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ABSTRACT Driving behavior primitives play a crucial role in semantic explanation of driving behaviors.
Although much work has been done on exacting driving behavior primitives from naturalistic driving data,
few studies was published on primitive classification. Driving behavior primitives are typically described
by multi-dimensional variables with varying durations, which leads to the inefficiency of the traditional
classification methods. There hence, a CNN-based fusion model for primitive classification is proposed in
this paper. Primitive feature matrix is constructed using statistical methods for the four basic and the four
constructed variables, which serves as the input. A 1D-CNN is employed to extract global information of
the total eight variables in the feature matrix, while a 2D-CNN is used to extract the local information.
The 1D-CNN and the 2D-CNN are fused in parallel using a new fusion method to combine different types
of information, and two models, namely the FC-before fusion model and the FC-after fusion model, are
acquired. Compared with the classical methods, the empirical results demonstrate that CNN-based fusion
model can recognize driving behavior primitives more accurately. Specifically, the FC-after fusion model
achieves an accuracy of 91.12% and a macro F1-score of 90.88%, while the accuracy and macro F1-score
of the FC-before fusion model are 93.47% and 92.57%, respectively.

INDEX TERMS Driving behavior analysis, driving behavior primitive classification, CNN-based fusion
model, primitive feature matrix, information fusion.

I. INTRODUCTION
Driving behavior refers to a series of driving maneuvers per-
formed in response to external factors. The semantic analysis
of driving behavior is valuable for understanding the relation-
ship between driving behavior and traffic environment [1],
enhancing the human-like decision of intelligent vehicles [2],
as well as promoting the development of intelligent trans-
portation systems [3]. Generally, the semantic explanation
involves driving behavior classification [4], modeling [5],
prediction [6], and analysis of driving styles [7].

In recent years, semantic analysis of driving behaviors
using driving behavior primitives has become a hot topic
due to its high efficiency [8], [9], [10]. Driving behavior
primitives are the smallest data segments with clear physical
meanings. The total number of primitive clusters is limited.
By utilizing driving behavior primitives, researchers could
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analyze driving behavior at a micro level. For instance, Li et
al. identified the fine-grained driving style through coupling
the intensity and frequency features of primitives [11]. Higgs
et al. developed corresponding car-following models for dif-
ferent car-following primitives, which significantly improved
the accuracy of driving behavior modeling [12]. Furthermore,
in the field of intelligent driving, a partially observable MDP
(POMDP) model built based on primitives is used to achieve
more efficient and reliable decision-makings [13].

Currently, driving behavior primitives were typically
extracted through offline methods, including the descriptive
variable selection, driving data segmentation, and primitive
clustering [14]. The clustered and defined primitives were
then used for semantic analysis. However, online semantic
analysis is more valuable in road safety guarantee and intelli-
gent vehicle design. For example, it is important to recognize
driving styles in real time to alert drivers and reduce driving
risks [15]. The shared control system of intelligent vehicles
needs online classification of driving maneuvers to achieve
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real-time and adaptive driving authority allocations [16].
Moreover, the online driving behavior identifications of sur-
rounding vehicles contributes to the driving risk predictions
and decision-makings of intelligent vehicles [17]. In order
to achieve online semantic analysis of driving behaviors, the
classification of driving behavior primitives is one of the key
problems.

Driving behavior primitives are descripted by multi-
dimensional variables, and primitive durations are inconsis-
tent. Obviously, the essence of primitive classification lies
in constructing classifiers for multi-dimensional time series
with different durations. The existing studies have primar-
ily employed rule-based classifiers [11], traditional machine
learning methods [18], and deep learning approaches to
address this issue [19]. The rule-based classifier uses indic-
tors such as convergency and accuracy to delete and fuse
pre-set simple rules to obtain the final classification rules.
Based on these rules, driving variables such as longitudinal
acceleration and yaw angle were filtered, driving behaviors
such as lane changes were successfully recognized [20].
However, efficient rule-based classifiers require a rich tech-
nical experience for researchers, and they have limited
applicability. The traditional machine learning approaches
use exacted high-quality driving features as input to achieve
driving behavior identification, where the feature construc-
tion and extraction are key factors affecting the training
performance. Li et al. constructed 24 statistical features,
including average and maximum values, and utilized the
sequential forward floating selection (SFFS) algorithm to
extract the optimal feature subset. A recognition rate of 88%
for lane changes were achieved by hidden Markov mod-
els (HMM) [21]. By comparing different feature extraction
methods, it was found that features obtained by principal
components analysis (PCA) and stacked sparse auto-encoder
(SSAE) could improve the recognition efficiency of Ran-
dom Forest (RF) [22]. Meanwhile, Yang et al. combined
FFA and LDA to transform the continuous and chaotic EEG
into discrete but representative features. Then, five types of
car-flowing behaviors were successfully identified with the
assistance of K-nearest neighbors (KNN) [23]. Although the
traditional machine learning methods could achieve good
classification results, it places high demands on feature
extraction.

In order to solve the above-mentioned problems, deep
learning approaches have become more and more popular
in various driving behavior recognition tasks. Basic neural
networks, such as Convolutional Neural Networks (CNN)
[24], [25] and Recursive Neural Network (RNN) [26], [27],
are fused to construct a classifier, and then the classifier
is trained to extract complex features and identify various
driving behaviors. Peng et al. proposed a CNN-LSTM frame-
work using environment, trajectory, and vision features to
identify driving behaviors in the early stage [28]. Arefnezhad
et al. compared the performance of CNN-LSTM and CNN-
GRU, and utilized the optimal fusion model to achieve

multi-level classification of driver drowsiness [29]. Although
these fusion models can achieve good classification results,
the diverse types of the basic neural networks lead to the
complexity increasing of fusionmodels. Therefore, fusing the
similar neural networks becomes another approach to build-
ing classifiers. Xie et al. fusedmultiple 2D-CNNs in the early,
the middle and the late stage [30]. The constructed model
could process the initial features of the input, which would
contribute to the efficient classification of behaviors such as
braking and turning. Zhang et al. used multi-channel CNNs
to deeply excavate weighted data and obtain the advanced
features [31]. Using these complex features, turning and
other driving behaviors were precisely identified. In addition,
a hybrid CNN framework, including ResNet50, Inception V3
and Xception, was applied to extracted useful features from
driving images, and the accuracy of risky behavior detection
was up to 96.74% [32]. The fusion model based on the basic
neural networks can achieve advanced feature exaction and
driving behaviors classification simultaneously.

However, existing fusion models are limited by the basic
neural networks and fusionways. As a result, driving data was
merely processed from a single perspective, and the global,
local and hybrid features cannot be extracted. Consequently,
the certain coupling information between different variables
are lost, which has a significant impact on the primitive
classification. In addition, primitives with different durations
lead to the inability of existing fusion models on driving
behavior primitive classification.

In this paper, a CNN-based fusion model is proposed
to achieve driving behavior primitive classification. Feature
matrices constructed by statistical methodswere used as input
while primitives with inconsistent durations will complicate
the structure of classification model and increase training
time. 1D-CNN and 2D-CNN are fused in parallel using a
new fusion method to obtain the FC-before fusion model and
FC-after fusion model. The contributions of this paper can be
summarized as follows:

(1) A CNN-based fusion model using a new fusion method
is developed to achieve driving behavior primitive classifi-
cation. The proposed model can extract variables coupling
information from global and local perspectives. Compared
with the existing models, the proposed model explores
multi-view features deeply, and improves the classification
effects significantly.

(2) A feature matrix is constructed to solve the problem of
inconsistent primitive durations.

(3) Two CNN-based fusion models are acquired by setting
the fusion position before and after the fully connected layer
(FC), in order to explore the effect of fusion position on the
model performance.

The paper is organized as follows: In Section II, the data
sources and driving behavior primitive samples are described.
In Section III, the existing problems for primitive classi-
fication are analyzed. Section IV describes the structure
of CNN-based fusion model and its related parameter set-
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tings, the classification results are presented and discussed
in Section V. Finally, the paper is concluded in Section VI.

II. DRIVING DATA AND BEHAVIOR PRIMITIVE
DESCRIPTION
A. DRIVING DATA
Driving data used in this study is sampled by experiments car-
ried out in the RADS 8 DOF Panoramic Driving Simulation.
The test route contains 11 curves and the total round trip is
about 10.35 km. 16 drivers (10 males, 6 females; age range
28∼50 years old, average age= 29.8, standard deviation (SD)
= 2.7; driving experience 0∼12 years, average = 7.6 years,
SD = 3.3) are paid for their participation in this study, and all
drivers are required to drive vehicles in similar conditions to
minimize potential disturbance caused by external factors.

The data recorded by the RADS 8 DOF Panoramic Driving
Simulation has a sampling rate of 60Hz. Themoving-average
solution is carried out to smooth the original data. The sta-
tistical results of the processed data are shown in Fig. 1.
The velocity (v) falls in the 0∼34 m/s range, longitudinal
acceleration (ax) falls in the −7m/s2 ∼ 6m/s2 range, lateral
acceleration (ay) ranges from −7m/s2 ∼ 9 m/s2, and longitu-
dinal jerk (j) ranges from −6m/s3 ∼ 6m/s3.

B. DRIVING BEHAVIOR PRIMITIVES
The extraction of driving behavior primitives includes three
parts: variables selection, data segmentation, and segments
clustering (shown in Fig. 2). The basic variables (such as
velocity) cannot reflect drivers’ subjective expectations, as a
result, some constructed variables are calculated to describe
drivers’ preferences on driving performances (such as rapid-
ity). The multi-type variable space, composed by the basic
and the constructed variables, is used as the input. Then, the
Bayesian Model-based agglomerative Sequence Segmenta-
tion (BMASS) is employed to divide the whole driving data
into independent segments [14]. A total of 2957 segments
are acquired, and the number of segments for each driver
are show in Fig.3. Driver 10 and driver 11 have more than
200 segments, while driver 2, driver 12 and driver 16 have less
segments. The number of segments for other drivers ranges
from 170 to 200.

Subsequently, the obtained segments are clustered by a new
latent Dirichlet allocation method, namely VC-LDA [33].
Specifically, the VC-LDAmethod consists of two parts: driv-
ing data discretization and segments clustering. During the
process of driving data discretization, the coupling relation-
ship between variables in the multi-type variable space is
considered. Finally, five primitive clusters are obtained, and
their semantics are shown as follows:
Cluster 1: continuous high-speed driving with better com-

fort and rapidity performance
Cluster 2: turning behaviors with gentle acceleration and

good fuel economy performance

Cluster 3: low-velocity driving with aggressive accelera-
tion and deceleration, as well as poor rapidity, fuel economy
and comfort performance
Cluster 4: driving with strength braking, and poor fuel

economy, comfort, and rapidity performance
Cluster 5: slightly braking when driving at high-speed,

with fine driving performance.

III. PROBLEMS EXISTED IN DRIVING BEHAVIOR
PRIMITIVE CLASSIFICATION
A. DRIVING BEHAVIOR PRIMITIVES WITH DIFFERENT
DURATIONS
As show in Fig. 4, the durations of driving behavior primi-
tives are inconsistent across all samples or within the same
primitive clusters. The classical algorithms, such as RF and
CNNs, can only handle the data with equal lengths. Although
algorithms such as LSTM and Transformer can directly uti-
lize data with various durations to achieve classification, this
approach will increase the difficulty of model training and
reduce the recognition efficiency in practically applying.

Therefore, transforming the primitives of uneven lengths
into equal-length vectors is quite vital for the primitive classi-
fier. Statistical methods are applied to construct the primitive
feature matrix, and the feature matrix serves as the input of
the classifier.

B. CLASSIFICATION MODEL SELECTION
Two problems should be considered when constructing prim-
itive classification models: (1) The input of the classifier is
the primitive feature matrix, which has no temporal orders.
Thus, the classifier should not be affected by the order of
data points in the input data. (2) the classifier needs to have
good performance and robustness to ensure the accuracy of
primitive recognition.

For deep learning approaches, CNNs achieve the transla-
tion invariant through convolution and pooling layers, which
is robust to the order of input data. Also, CNNs have good
performance and generalization ability, which ensures the
reliability and robustness of the classification result. There
hence, CNNs are chosen to develop the primitive classifier in
this paper.

C. COUPLING INFORMATION EXPRESSION AMONG
MULTI-TYPE VARIABLES
The input of the classifier is a matrix consisting of m features
of 8 variables (as shown in Fig. 5). Specifically, vw, ax,w,
ay,w, and jw are the constructed variables of v, ax , ay, and
j. The relationships among multi-type variables result in the
various information carried by diverse feature combinations.
For instance, the yellow box in Fig. 5 describes driver hori-
zontal and vertical maneuvers, as well as the related driving
performance. The red box just focuses on longitudinal accel-
eration at different speeds. Meanwhile, the blue box can only
reflect the driving performance (such as fuel economy) and
has no knowledge of vehicle driving conditions. Certainly,
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FIGURE 1. Statistical results of the processed driving data.

FIGURE 2. Flow diagram of driving behavior primitive extraction.

in order to accurately classify driving behavior primitives, it is
crucial for the model to have the ability of comprehensively
analyzing the relationships among multi-type variables.

CNNs usually include one-dimensional CNN (1D-CNN)
and two-dimensional CNN (2D-CNN). 1D-CNN has been
widely applied in natural language processing, which
achieves language prediction and recognition by extract-
ing global information from input data; 2D-CNN is usually
used to process image data, and it pays more attention to

local information. Obviously, 1D-CNN and 2D-CNN tend to
extract the coupling information from a single perspective,
leading to the loss of crucial features for accurate primitive
classifications. So that, 1D-CNN and 2D-CNN are fused in
parallel to obtain a CNN-based fusion model. By merging
global and local information together, this CNN-based fusion
model can automatedly explore deep features from multiple
perspectives and significantly improve the efficiency of prim-
itive classification.
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FIGURE 3. The number of segments for each driver.

FIGURE 4. The distribution of primitive durations (a) the duration
distribution for all primitives; (b)-(f) the duration distributions for
primitive cluster 1-5.

FIGURE 5. Schematic diagram of the coupling relationships between the
8 variables.

D. THE PROPOSED FRAMEWORK FOR DRIVING
BEHAVIOR PRIMITIVE CLASSIFICATION
Based on the above analysis, a novel method for driving
behavior primitive classification is proposed as shown in
Fig. 6. The framework mainly consists of two parts: feature

construction and CNN-based fusion model, which are pre-
sented in the following sections.

IV. DRIVING BEHAVIOR PRIMITIVE CLASSIFICATION
A. FEATURE CONSTRUCTION OF DRIVING BEHAVIOR
PRIMITIVES
Primitive features are constructed according to the central
tendency, dispersion, percentile values, extreme values, and

information entropy. The variables, operations and descrip-
tions used for feature construction are shown in Table 1.

The obtained features are reconstructed into matrix A as
the input of CNN-based fusion models. The details of matrix
A is show as follows,

A =

 v.mean . . . jw.mean
...

. . .
...

v.ApEn · · · jw.ApEn


B. CNN-BASED FUSION MODEL DEVELOPMENT
Feature matrix A is composed of the features of basic
variables (including v, ax , ay and j) and constructed vari-
ables (including vw, ax,w, ay,w and jw). There are different
relationships among multi-type variables. It is necessary for
the classifier to thoroughly analyze the coupling informa-
tion between different variables in matrix A. Based on that,
a CNN-based fusion model is constructed to classify driving
behavior primitives.

As shown in Fig. 7 and Fig. 8, the CNN-based fusionmodel
consists of two parts: information extraction module and
information fusion module. Firstly, the information extrac-
tion module utilizes one-dimensional (1D) hidden layers and
two-dimensional (2D) hidden layers to separately extract the
global and local coupling information of different variables.
Then, the information fusion module fuses the extracted
information through a new fusion method, which stacks the
feature matrices output by the information extraction mod-
ule after flattening them. In addition, the fusion stages are
separately set before and after FC, and two fusion models
are acquired. Finally, in terms of these models, primitives are
accurately categorized.

1) INFORMATION EXTRACTION MODULE
a: 1D HIDDEN LAYERS
The 1D hidden layers are set up to extract the overall cou-
pling information of eight variables. 1D hidden layers include
the 1D convolutional layer (Conv_1d),1D max-pooling layer
(Max-pooling_1d), and the related activation function called
Rectified Linear Unit (ReLU). The convolutional kernel,
denoted as W_1d, is set to a size of r1. The convolution is
operated by (1),

outputConv_1d = Conv_1d(A) = W_1d ⊗ A =

r1∑
i

w_1d · xi

(1)
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FIGURE 6. The proposed framework for driving behavior primitive classification.

TABLE 1. Variables, operations, and descriptions used for primitive feature construction.

FIGURE 7. Flow diagram of the FC-before fusion model.

where, ⊗ is convolution, w_1di is the elements ofW_1d, and
xi is the related features in A.
Then, the max-pooling layer with the size of c1 is used to

reduce the data dimensionality,

outputMax−pooling_1d = Max − pooling_1d(outputConv_1d )

=
c1

max
j
(outputconv_1dj ) (2)

Finally, the activation function named ReLU is applied
to make the above output non-linear, and the deep features
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FIGURE 8. Flow diagram of the FC-after fusion model.

extracted by 1D hidden layers(y_1d) are obtained,

y_1d = ReLu(outputMax−pooling_1d ) (3)

b: 2D HIDDEN LAYERS
Besides the overall coupling information, there are different
coupling information between various variable combinations.
In order to understand the correlations between different
variable combinations, the 2D hidden layers are employed to
extract the advanced primitive features.

Similarly, 2D hidden layers include the 2D convolutional
layer (Conv_2d), 2D max-pooling layer (Max-pooling_2d),
and the related activation function called Rectified Lin-
ear Unit (ReLU). Specifically, the kernel size (W_2d) of
Conv_2d is set as r2×s2, and the size of Max-pooling_2d is
set as c2×b2. So, the operations of 2D hidden layer are,

outputConv_2d = Conv_2d(A) = W_2d ⊗ A

=

r2×s2∑
i

w_2di · xi (4)

outputMax−pooling_2d = Max − pooling_2d(outputConv_2d )

=
c2×b2
max
j

(outputConv_2dj ) (5)

y_2d = ReLu(outputMax−pooling_2d ) (6)

where, w_2di is the elements of W_2d, y_2d is the deep
features extracted by 2D hidden layers.

2) INFORMATION FUSION MODULE
In this module, the features extracted by the information
extraction module are deeply fused, then the comprehensive
and high-quality features are acquired to improve the model
efficiency. Stacking after flattening is employed for fusion.
During the fusion process, y_1d and y_2d are flattened into
vectors named_1d’ and y_2d’. These vectors are then stacked
into a fusion vector ξ , which is applied for the primitive
recognition.

The fully connected layer (FC) aims to integrate differ-
ent extracted features. The y_1d and y_2d have different

TABLE 2. Pre-defined hyperparameters Of CNN-based fusion models.

semantics, so the fusion stages are separately set before and
after FC to get two different fusion models for obtaining
different fusion information. These twomodels are separately
named as FC-after fusion model and FC-before fusion model,
as shown in Fig. 7 and Fig. 8.
To summarize, the fusion module can merge different fea-

tures extracted by the 1D hidden layers and 2D hidden layers
together, which extracts more comprehensive information
from both global and local perspectives. In addition, two
fusion models are developed to investigate the impacts of
fusion stages on the model recognition performance.

C. HYPERPARAMETER TUNING FOR THE CNN-BASED
FUSION MODEL
The hyperparameters of the fusion model include the param-
eters of Conv_1d, Conv_2d, Max-pooling_1d and Max-
pooling_2d in the information extraction module, as well
as the parameter of FC in the information fusion module.
Firstly, the candidate values of hyperparameters are deter-
mined based on existing researches and experiences, as well
as computational efficiency [29], [30]. Then, the optimal
hyperparameter are generated according to the model perfor-
mance under different hyperparameters.

Table 2 presents the candidate values for each hyperparam-
eter. Hyper-opt searches in all possible combinations of these
values to select the optimal one. The experimental results are
shown in the next section.
r1 is the kernel size of Conv_1d, r2×s2 is the kernel size of

Conv_2d, c1 is the size of Max-pooling_1d, c2×b2 is the size
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TABLE 3. Hyperparameter values of the CNN-based fusion models.

of Max-pooling_2d, z_1d and z_2d are the number of kernels
for Conv_1d and Conv_2d, and p is the number of neurons for
FC. Meanwhile, the drop rate of FC is taken as 0.6 to avoid
overfitting.

V. RESULTS AND DISCUSSION
A. EXPERIMENT DETAILS
The proposed CNN-based fusion model and existing models
to be compared were implemented using Python program-
ming, and were tested on the dataset mentioned in Section II.
Specifically, the deep learning TensorFlow framework was
adopted in Python programming.

B. RESULTS
Based on Table 2, the different combinations of the hyper-
parameter values are obtained, which are shown in Table 3.
Based on this, the CNN-based fusion model is initialized and
trained. Evaluation indicators including Accuracy and Macro
F1-score are used to analyze the classification results of each
model and determine the optimal fusion model.

The dataset has been split into the training, validation, and
test set. The optimal model is selected according to the train
and validation set, and performance of the model is validated
by the test set.

FIGURE 9. The training results of the FC-before fusion model.

FIGURE 10. The training results of the FC-after fusion model.

TABLE 4. The classification performance of the optimal fusion model.

Fig. 9 and Fig. 10 respectively presents the Macro F1-
score and Accuracy under diverse epochs for different fusion
models. For FC-before fusion model, the highest Accuracy
and Macro F1-score are obtained by M6 after 2000 train-
ing epochs, which are 95.50% and 95.32% respectively.
Therefore, chose this model as the optimal FC-before fusion
model. Similarly, the M2 for FC-after fusion model gets the
best Accuracy and Macro F1-score, which are 94.82% and
94.55% respectively. Thus, M2 after 2000 training epochs is
taken as the optimal model for FC-after fusion model.

Subsequently, the best fusion models are validated on the
test sets to ensure their generalization ability. Table 4 shows
the validation results. Compared with the training results, the
two fusion models perform well on the test set, indicating
the models have certain reliability and effectiveness. Further-
more, the performance of FC-before fusion model is slightly
better than the FC-after fusion model.

C. DISCUSSION
To verify the ability of the CNN-based fusion model, three
basic types of classification methods are also employed for
comparative experiments. The compared methods include:
(1) the ablation study of CNN-based fusion model:1D-CNN
and 2D-CNN; (2) the existing classical methods: (a) the
well-known traditional machine learning methods, which
extracts features using PCA and classifies primitives by ran-
dom forest (RF) [34]; (b) the other fusion models suitable
for the primitive features: CNN-mid-fusion model and CNN-
late-fusion model [30].
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FIGURE 11. The training results of 1D-CNN.

FIGURE 12. The training results of 2D-CNN.

TABLE 5. Hyperparameter value space Of 1D-CNN.

TABLE 6. Hyperparameter value space Of 2D-CNN.

The hyperparameter values of 1D-CNN and 2D-CNN are
also obtained by combining the candidate values for each
hyperparameter, shown in Table 5 and Table 6. The training
results are shown in Fig. 11 and Fig. 12. It is obvious that the
optimal model of 1D-CNN isM1_1d and the best of 2D-CNN
is M3_2d. These two models are chosen for comparisons.

For the traditional machine learning method including
PCA and RF (PCA+RF), the explained variance ratio of PCA
is set as 95% and the random trees is set as 100.

For the other fusion models, although many fusion models
are applied to identify driving behaviors, some models are
not suitable for the feature matrix A used in this paper [25],
[26], [27], [28], [31]. CNN-mid-fusion model and CNN-
late-fusion model, which are designed to identify driving

behaviors based on features, are chosen to be the compared
fusion models. The optimal hyperparameters of CNN-mid-
fusion model and CNN-late-fusion model can be found in
reference [30].
The results of the ablation study are shown in Table 7

and the performances of state-of-art methods are shown in
Table 8, which are specifically represented by the Accuracy
and Macro F1-score. The Accuracy and Macro F1-score
of 1D-CNN and 2D-CNN are both lower than those of
CNN-based fusion models. Obviously, the performances of
the CNN-based fusion models are verified by the alation
study. In addition, the Accuracy and Macro F1-score of
PCA+RF are both lower than 80%, meaning a bad per-
formance. Although the Accuracy and Macro F1-score of
CNN-mid-fusion model have improved, they are still lower
than evaluation indicators of CNN-based fusion models. The
classification performances of the CNN-late-fusion model
and the CNN-after fusion model are roughly equivalent.
However, the Accuracy and Macro F1-score of FC-before
fusion model achieve an 93.47% and 92.57% respectively,
marking it as the top performer among all models.

The computational complexity of different methods is also
analyzed. The more complex the models are, the longer
training times will be needed. Therefore, training times are
chosen to measure the computational complexity. Table 9
shows the training times for different methods. Compared by
other models, the PCA+RF and 2D-CNN have the shortest
training times. The training times for 1D-CNN, FC-before
fusion model, FC-after fusion model and CNN-mid-fusion
ranges from 11s to 15s, indicating the similar computational
complexity. The CNN-late-fusion has the longest training
times, which means the highest level of computational com-
plexity.

To sum up, 2D-CNN and PCA+RF have the minimize
computational complexity, but their performances are not
well. The CNN-late-fusion model achieve the same perfor-
mance as the FC-after fusion model, but its training time
is significantly longer than that of FC-after fusion model.
While the proposed CNN-based fusion models, 1D-CNN,
and CNN-mid-fusion model have the same computational
complexity, the proposed CNN-based fusion models have
much better performance than others. So that, we can draw
the conclusion that the CNN-based fusion models proposed
in this paper can improve the primitive classification results
to some extent, and it reach a good balance between computa-
tional complexity and model performances. Specifically, the
FC-before fusion model has the best recognition performance
among all models.

The confusion matrices of various methods are illustrated
in Fig. 13 to further investigate their classification result.
In matrices, the values on the diagonal represent the number
of correctly identified samples, and their ratios of the whole
samples. The green values in the right column reflect the Pre-
cision, the green values in the bottom row describe the Recall,
and the green values in the bottom right corner represent the
Accuracy.
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FIGURE 13. Confusion matrices of different classification models.

TABLE 7. Ablation study of the CNN-based fusion model.

From the confused matrix, the 1D-CNN and RF both have
lower Recall and Accuracy for primitive clusters except clus-
ter 1. The velocity of cluster 1 primitives is higher, which
indicates that analyzing the data from a global perspective
can only obtain features with evident differences.

Although 2D-CNN has improved the Recall for each prim-
itive category, the identification Accuracy of certain category
is relatively lower. For example, the identification Precision

of cluster 3 primitives is only 74%, which dues to the sim-
ilarities of local variable features (such as features of the
longitudinal acceleration) between different clusters (such
as cluster 2, 3 and 4). In addition, the Recall and Preci-
sion of CNN-before fusion model, CNN-after fusion model,
CNN-mid fusion model and CNN-late fusion model have all
improved, but the Accuracy of CNN-before fusion model and
CNN-after fusion model is higher than the that of CNN-mid-
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TABLE 8. Comparison of classification performance for existing classical methods.

TABLE 9. Comparison of training times for different classification methods.

fusion. Moreover, the Accuracy of FC-before fusion model is
better than that of the CNN-late fusion model.

As mentioned above, the need for fusing global and local
information when classifying primitives is further verified.
The two proposed fusion models, especially the FC-before
fusion model, can achieve a better recognition performance.

VI. CONCLUSION
A CNN-based fusion model is proposed in this paper for
driving behavior primitive classification. Firstly, primitive
features were constructed by statistical methods to solve the
issue of inconsistent durations among primitives. These fea-
tures were reconstructed to be matrices as the classifier input.
Secondly, the 1D-CNN and 2D-CNN were fused in parallel
using a new fusion method. This model could simultaneously
analyze the global and local features of input data, which
deeply describes various relationships between multi-type
variables. Further, the fusion stages were set before and after
FC, and two fusion models were obtained. Based on the two
fusion models, labels of driving behavior primitives were
efficiently identified, and the proposed CNN-based fusion
model were compared to the state-of-art models.

The driving behavior primitives are classified for the first
time in this paper, which is important for the online seman-
tic analysis of driving behaviors. The results shows that
deep learning, especially the CNN-based fusion method,
is very promising in driving behavior primitive classification.
In addition, the numerical experiments verify the superiority
and efficiency of the proposed method.

However, there are still some disadvantages in our work.
The feature construction is chosen to address the problems
of primitive having inconsistent durations, but this treatment
has certain subjective limitations. In the future work, we will
try to overcome this problem through more objective models.
Moreover, the information fusion method used in this paper
is fixed, so a more adaptive method for information fusion
module will be considered. Last, the comparison with other
methods is only conducted from the fusion model level, and
the comparison with various information extraction or fusion
module will also be included in the future.

REFERENCES
[1] W. Wang, W. Zhang, J. Zhu, and D. Zhao, ‘‘Understanding V2V driving

scenarios through traffic primitives,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 1, pp. 610–619, Jan. 2022.

[2] T. Taniguchi, S. Nagasaka, K. Hitomi, K. Takenaka, and T. Bando, ‘‘Unsu-
pervised hierarchical modeling of driving behavior and prediction of
contextual changing points,’’ IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 4, pp. 1746–1760, Aug. 2015.

[3] X. Chen, J. Sun, Z. Ma, J. Sun, and Z. Zheng, ‘‘Investigating the long-
and short-term driving characteristics and incorporating them into car-
following models,’’ Transp. Res. C, Emerg. Technol., vol. 117, Aug. 2020,
Art. no. 102698.

[4] J. Gao, H. Zhu, and Y. L. Murphey, ‘‘Adaptive window size based deep
neural network for driving maneuver prediction,’’ in Proc. Chin. Control
Decis. Conf. (CCDC), Hefei, China, Aug. 2020, pp. 87–92.

[5] W. Wang, J. Xi, and D. Zhao, ‘‘Learning and inferring a driver’s braking
action in car-following scenarios,’’ IEEE Trans. Veh. Technol., vol. 67,
no. 5, pp. 3887–3899, May 2018.

[6] G. Weidl, A. L. Madsen, S. Wang, D. Kasper, and M. Karlsen, ‘‘Early and
accurate recognition of highway traffic maneuvers considering real world
application: A novel framework using Bayesian networks,’’ IEEE Intell.
Transp. Syst. Mag., vol. 10, no. 3, pp. 146–158, Fall. 2018.

[7] M. M. Bejani and M. Ghatee, ‘‘A context aware system for driving style
evaluation by an ensemble learning on smartphone sensors data,’’ Transp.
Res. C, Emerg. Technol., vol. 89, pp. 303–320, Apr. 2018.

[8] T. Bando, K. Takenaka, S. Nagasaka, and T. Taniguchi, ‘‘Generating
contextual description from driving behavioral data,’’ in Proc. IEEE Intell.
Vehicles Symp. Proc., Dearborn, MI, USA, Jun. 2014, pp. 183–189.

[9] T. Taniguchi, S. Nagasaka, K. Hitomi, N. P. Chandrasiri, and T. Bando,
‘‘Semiotic prediction of driving behavior using unsupervised double artic-
ulation analyzer,’’ in Proc. IEEE Intell. Vehicles Symp., Alcala de Henares,
Spain, Jun. 2012, pp. 849–854.

[10] W. Wang, J. Xi, and D. Zhao, ‘‘Driving style analysis using primitive
driving patterns with Bayesian nonparametric approaches,’’ IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 8, pp. 2986–2998, Aug. 2019.

[11] X.-S. Li, X.-T. Cui, Y.-Y. Ren, and X.-L. Zheng, ‘‘Unsupervised driving
style analysis based on driving maneuver intensity,’’ IEEE Access, vol. 10,
pp. 48160–48178, 2022.

[12] B. Higgs and M. Abbas, ‘‘Segmentation and clustering of car-following
behavior: Recognition of driving patterns,’’ IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 1, pp. 81–90, Feb. 2015.

[13] E. Galceran, A. G. Cunningham, R.M. Eustice, and E. Olson, ‘‘Multipolicy
decision-making for autonomous driving via changepoint-based behavior
prediction,’’ Auton. Robot., vol. 41, no. 6, pp. 1367–1382, Jan. 2015.

[14] X. S. Li, X. T. Cui, X. L. Zheng, Y. Y. Ren, L. Shi, and J. F. Xi, ‘‘Extraction
of driving behavior primitives based on multi-type variables space,’’China
J. Highway Transp., vol. 36, no. 7, pp. 223–235, Jul. 2023.

[15] E. Suzdaleva and I. Nagy, ‘‘An online estimation of driving style using
data-dependent pointer model,’’ Transp. Res. C, Emerg. Technol., vol. 86,
pp. 23–36, Jan. 2018.

[16] B. H. Sun, ‘‘Research on personalized shared control considering driver’s
driving capability and style,’’ Ph.D. dissertation, College Automot. Eng.,
JiLin Univ., Changchun, China, 2020.

56354 VOLUME 12, 2024



X. Cui et al.: Driving Behavior Primitive Classification Using CNN-Based Fusion Models

[17] S. Lefèvre, D. Vasquez, and C. Laugier, ‘‘A survey on motion prediction
and risk assessment for intelligent vehicles,’’ ROBOMECH J., vol. 1, no. 1,
p. 1, Jul. 2014.

[18] T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and W.-Y. Ma, ‘‘Support
vector machines classification with a very large-scale taxonomy,’’ ACM
SIGKDD Explor. Newslett., vol. 7, no. 1, pp. 36–43, Jun. 2005.

[19] C. Ou and F. Karray, ‘‘Deep learning-based driving maneuver predic-
tion system,’’ IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1328–1340,
Feb. 2020.

[20] M. M. Haque, S. Sarker, and M. A. A. Dewan, ‘‘Driving maneuver classi-
fication from time series data: A rule based machine learning approach,’’
Int. J. Speech Technol., vol. 52, no. 14, pp. 16900–16915, Nov. 2022.

[21] G. Li, S. E. Li, Y. Liao, W. Wang, B. Cheng, and F. Chen, ‘‘Lane change
maneuver recognition via vehicle state and driver operation signals—
Results from naturalistic driving data,’’ inProc. IEEE Intell. Vehicles Symp.
(IV), Seoul, South Korea, Jun. 2015, pp. 865–870.

[22] J. Xie, A. R. Hilal, and D. Kulic, ‘‘Driving maneuver classification: A
comparison of feature extraction methods,’’ IEEE Sensors J., vol. 18,
no. 12, pp. 4777–4784, Jun. 2018.

[23] L. Yang, R. Ma, H. M. Zhang, W. Guan, and S. Jiang, ‘‘Driving behavior
recognition using EEG data from a simulated car-following experiment,’’
Accident Anal. Prevention, vol. 116, pp. 30–40, Jul. 2018.

[24] A. Behera, Z. Wharton, A. Keidel, and B. Debnath, ‘‘Deep CNN, body
pose, and body-object interaction features for drivers’ activity monitor-
ing,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 2874–2881,
Mar. 2022.

[25] M.M. Bejani andM. Ghatee, ‘‘Convolutional neural network with adaptive
regularization to classify driving styles on smartphones,’’ IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 2, pp. 543–552, Feb. 2020.

[26] S. K. Kwon, J. H. Seo, J. Y. Yun, and K.-D. Kim, ‘‘Driving behavior
classification and sharing system using CNN-LSTM approaches and V2X
communication,’’ Appl. Sci., vol. 11, no. 21, p. 10420, Nov. 2021.

[27] S. Sarker, Md. M. Haque, and M. A. A. Dewan, ‘‘Driving maneuver
classification using domain specific knowledge and transfer learning,’’
IEEE Access, vol. 9, pp. 86590–86606, 2021.

[28] X. Peng, Y. L. Murphey, R. Liu, and Y. Li, ‘‘Driving maneuver early
detection via sequence learning from vehicle signals and video images,’’
Pattern Recognit., vol. 103, Jul. 2020, Art. no. 107276.

[29] S. Arefnezhad, S. Samiee, A. Eichberger, M. Frühwirth, C. Kaufmann, and
E. Klotz, ‘‘Applying deep neural networks for multi-level classification
of driver drowsiness using vehicle-based measures,’’ Expert Syst. Appl.,
vol. 162, Dec. 2020, Art. no. 113778.

[30] J. Xie, K. Hu, G. Li, and Y. Guo, ‘‘CNN-based driving maneuver classi-
fication using multi-sliding window fusion,’’ Expert Syst. Appl., vol. 169,
May 2021, Art. no. 114442.

[31] Y. Zhang, J. Li, Y. Guo, C. Xu, J. Bao, and Y. Song, ‘‘Vehicle driving
behavior recognition based on multi-view convolutional neural network
with joint data augmentation,’’ IEEE Trans. Veh. Technol., vol. 68, no. 5,
pp. 4223–4234, May 2019.

[32] C. Huang, X. Wang, J. Cao, S. Wang, and Y. Zhang, ‘‘HCF: A hybrid CNN
framework for behavior detection of distracted drivers,’’ IEEE Access,
vol. 8, pp. 109335–109349, 2020.

[33] X. S. Li, X. T. Cui, X. L. Zheng, Y. Y. Ren, L. Zhao, J. Wang, and W. Y.
Kang, ‘‘A driving event clustering method and system based on an LDA
extended model,’’ China Patent 202 310 068 157, Jul. 28, 2023.

[34] J. Xie andM. Zhu, ‘‘Maneuver-based driving behavior classification based
on random forest,’’ IEEE Sensors Lett., vol. 3, no. 11, pp. 1–4, Nov. 2019.

XIAOTONG CUI was born in Zibo, Shandong,
China, in 1996. She received the bachelor’s degree
in traffic engineering from Harbin Institute of
Technology, Weihai, Shandong, in 2018. She is
currently pursuing the Ph.D. degree in vehicle
operation engineering with the School of Trans-
portation, Jilin University, Changchun, China. Her
research interests include the understanding and
utilizing driving behavioral data and the driving
behavior characteristics recognition.

XIANSHENG LI received the bachelor’s degree
in automobile application engineering from Jilin
University, Changchun, China, in 1982, and the
Ph.D. degree in vehicle operation engineering
from the School of Transportation, Jilin Univer-
sity. His research interests include driving safety
and reliability and transportation system resources
optimization.

XUELIAN ZHENG was born in Shandong,
in 1987. She received the B.S. degree in automo-
bile engineering from Northeast Forestry Univer-
sity, in 2009, and the Ph.D. degree in vehicle oper-
ation engineering from Jilin University, in 2014.
Currently, she is with the School of Transportation,
Jilin University, as a Vice President. Her research
interests include vehicle dynamics and control,
driving behavior, and autonomous vehicle design
and control.

YUANYUAN REN was born in Jilin City, Jilin
Province, in 1982. She received the B.S. and M.S.
degrees in traffic information engineering and con-
trol and the Ph.D. degree in vehicle operation
engineering from Jilin University, in 2006, 2008,
and 2011, respectively. Her research interests
include driving stability and safety technology,
intelligent analysis of driving behavior, and intel-
ligent vehicle planning and control research.

VOLUME 12, 2024 56355


