD1 has only one strategy which
is to invest all her budget on the incoming edge to her critical
asset v1, i.e., the edge (vs, v1). Thus, defenderD1 has only one
strategy to choose from, hence the probability of choosing
that strategy would be given by p = 1. On the other hand,
defender D2 can choose investment strategies from different
possible strategies which are (10, 0), (0, 10), and (x2

s,1, x
2
1,2)

where x2
s,1 + x2

1,2 = 10. Under joint defense strategies,
defender D2 would have expected costs of e−20, e−20, and
e−20 under these three joint defense strategies, respectively.

FIGURE 8. Attack graph of Example 2 with investment instances for QRE
solutions ((a), (b), and (c)) and corresponding socially optimal solution
((d)). The numbers above/left and below/right of the edges represent
investments by D1 and D2, respectively.

The probability of choosing strategy (10, 0) by defender
D2 under joint defense strategy would be

q =
exp(−λ · exp(−20))

3× exp(−λ · exp(−20))
=
1
3
.

Note that for defenderD2 choosing any of the aforementioned
three strategies will have the same probability of 1

3 . The QRE
probabilities in this example do not change with respect to
defenders’ behavioral level. This is because in this example
any one of the joint investment strategies will correspond
to one PNE, i.e., defender D2 can choose any of the three
investment strategies since all of them will yield the same
expected cost (as shown from identical expected cost values
above). Under joint defense strategy, defender D1 have
expected costs of e−20, e−10, and e−(10+x2

s,1) respectively for
defender D2’s aforementioned strategies. In contrast to QRE
and PNE, note here that the socially optimal solution would
be unique which is given by investing all 20 defense units
on the edge (vs, v1). Thus, one of the joint strategies (where
D1 allocates (10, 0) and D2 allocates (10, 0)) is a social
optimumwhile the other two joint strategies are not since they
yield higher social cost.
Example 2: Consider the attack graph of Figure 8.

DefenderD1 aims to defend asset v4, and defenderD2 wishes
to defend asset v5. For simplicity, suppose that D1 has a
budget B1 = 16 and D2 has B2 = 12. Table 2 shows
the top five investment strategies by each defender. Let the
probability of successful attack on each edge (vi, vj) be given
by pi,j(xi,j) = e−xi,j (assuming p0i,j = si,j = 1). Figure 8
shows the difference between QRE and social optimum solu-
tions. For the QRE solution, defender D1 chooses investment
strategy X1, X3, X4, and X5 with equal probability each
when λ approaches infinity. This choice arises from the fact
that all of these strategies would yield the same cost for
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TABLE 2. Top investment strategies for Defender D2.

D1 at the QRE (as shown in Figure 8). This cost for defender
D1 would be given by max(exp(−8), exp(−11)) = exp(−8).
On the other hand, defender D2 would choose X4 at the QRE
when λ approaches infinity. Similarly, the cost of defender
D2 would be exp(−11) under any of the four possible joint
strategies.

For the social optimum, the central planner would divide
all the budget (given by B1 + B2) on the minimum edge cut
(edges (vs, v1) and (vs, v3)). Note that the social cost under
the social optimum will be given by e−14 + e−14, while the
social cost under the QRE (when λ approaches infinity) will
be given by e−11 + e−8. We also show the evolution of QRE
probabilities of defenders’ investment strategies with varying
behavioral level (λ) in Figure 9.
Remark 3: Our analysis in the motivational examples

considered limited strategies to showcase the main insights
about security resource allocation problem in interdependent
systems with multiple defenders and the effect of behavioral
level on this problem and arising defender’s costs. However,
our theoretical analysis and experimental evaluation (in the
next two sections) consider many investment strategies. ■

V. MEASURING INEFFICIENCY OF QRE: THE PRICE OF
QUANTAL RESPONSE
The notion of Price of Anarchy (PoA) is commonly utilized
to assess the inefficiencies of a Nash equilibrium when
compared to the socially optimal outcome [35]. More
precisely, the Price of Anarchy is the measure of the highest
total system cost at a Pure Nash Equilibrium (PNE) relative
to the total system cost at the socially optimal state.

In our specific context, we aim to establish a metric that
accounts for inefficiencies in the equilibrium resulting from
the individual strategic behaviors of defenders and their
behavioral decision-making characterized by quantal errors.
Therefore, we introduce the concept of Price of Quantal
Anarchy (PoQA), which quantifies the ratio of the total true
expected cost of the system when considering defenders’
behavioral choices at the quantal response equilibrium
(QRE) in comparison to the total true expected cost at the

FIGURE 9. QRE probabilities of defenders’ investment strategies with
varying behavioral levels for Example 2.

socially optimal solution, determined by a non-behavioral (or
rational) social planner.

Specifically, we define C(x) ≜
∑

Dk∈D
Ck(x), where Ck

(defined in (2)) is the true expected cost faced by defender
Dk under the investment vector x. Let XQRE

k

denotes the set of all investments that constitute a QRE for
defender Dk. We now define the Price of Quantal Anarchy as

PoQA =

∑
Dk∈D

(∑
xl∈XQRE

k
σkl × ECkl(σ−k)

)
C(x∗)

, (7)

where each expected cost ECkl(σ−k) in the numerator for a
defender Dk ∈ D under investment profile xl is weighted
with the probability of choosing that investment vector by
defender Dk in the QRE (given by σkl). Furthermore, x∗

denotes the investments at the social optimum (computed by
a non-behavioral social planner with access to the sum of
all defenders’ budgets). Mathematically, let XSoc := {x∗ ∈
R|D||E|≥0 |1T x∗ ≤

∑
Dk∈D Bk}, i.e., XSoc is the set of all

feasible investments by the social planner. Thus, the social
optimal would be given by

x∗ ∈ argmin
x∈XSoc

C(x). (8)

In our evaluation, we also refer to the PoQA as the
‘‘inefficiency’’ of the QRE. We emphasize that the cost in
the denominator of (7) is the sum of the expected costs of the
defenders under social optimum.

A. BOUNDS ON THE POQA
We now establish upper and lower bounds on the PoQA.
We first show that the PoQA is bounded if the total budget
is bounded (regardless of the defenders’ behavioral levels).
Proposition 2: Suppose the total budget available to all

defenders is denoted asB, and the probability of a successful
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attack on each edge (vi, vj) ∈ E is determined by pi,j(xi,j) =
e−xi,j . Thus, for any given attack graph and any set of quantal
behavioral levels λk, it holds that PoQA ≤ exp(B).

Proof: We start with the numerator of the PoQA in (7)
(the total true expected cost at the QRE). Recall that each
defender Dk incurs a financial loss Lm for each successfully
compromised asset vm. Thus, the worst case true expected
cost under any QRE is upper bounded by

∑
Dk∈D

∑
vm∈Vk

Lm

(i.e., the sum of financial losses of all assets).
On the other hand, the denominator (the social

optimum true expected cost) is lower bounded by( ∑
Dk∈D

∑
vm∈Vk

Lm

)
exp(−B) (which can only be achieved

if every asset has all of the budget B, invested by a social
planner, on the edges constituting its attack path). Thus,
we have

C(x∗) ≥

( ∑
Dk∈D

∑
vm∈Vk

Lm

)
exp(−B).

Substituting these bounds into (7), we obtain PoQA ≤
exp(B). This concludes the proof.

Next, we show that the upper bound on PoQA obtained in
Proposition 2 is asymptotically tight.
Proposition 3: For all B > 0 and ϵ > 0, there exists

an instance of the interdependent Security Game with total
budget B such that the PoQA is lower bounded by (1 −
ϵ) exp(B).

Proof: Consider the attack graph in Figure 10, where
the probability of a successful attack on each edge (vi, vj) is
given by (1) with p0i,j = 1. This graph contains K defenders,
and each defenderDk is responsible for defending target node
vk. Assume the total security budget B is divided equally
between the K players (i.e., each player has security budget
B
K ). Let the first node have loss equal to L1 = K, and
the other K − 1 nodes have loss 1

K−1 . Then, the socially
optimal solution would put all the budget B on the first edge
(vs, v1), so that all nodes have the probability of successful
attack given by exp(−B). Thus, the denominator of (7) is∑K

i=1 Li exp(−B) = (K + 1) exp(−B).
We now characterize a lower bound on the cost under a

PNE (i.e., the numerator of (7) with very highλ). Specifically,
consider the investment profile where each defender Dk puts
their entire budget B

K on the edge coming into their node
vk. We claim that this is a PNE. To show this, first consider
defender D1. Since investments on edges other than (vs, v1)
do not affect the probability of successful attack at node v1,
it is optimal for defender D1 to put all her investment on
(vs, v1).
Now consider defender D2. Given D1’s investment on

(vs, v1), defender D2 has to decide how to optimally spread
her budget of B

K over the two edges (vs, v1) and (v1, v2)
in order to minimize her cost function (2). Thus, D2’s

FIGURE 10. An attack graph where the PoQA grows exponentially in the
sum of defenders’ security budgets.

optimization problem, given D1’s investment, is

minimize
x2

s,1+x2
1,2=

B
K

e−( B
K +x2

s,1−x2
1,2). (9)

One optimal solution of (9) would be to put all B
K into

x2
1,2 and zero on x2

s,1. Continuing this analysis, we see that
if defenders D1, D2, . . . , Dk−1 have each invested B

K on the
edges incoming into their nodes, it is optimal for defenderDk

to also invest their entire budget B
K on the incoming edge to

vk. Thus, investing B
K on each edge is a PNE.

The numerator of the PoQA under this PNE (which is
QRE with very high λ) is lower bounded by L1 exp

(
−B

K

)
=

K exp
(
−B

K

)
. Thus, PoQA is lower bounded by

PoQA ≥
K exp

(
−B

K

)
(K + 1) exp(−B)

=
K exp

(
−B

K

)
(K + 1)

exp(B).

As the length of the chain in Figure 10 grows, we have

lim
K→∞

K exp
(
−B

K

)
(K + 1)

= 1.

Thus, for every ϵ > 0, there exists K large enough such that
the PoQA in the line graph with K nodes is lower bounded
by (1− ϵ) exp(B).

We emphasize that the upper bound established in Propo-
sition 2 remains independent of the interdependent system’s
network configuration, the count of defenders, and their level
of quantal behavioral level. In Proposition 3, we demonstrate
that the upper bound determined in Proposition 2 is precise,
meaning it cannot be diminished unless further game-specific
conditions are considered. However, for each specific inter-
dependent security game instance, we can directly calculate
the degree of inefficiency, which will be contingent on the
system’s structure and other pertinent parameters specific
to that instance (as will be shown in our evaluation in
Section VII).
Having established the existence of QRE in our interde-

pendent security game and provided mathematical bounds on
the inefficiency under the existence of behavioral defenders
(with quantal errors), we next show our pruning algorithm for
finding QRE under many security investment strategies in our
interdependent security game.

VI. FINDING QRE UNDER MANY SECURITY INVESTMENT
STRATEGIES IN INTERDEPENDENT SECURITY GAMES
We now provide the details of our algorithm that aims at
pruning investment strategies and select the most efficient
ones for calculating QRE for interdependent systems with
multiple defenders. Recall that any defender Dk ∈ D
can allocate her security budget Bk in numerous ways via
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spreading that budget on the edges incoming to her critical
assets ∀vm ∈ Vk.
In Algorithm 1, we prune these many investment strategies

to elect the most promising ones (i.e., that yield lowest
social costs for the interdependent system). The main inputs
for our algorithm are security budgets of the defenders
(Bk ∀Dk ∈ D), all attack paths associated with critical assets
for defender (Pm ∀vm ∈ Vk), and loss vectors that have the
estimated financial losses when successfully compromising
these assets. Our goal is to find a set of security investment
strategies which have lowest social costs under the notion
that the attacker exploits the most vulnerable path for each
critical asset. To do this, we first create a large defense
strategy space Xk for each defender Dk ∈ D which contains
many investment strategies where the budget Bk is first
allocated on only one edge, then splitting the budget equally
in an incremental manner across the edges up to all edges
of the attack paths. After getting this large strategy space,
we create a joint defense strategy space considering all the
possible combinations of investment strategies from previous
step.

We then calculate the expected cost for each defender
Dk ∈ D using equation (2) under these joint defense
investments. After calculating individual costs in previous
step, we then calculate social costs by summing expected
costs of all defenders. We next sort these social costs in an
ascending order. While pruning our strategies, we only keep
strategies with unique total costs. In other words, if we have
many investment strategies with the same social cost, we take
only one strategy from these equivalent strategies and prune
the other equivalent strategies (with identical social cost).
This is intuitive since these joint investment strategies with
the same social cost are equivalent joint investment strategies
to each other from the perspective of securing the whole
interdependent system.

From that sorted unique joint strategies, we start selecting
the top-N security investment strategies that have the
lowest social costs and end this process when we get
our desired N investment strategies. Finally, we com-
pute QRE via applying quantal response function in (4)
on the selected top-N investment strategies from our
algorithm.

VII. EVALUATION
We now evaluate our setup with a realistic interdependent
system. Our evaluation aims to answer the following
questions:

• What is the effect of behavioral players (with quantal
errors) on the overall security level of the system?

• How to quantify the degree of inefficiency under behav-
ioral decision-makers compared to socially optimal
security investments?

• How does each system parameter affect the overall
security level of the system (social cost) with behavioral
decision-making?

Algorithm 1 Strategy Pruning and QRE Calculation
for Interdependent Systems With Multiple Defenders
Input: Security budget Bk ∀Dk ∈ D, Set of attack

paths Pm ∀vm ∈ Vk, Loss vector of critical
assets L, Num. of top investment strategies N

Output: Top-N joint investment strategies and
corresponding QRE probabilities

1) For each defender Dk ∈ D, create an investment
strategy space Xk for defender Dk by spreading her
budget Bk across edges of the attack paths in Pm.

2) Compute joint investment strategies (xk,x−k) of
defenders using all combinations of investment
strategies for each defender Dk ∈ D from step 1.

3) Create a cost vector for each defender Dk by
calculating expected costs Ck(xk,x−k) for all joint
investment strategies using equation (2), Pm, and L.

4) Calculate system’s social costs by summing expected
costs of defenders for each joint defense strategy.

5) Sort social costs from step 4 in ascending order.
6) Keep joint strategies with unique social costs and

prune equivalent joint investment strategies.
7) Select top-N unique joint investment strategies from

step 6 that have the best (lowest) social costs.
8) Compute QRE using quantal response function in

equation (4) for the top-N joint investment strategies.
return Top-N investments and their QRE
probabilities

A. DATASET DESCRIPTION
We use a real-world interdependent system to evaluate our
setups. Specifically, we consider the popular interdependent
system of DER.1 [25]. In this system, nodes represent the
progression of attack steps (e.g., unauthorized control of a
physical generator in DER.1).

We give a brief explanation of this system and its associated
failure scenarios below. We leverage the CyberSage tool [25]
which maps system’s failure scenarios into an attack graph
given the workflow of that system, security goals, and
attacker’s model.

DER.1 System Description: The Technical Working
Group of the US National Electric Sector Cybersecurity
Organization Resource (NESCOR) has introduced a frame-
work aimed at assessing the cybersecurity risks associated
with potential cyber attacks on the electric grid. Within this
framework, a distributed energy resource (DER) is defined
as a cyber-physical system composed of various entities,
including generators, storage devices, and electric vehicles,
all integrated into the smart energy distribution system.
Among the identified failure scenarios, DER.1 has been
identified as the most precarious, according to NESCOR’s
ranking [25].
In Figure 1, two pivotal equipment assets are highlighted:

a PhotoVoltaic (PV) generator and an electric vehicle (EV)
charging station. Each piece of equipment is equipped with
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TABLE 3. Best 10 (top-10) security investment strategies for defender D1 for the attack graph of DER system in Figure 1.

a Human Machine Interface (HMI), serving as the sole
gateway for controlling the respective equipment. The DER.1
failure scenario unfolds when an attacker gains access to
the HMI. Subsequently, the attacker manipulates the DER
settings and physically accesses the DER equipment to
ensure continued power provision even during a power
system fault. This malicious action has the potential to inflict
severe physical damage on the system, leading to significant
financial losses. On the worst scenario, such attack can result
in the electrocution of a utility field crew member.

B. EXPERIMENTAL SETUP
The simulations are based on our proposed game-theoretic
models in Section II and quantal response models in
Section III with the following parameters. The DER system
has two defenders. For DER, we have the financial losses
Li = L = $10,∀i for the critical assets (G0 for defender
D1 and G1 for defender D2).
We used the probability of successful attack function

in (1) in our simulations. We consider baseline probabilities
of successful attack on edges (i.e., without any security
investment) to be the same to avoid its bias on the simulation
results.4 We consider a range of the behavioral level λ such
that λ ∈ [1,∞), which is consistent with prior human
subject experimental studies on quantal responses [21],
[22]. We consider symmetric behavioral level (λ) for both
defenders. We consider a symmetric security budget across
the defenders (unless otherwise stated). Each defender has
a security budget of 15. For Quantal Response Equilibrium
(QRE), we run the quantal response dynamics to calculate
the QRE while the social optimal is found using equation (8)
defined in Section V. To compute the PNE for comparisons,
we followed the best response dynamics notion to calculate
the optimal investments of each player at the PNE.

C. EVALUATION RESULTS
We now summarize the main findings of our evaluation.

4Our model can also support different baseline probabilities of successful
attack on different edges. To estimate these baseline probabilities on each
edge, we can create a table of CVE-IDs (from real vulnerabilities reported
in the CVE database for 2000-2020). We can then follow [34] to convert the
main attack’s metrics to a baseline probability of successful attack.

1) PRUNING OF INVESTMENTS
In the DER experimental setup, we started with choosing
randomly 120 investment strategies for each defender.
We then perform pruning to get the top-10 unique investment
strategies (according to Algorithm 1). Recall that this pruning
is done according to the lowest social cost under considering
both defenders’ combined investments (joint investments).
We observe that the social cost is lowest when both defenders
invest all of their budgets only on the min-cut (common)
edges (i.e., edges that are common on all attack paths). For
the DER system, these edges are (w5, w4), (w4, w3), (w3, w2),
(w2, w1), and (w1, G0) for defenderD1. Similarly, themin-cut
edges for defender D2 are (w14, w13), (w13, w12), (w12, w11),
(w11, w10), and (w10, G1).

2) QRE ANALYSIS AND EFFECT OF BEHAVIORAL LEVEL
We then perform the QRE analysis with these top-10
investment strategies (shown in Table 3). Our QRE analysis
shows that rational defenders (with very high λ) get quantal
response equilibrium approaching best response solution
(PNE). Figure 11 shows the evolution of QRE towards best
strategy under different quantal behavioral levels. This also
validates our findings in our aforementioned mathematical
analysis (in Section III) and both motivational examples.

3) EFFECT OF FINANCIAL LOSS OF CRITICAL ASSETS
We then vary the financial loss of the critical assets (G0 and
G1 for defendersD1 andD2, respectively). We consider three
loss levels to test the effect of loss on the QRE solution under
different behavioral levels. Figure 12 shows this experiment
where it shows that when facing higher losses behavioral
defenders would have a higher probability of choosing the
best investment strategy (X1) under the same behavioral level
(λ). The intuition here is that the difference in the expected
cost of best investment strategy and other strategies is higher
under higher financial losses and thus the quantal behavioral
error will have lower effect in these cases with higher losses,
particularly for more rational players (with higher λ).

4) INEFFICIENCY OF BEHAVIORAL PLAYERS
We now measure the inefficiency due to behavioral players
with quantal errors by measuring PoQA from (7). Figure 13
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FIGURE 11. QRE probability of defender’s investment strategy with
varying behavioral levels for the DER system.

FIGURE 12. The probability of best investment strategy at QRE of DER
system under varying the financial loss of critical asset.

shows the logarithm of the value of this metric as we
vary λ (taken to be the same for both defenders) from 1
(highly behavioral) to 1000 (low-behavioral) for different
values of the total security budget B. Figure 13 shows
that the inefficiency due to behavioral decision-making
becomes exacerbated as the total budget B increases (which
is consistent with our finding in Proposition 2). For example,
the difference between the PoQA with highly behavioral
defenders (λ = 1) and that with low behavioral defenders
(λ = 1000) under higher security budget (B = 25) is
much higher compared to that difference under lower budget
(B = 10). The reason for such increase in inefficiency
is two-fold. First, selfish defenders do not invest security
resources on edges of other defenders. Second, as security
budget increases, behavioral defenders shift higher amounts
of their budget to the non-common (non-critical) edges in the
DER network in contrast to the social optimal that has all the
budget only on the min-cut edges.

FIGURE 13. The inefficiency (PoQA) of behavioral defenders with
different behavioral levels and different security budgets. For better
readability, we show the logarithm of inefficiency.

5) SOCIAL COSTS
Figure 14 demonstrates the heatmap of social cost (which is
the sum of the costs of the two defenders) under the top-
10 unique security investment strategies. It shows that the
PNE (defender D1 allocating all her defense budget on the
incoming edge (w1, G0) to her critical asset G0 and defender
D2 allocating all her defense budget on the incoming edge
(w10, G1) to her critical asset G1) has the lowest social cost
across these different joint investment strategies (on the lower
left corner of the heatmap). Note that this PNE is the QRE at
very high behavioral level λ. This is shown by the darkest
blue-colored square in this heat map. On the other hand,
distributing the budget between common edges (that belong
to all attack paths to critical assets) and non-common edges
(that belongs to few attack paths) yield worse social cost. This
is shown by the light blue-colored squares in this heat map.
Finally, allocating all investments on non-common edges and
leaving common edges with zero investments would lead to
the highest social cost (shown with orange- and red-colored
squares in the heatmap).

Numerically, we see that the gain for society (represented
by the ratio of the social cost under worst joint investment
strategy here (X5, X5) to the social cost under the PNE
(X1, X1)) is 1.0526 exp(13) for DER. This result shows that
the social cost under optimal security allocations is much
lower than that under non-optimal allocations and the gap is
higher for highly behavioral defenders (that have different
QRE from PNE and allocate more investments on non-
important edges).

6) COMPUTATIONAL EFFICIENCY OF QRE
We finally show the required computational time to compute
QRE in Figure 15 under our two setups which are:
with strategy-pruning (Algorithm 1), and without strategy
pruning. Although both scenarios achieve PNE under rational
decision-making (high λ), the strategy-pruning has 33.85X

VOLUME 12, 2024 56173



M. R. S. Azim et al.: Quantal Response Analysis of Human Decision-Making

FIGURE 14. The heat map of social costs for the DER system under the
top-10 unique security investment strategies.

FIGURE 15. A comparison of the required time (seconds) to compute the
QRE with strategy-pruning vs. without pruning.

reduction in QRE computation time. which shows the
potential application of the proposed framewok for large-
scale systems.

In sum, our evaluation results show the importance of
understanding human behavioral error (quantal error) and its
effect on security level of the interdependent system. The
evaluation also shows the importance of quantifying the effect
of different resource allocations when doing risk assessment
of interdependent systems.

VIII. RELATED WORK
A. GAME-THEORETIC MODELING OF SECURITY
Game theory has found application in describing the inter-
actions between attackers and defenders and their impact
on system security. A prevalent model in this context
involves two-player games, where a single attacker seeks to

compromise a system controlled by a single defender [42],
[43]. In some instances, game-theoretic models have been
extended to explore the dynamics between a defender and one
or more attackers engaged in Distributed Denial of Service
(DDoS) attacks, as evidenced in [44]. Additionally, game-
theoretic frameworks have been proposed for investigating
the security of critical infrastructure, as discussed in the
survey [11]. What sets our work apart from the aforemen-
tioned literature is our focus on behavioral decision-making
models. Unlike most existing research, which primarily
revolves around classical game-theoretic models of rational
decision-making, we analyze models that account for the
behavioral aspects of decision-making (particularly on the
noisy decisions of human decision-makers, modeled using
the logit QRE for interdependent security games).

B. SECURITY GAMES ON INTERDEPENDENT SYSTEMS
A large body of literature has been developed to explore secu-
rity decision-making in interdependent systems (see [11],
[45] for a review), including single defender for network
security [44], [46], [47], [48], and multiple defenders in
specific interdependent security games [10], [12], [49], [50]
and critical infrastructure security [51], [52]. However, these
works have been proposed under the common assumption
that the players are entirely rational and optimal decision-
makers. The impact of human prospect-theoretic attitudes
has been studied in several classes of interdependent security
games, including drone delivery systems [14], unmanned
aerial vehicle assisted network operation [16], and in
prior work on network defense [17] and mechanism-based
games [18].
However, these investigations have several limitations,

including choosing a specific game where each defender has
ownership of a single asset, modeling each player via a binary
strategy in which she either defends her asset or not, and
not considering different interdependent attack paths among
different defenders using attack graphs.

C. QUANTAL RESPONSE EQUILIBRIUM
The majority of prior works in security resource allocation
for interdependent systems have considered the pure strategy
Nash equilibrium (PNE) solution concept in which the
search strategy for the best resource allocation for each
decision-maker adopts best response dynamics [18], [48],
[49], [51]. However, behavioral economics and psychology
has shown that humans have errors in choosing which pure
strategy to select in real-world scenarios [21], [22], [23]. Such
a process can be modeled using quantal functions (such as the
logit function [22]) where the human chooses each strategy
with a probability that is positively related to the payoff
from that strategy. This process typically leads to quantal
response equilibrium. There are several prior works that
have shown such quantal response equilibrium for security
problems, including defense of isolated targets [28], and
Stackelberg security games with two players (one attacker
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and one defender) [29], [30], [31], [32], [33]. However, this
class of games does not incorporate security externalities
between multiple defenders and network interdependencies.

D. HUMAN BEHAVIOR IN SECURITY AND PRIVACY
A noticeable departure from traditional economic models in
the realm of security and privacy is exemplified by [26],
which delves into the impact of behavioral decision-making
on an individual’s choices concerning personal privacy.
Recognizing the significance of similar models in the domain
of system security, prior research [53] has highlighted the
importance of such considerations. Some previous works
have explored models derived from behavioral economics
within the context of security applications [27], [54].
It is worth noting that these studies relied primarily on
insights from psychological studies [27] and human subject
experiments [54], primarily focused on end-users.
Our approach is distinguished from these prior works in

several ways. We employ a rigorous mathematical model
to analyze the quantal behavior of defenders. Addition-
ally, we model the interactions among multiple defenders,
as opposed to the singular defender in these previous studies.
Furthermore, we consider interdependent assets, in contrast
to binary decisions related to isolated assets, as seen in those
studies. To the best of our knowledge, notable exceptions
to the existing body of literature that provide a theoretical
treatment of behavioral decision-making in specific classes
of interdependent security games are [8], [13], [14], and
[55]. However, it is important to note that these studies
do not encompass the broader spectrum of realistic attack
scenarios and types that our work explores. Moreover, they
do not examine the quantal response behavior exhibited by
defenders, which is a focal point of our research. Instead, their
focus is on prospect-theoretic behavior of defenders.

IX. LIMITATIONS AND DISCUSSION
A. ESTIMATION OF BASELINE PROBABILITIES OF
SUCCESSFUL ATTACK
One challenging issue with any security resource allocation
framework is the estimation of the attack success probabili-
ties. In our setup, the initial probabilities of successful attack
on the edges of the attack graph can be estimated via the
Common Vulnerability Scoring System (CVSS) scores [36],
that measure how a vulnerability (that corresponds to a CVE
entry [56]) is exploited (successfully attacked). This CVE
entry is composed of the following three access metrics:

• Access Vector (AV), which measures whether or not the
vulnerability is exploited locally or remotely.

• Access Complexity (AC), which measures the complex-
ity of attack required to exploit the vulnerability once an
attacker has access to the target system.

• Authentication (AU), which measures whether or not an
attacker needs to be authenticated to the target system in
order to exploit the vulnerability successfully.

TABLE 4. Baseline probability of successful attack for vulnerabilities in
DER.1 system.

There are multiple previous works [34], [37] that have
provided clearly defined mathematical models that can be
used to convert CVSS metrics to initial probability of
successful attack. Specifically, the work [34] has taken the
Access Complexity (AC) sub-metric in CVSS and mapped
it to a probability of exploit (attack) success. The AC
metric takes values in {low, medium, high} indicating the
complexity of exploiting the vulnerability. For instance, the
authors used the mapping {low −→ 0.9, medium −→
0.6, high −→ 0.2}. Note that the more complex it is to
exploit a vulnerability, the less likely an attacker will succeed.
Moreover, the work in [37] has estimated the probability of
successful attack from CVSS as a combination of the three
defined metrics (i.e., Access Complexity (AC), Attack vector
(AV), and Authentication (AU)) as follows, p0i,j = AVi,j ×
AUi,j × ACi,j (we refer to tables in [37] which contain
numerical values corresponding to the different values of each
metric).

In our setting, based on our adversary model (where
the attacker picks the path with the highest probabil-
ity of success), the probability of a node vm being
successfully attacked (i.e., its vulnerability) is given by
max

P∈Pm

∏
(vi,vj )∈P

pi,j(xi,j) (the highest probability of attack

among all paths available for attack).
Estimation of Baseline Probabilities of Successful

Attack Example for DER: We show the estimation of
baseline probability of successful attack for DER system
in Table 4. The first column represents the vulnerability
CVE-ID (from real-world vulnerabilities reported in CVE
database). The second column represents the corresponding
edge(s) in the attack graph. The third column represents
the attack vector type (physical, local, or network). The
fourth column is the score generated following the seminal
work [34].

B. QUANTAL RESPONSE OF ATTACKER
Throughout this paper, we operate under the assumption
that defenders have quantal errors in choosing the best
security investment strategies for interdependent security
game proposed in our work. To give complete treatment of
such an effect on defense, we assumed that the attacker is
non-behavioral (rational). This also gives worst case estimate
of security level of the system under human errors. However,
it is essential to acknowledge that attackers can exhibit
behavioral traits as well. Our assumption of a non-behavioral
attacker is made to assess the worst-case scenario for system
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vulnerability since a behavioral attacker might not always
choose attack paths of true highest vulnerability due to
quantal errors. By focusing on the behavioral aspect of the
defenders, we aim to unravel the effects of quantal errors.
This prompts an intriguing question: ‘‘How can rational
defenders manipulate a behavioral attacker with quantal
errors into selecting attack paths with reduced likelihood of
success to enhance the overall security of the target system?’’

C. QUANTAL RESPONSE FOR DIFFERENT CLASSES OF
SECURITY GAMES
In this paper, we have explored the quantal response analysis
for security decision-making by behavioral defenders of
interdependent security systems using attack graphs. One
potential area to expand our quantal response analysis
model is by determining equilibrium in other types of
security games. In particular, characterizing defense resource
allocation in other classes of security games, such as
sequential attacker-defender games, could be a potential
extension. Also, the real-world interactions between the
attackers and defenders in simultaneous strategic games can
be explored using the proposed QRE model. While previous
works have addressed security issues in these classes of
security games using either classical models [13], [14], [15],
[16], [17], [18] or prospect-theoretic behavioral biases [16],
[17], [18], quantal response analysis can enhance the network
security by considering quantal errors and uncertainties of
players in various types of security games, quantifying the
arising security level of interdependent systems under such
quantal errors, and guiding decision-makers towards avoiding
such noisy and non-optimal decisions.

X. CONCLUSION
We presented a security investment model for defenders of
interdependent systems where defenders’ assets have mutual
interdependencies. We modeled stepping-stone attacks by
the notion of attack graphs. The proposed security game
model captures the existence of behavioral players that have
quantal behavior (where they have errors in choosing the
best investment strategies). We showed that such a game
has a quantal response equilibrium (QRE). We then adapted
the price of anarchy and introduced a new metric that we
called price of quantal anarchy (PoQA) to measure the
inefficiency arising from the existence of behavioral players
with quantal errors on the social cost of the interdependent
system. We provided rigorous bounds for such inefficiency
metric. We then developed an algorithm to compute the
QRE under many security investment strategies by pruning
non-efficient strategies based on the social cost of the
system. This algorithm is particularly useful for large-scale
systems with many possible security investment strategies.
We then evaluated the effects of behavioral quantal errors
of human decision-makers on overall system’s security
through a real-world interdependent system and identified
different system parameters that affect the overall system’s
security for our security game model. The insights gained

from this analysis are useful for configuring real-world
systems with optimal parameter choices and guiding behav-
ioral decision-makers toward socially optimal allocations
and rational decision-making that can eventually lead to
improvements in interdependent systems’ security.

There are multiple prospective avenues for future research,
including studying heterogeneous types of behavioral players
and their resulting impacts, exploring environments in which
adversaries have also quantal behavior, and evaluating our
findings empirically via human subject experiments.

Building on our current study, these fruitful directions of
future research can help inmitigating the effects of behavioral
decision-makers in real-world systems.
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