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ABSTRACT Explainable artificial intelligence (XAI) has witnessed significant advances in the field of
object recognition, with saliency maps being used to highlight image features relevant to the predictions
of learned models. Although these advances have made artificial intelligence (AI)-based technology more
interpretable to humans, several issues have come to light, as some approaches present explanations irrelevant
to predictions, and cannot guarantee the validity of XAI (axioms). In this study, we propose the Baseline
Shapley-based Explainable Detector (BSED), which extends the Shapley value to object detection for
images, thereby enhancing the validity of interpretation. The Shapley value can attribute the prediction of
a learned model to a baseline feature while satisfying the explainability axioms. The processing cost for
the BSED is within the reasonable range, while the original Shapley value is prohibitively computationally
expensive. Furthermore, BSED is a generalizable method that can be applied to various object detectors for
images in a model-agnostic manner, and interpret various detection targets without fine-grained parameter
tuning. These strengths can enable the practical applicability of XAI. We present quantitative and qualitative
evaluations to demonstrate that our method outperforms existing methods in terms of explanation validity.
Moreover, we present some applications, such as correcting detection based on explanations from our
method.

INDEX TERMS Explainable artificial intelligence, object recognition, Shapley value.

I. INTRODUCTION
Artificial Intelligence (AI)-based object recognition plays
an important role across various domains. In the medical
field, for instance, AI-based object recognition systems aid
physicians in the enhanced and precise diagnosis of diseases.
Nonetheless, the black-box nature of AI poses challenges in
confidently utilizing such systems. Consequently, the inter-
pretability of AI has drawn prominent academic attention,
with extensive research [1], [2] conducted on the topic. This
process is critical for the widespread social acceptance of
AI systems.

Extensive research has been conducted on explainable
artificial intelligence (XAI) for image classification tasks.
Typically, pixel-wise feature attributions are calculated based
on classification confidence scores and depicted as a saliency
map. The feature attribution can be interpreted as an
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importance score of each pixel for classification. Several
different approaches can be employed to calculate the
feature attribution. Back-propagation-based methods utilize
gradients of the neural network in a learned model, while
activation-map-based methods use feature maps in the
convolutional neural network layer. Because these methods
are dependent upon network architecture, prior knowledge
regarding the model is required. In contrast, perturbation-
based methods take samples of perturbated input images and
their corresponding output scores to calculate the feature
attributions. These methods are independent of network
architecture, and can be applied in a model-agnostic manner.

This study focuses on object detection tasks for images,
such as that depicted in Fig. 1. The task requires predicting a
class label and localizing a bounding box of a target object,
thereby making the XAI’s task of extracting information
from the model more complex. Some methods extend
those for image classification by adding conditions on the
calculation to limit an explanation scope to a target object.
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FIGURE 1. Comparison results with existing methods in interpreting the
car detection of YOLOv5s.

Contrastive Relevance Propagation (CRP) for the You Only
Look Once (YOLO) detector [3] confines the calculation
of attributions to those originating from nearby the target
bounding box and denoting the class label associated with
the target. On the other hand, D-RISE [4] extends the model-
agnostic approach [5] and calculates the feature attribution
by sampling masked images and their corresponding output
scores. The scores take into account both the classification
and localization aspects. However, concerns remain about
the explanatory validity of these methods. The imposition
of the restriction on calculating attributions nearby the target
object would introduce bias into the explanations. The result
of CRP for the YOLO detector in Fig. 1 shows that other
cars within the bounding box have as high feature attributions
as the target. The restriction also precludes the possibility
of important clues being a little far from the target object.
In addition, D-RISE is difficult to generalize to various
detection targets, despite a model-agnostic method. Fig. 2
illustrates the changes in saliency maps according to the
parameters. A fatal error may appear in an explanation with
a certain parameter, and the optimal parameter set may
depend on the target, making the method difficult to apply to
unknown situations. Therefore, we must pay attention to the
explanatory validity. Recently, this topic has frequently been
discussed associating with axioms [6], [7], which refer to the
properties that explainable methods should satisfy. Because
the Shapley value [8] has been proven to satisfy the axioms,
methods that extend the concept of the Shapley value to XAI
have emerged to enhance the validity.

Because research pertaining to the validity of XAI for
object detection is scarce, we propose a novel method called
the Baseline Shapley-based Explainable Detector (BSED).
By extending Baseline Shapley [6] and applying the Shapley
value to object detection tasks for images, BSED is expected
to yield explanations justified by the axioms. The technical
contributions of this study are as follows.

• We developed an XAI for object detection that satisfies
the axioms by introducing the Shapley value. We exper-
imentally demonstrated that our method outperforms
existing methods in terms of the validity of explanation.

• The inclusion of the Shapley value brings about a
significant computational load. To remedy this issue,
we introduced the reasonable mathematical Shapley

FIGURE 2. Saliency maps generated from D-RISE explaining detection
results. The parameter p indicates the percentage of the non-masked area
in the images for input samplings.

value approximation to reduce the computation burden
to a realistic cost while preserving a higher accuracy
compared to existing methods.

• We experimentally showed that our method can be
applied not only in a model-agnostic manner, but also
independently of fine-grained parameter tuning. This
indicates that our method can interpret detection results
equitably under a wide range of situations.

• We demonstrated the manipulation of detection results
according to the explanations of our method, uncovering
the potential of extending it to practical applications.

In the remainder of this paper, firstly, we summarize
related studies and provide a derivation of our method.
Then, we experimentally demonstrate our method’s validity
and possible applications. Lastly, concluding remarks are
presented.

II. RELATED WORKS
A. XAI FOR IMAGE CLASSIFICATION
Back-propagation-based methods [9], [10], [11], [12] utilize
gradients of the neural network to calculate pixel-wise feature
attribution. For instance, Layer-wise Relevance Propaga-
tion (LRP) [13] involves the backward propagation of a
classification score (relevance) through the neural network
layers, thereby attributing relevance to each pixel in an
input image. To distinguish the relevance associated with
the true object from other class objects, CRP [14], [15]
calculates the disparity between the relevance attributed
to the target class and the mean relevances derived from
other classes. Integrated Gradients (IG) [7] involves varying
the input image from the baseline to the original image
and integrating the corresponding gradients. Activation-map-
based methods [16], [17], [18], [19] utilize feature maps
for the calculation. For instance, Gradient-weighted Class
Activation Mapping (Grad-CAM) [20] calculates weighted
sums of the feature maps using the gradients within the
neural network as the corresponding weights. These methods
reduce computational complexity by extracting information
from themodel. However, they require prior knowledge about
the optimal locations for information extraction within the
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models. In contrast, perturbation-based methods [21], [22],
[23] sample perturbed inputs and the model’s output for
the calculation. For instance, Randomized Input Sampling
for Explanation (RISE) [5] samples partially masked images
and calculates weighted sums of the input masks using the
corresponding output scores as weights. Although they can
generate saliency maps without knowledge about the model
architecture, they are not considered suitable in cases that
require real-time computation, as they sample numerous
images.

B. XAI FOR OBJECT DETECTION
Many methods [3], [24] extend XAI for image classification
by incorporating conditions for the calculation of feature
attributions that specifically target individual objects. CRP
for the YOLO [3] calculates the backward propagation
of a classification score. This score is associated with a
region close to the target bounding box and signifies the
target class label. Explain-to-fix (E2X) [25] partitions an
image into superpixels and computes the average attributions
across them, thereby mitigating pixel-wise noise. Although
originally designed for classification, Grad-CAM can be
adapted for object detection by identifying the gradients
relevant to the task. D-RISE [4] is an extension of a
perturbation-based method called RISE [5] and samples
binary masks for an input image. These values, 1 or 0, are
determined based on probabilities p and 1 − p, respectively.
The output score indicates the detection similarity between
detections obtained from a masked image and the target
detection. A saliency map can be generated by computing the
weighted sums of the input masks using the output scores as
weights. Fig. 1 presents a comparison of existing methods,
with the explanation target being the car detection of a small
YOLOv5 (YOLOv5s) [26] model from the Common Objects
in COntext (COCO) [27] dataset. The methods presented in
Fig. 1 have been curated from diverse categories and serve as
baselines for subsequent evaluations. Originally designed for
classification tasks, Grad-CAM struggles to target individual
objects, instead responding to all objects in the same category.
E2X and CRP calculate positive and negative attributions,
depicted as red and blue regions. The results of E2X contain
a small quantity of noise, and are dependent on the superpixel
allocation. Unlike other methods, CRP considers the car’s
side window as unimportant and other cars within the
bounding box as important. D-RISE provides a reasonable
result highlighting the important areas for car detection.

C. SHAPLEY VALUE
The Shapley value, originally conceptualized in cooperative
game theory [8], has gained prominence in the field of XAI.
It offers a systematic method to distribute the ‘‘value’’
or ‘‘contribution’’ of each feature in a prediction model.
However, to ensure that the interpretations provided by
XAI techniques are meaningful and reliable, they must
satisfy certain axioms or principles. A sanity check [28] has

highlighted instanceswhere somemethods yield explanations
that don’t align with actual model predictions. Grounded
in these concerns, various axioms have been proposed and
studied in depth [6], [7], [29]. Here are a few key axioms:

1) DUMMY
If a feature does not influence the output of the score
function f , it can be regarded as a dummy and assigned zero
attribution.

2) EFFICIENCY
The sum of the attributions across all features should equate
to the difference between the output scores of the input x and
the baseline xb, symbolically:∑N

i=1
ai = f (x)− f (xb). (1)

This ensures that the entire contribution difference is
attributed among the features.

3) LINEARITY
For a linear combination of two score functions, f and g, the
attribution of the combined function should equal the sum of
the attributions for each individual function. Namely,

af+gi = afi + a
g
i . (2)

Owing to its ability to satisfy these axioms, the Shapley
value has been integrated into various XAIs [6], [30], [31],
[32]. Despite its advantages, a significant drawback is the
computational expense it incurs. While approximations can
alleviate this computational demand, they may not always
satisfy the axioms, introducing potential discrepancies in the
explanations.

III. PROPOSED APPROACH
A. MOTIVATION
From the perspective of practical applicability, existing
methods for XAI in object detection have two major issues.
The first is the issue of validity, which has been addressed
by only a few studies. Fig. 2 shows that the saliency maps
generated by D-RISE may vary according to parameters,
and we cannot be sure whether a set of parameters is
appropriate given an unknown situation. If the method is not
sufficiently justified, it cannot be applied in practice. The
other primary issue is that of application. Although existing
methods can highlight positively important regions, they
cannot sufficiently indicate regions of negative importance.
In addition, their feature attributions only indicate relative
importance, not clarifying how much each area contributes
to the prediction. If the explanation is aimed at improving the
detector’s performance, the degree of impact from positive
and negative areas must be important clues for deeper
analysis.

These issues have motivated us to develop an axiom-
justified method that can be generalized to a wide range of
situations, and providesmore information for deeper analysis.
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FIGURE 3. Overview of BSED. The explanation target dt is on the input image X . The detector φ obtains perturbated detections d j from the
masked image Mk ⊙ X . The similarity between the explanation target and perturbated detections is obtained to calculate the attribution
on each pixel. An attribution map A is generated as an explanation for obtaining the target detection.

In developing this method, we treated the explanation as an
attribution task: the entire output score is distributed across
each pixel in an image, and the attribution value indicates
the contribution of each pixel to the score. Unlike existing
methods, we can confirm a balance between positive and
negative attributions, employing them as clues to adjust the
detection results appropriately.

B. BASELINE SHAPLEY
Let us assume that Nf represents all features of a model’s
input. Then, the Shapley value can be described as the feature
attribution of the target feature i ∈ Nf as follows:

si =
∑

S⊆Nf \i

|S|! ∗ (|Nf | − |S| − 1)!
|Nf |!

(v(S ∪ i)− v(S)). (3)

Here, S denotes a subset of features excluding i, and v(S)
represents the model output when S is the input. The
attribution of i can be obtained by averaging the marginal
contributions, which are output changes by the addition of i.
In a machine-learning setting, v(S) requires retraining the
model using only S as an input, which is extremely time-
consuming. SHapley Additive exPlanations (SHAP) [31]
avoids this process by approximating v(S) as the expected
value of the output scores containing S as an input. However,
the expected value significantly depends upon the distribution
of the dataset. Therefore, we adopted another Shapley value
method that is independent of the distribution of the dataset,
namely Baseline Shapley [6], which approximates v(S) by
combining the target input x and the baseline input xb as
follows:

v(S) = f (xS; xbNf \S ). (4)

For the input of function f , values corresponding to the
feature set S originate from x, whereas those corresponding
to the other Nf \ S originate from the baseline xb. Such an

application of Baseline Shapley to object detection has not
been attempted previously.

C. BASELINE SHAPLEY FOR OBJECT DETECTION
We take the function f as a score function that includes
an object detector, and assume the baseline xb to be
a black image indicating no information. We then can
interpret xS; xbNf \S as a masked image, wherein any pixels
corresponding to the S are the original pixels, and all other
pixels are masked. If we rewrite Eq. 4 with the element-wise
multiplication ⊙, function to generate binary masks M(S),
and image X , we can also reformulate Eq. 3 as follows:

ai =
∑

S⊆Nf \i

Pr (S)
|Nf |

{
f
(
M(S ∪ i)⊙ X

)
− f

(
M(S)⊙ X

)}
,

(5)

Pr (S) =
(
|Nf | − 1
|S|

)−1
. (6)

Here, we rewrite si as ai, which is the attribution value
corresponding to the feature i. Pr (S) can be represented
as the reciprocal of a binomial coefficient. Subsequently,
we group S according to the number of non-masked
pixels |S|.

S l ∈
{
S ⊆ Nf \ i

∣∣∣ |S| = l
}
. (7)

We now can transform the summation in Eq. 5.

ai =
1
|Nf |

|Nf |∑
l=1

Fi(S l), (8)

Fi(S l) =
∑
S l

Pr (S l)
{
f (M(S l ∪ i)⊙ X )− f (M(S l)⊙ X )

}
= E

[
f (M(S l ∪ i)⊙ X )− f (M(S l)⊙ X )

]
. (9)

Given that the number of S l is
(
|Nf |−1

l

)
, its reciprocal Pr (S l)

can be considered the event probability of S l . Therefore,
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we can approximate Fi(S l) as the expected value over S l

in Eq. 9. However, we realize that the calculation of Eq. 8
is very time-consuming, requiring O(2|Nf |) inferences to
estimate the Shapley value. Therefore, we need reasonable
approximations to reduce the calculation cost.

D. APPROXIMATION OF SHAPLEY VALUE
We can interpret Eq. 8 as the average of Fi(S l) over all
the number of pixels. The calculation is redundant because
adjacent l would provide similar Fi(S l). Taking this into
consideration, we further reduce the computation by picking
up the representative l and approximating the Shapley value
by K layers as follows:

ai ≈
1
K

K∑
k=1

Fi(Sk ), (10)

Sk ∈
{
S ⊆ Nf \ i

∣∣∣ |S|
|Nf |
=

k
K + 1

}
. (11)

Here, Fi(Sk ) is the expected value of the incremental scores
resulting from the participation of i. Inspired by the problem
setting of RISE [5], we simplify Fi(Sk ) to the expected value
of incremental scores between two masks, conditioned on
the event that only one of them has an element of 1 on the
pixel of i. Here, we rewrite the mask representation from
M(Sk ) to M k , which assigns binaries to all the pixels. If the
pixel of i has influential attribution, the contributions of the
score change from the participation of i should be highlighted,
while those from other pixels are offset. We define the
approximated score F̃i,k (≈ Fi(Sk )) using another mask M ′k

as follows:

F̃i,k = E
[
f (M k

⊙ X )− f (M ′k ⊙ X )
∣∣ M k (i)−M ′k (i) = 1

]
.

(12)

We can express the expected value of Eq. 12 as the summation
of all combinations of two mask patterns. We describe two
binary masks as M k

a and M k
b , which have similar patterns

to M k . If they are allowed to be duplicated, we should
consider two conditions between the masks, namelyM k

a (i)−
M k
b (i) = 1 and M k

b (i)−M
k
a (i) = 1.

F̃i,k =
∑
mka

∑
mkb

{(
f (mka ⊙ X )− f (m

k
b ⊙ X )

)
× P

[
M k
a = mka,M

k
b = mkb

∣∣∣ M k
a (i)−M

k
b (i) = 1

]
+

(
f (mkb ⊙ X )− f (m

k
a ⊙ X )

)
× P

[
M k
a = mka,M

k
b = mkb

∣∣∣ M k
b (i)−M

k
a (i) = 1

]}
.

(13)

Here, P indicates the probability. This equation can be further
transformed as follows:

F̃i,k =
∑
mka

∑
mkb

{(
f (mka ⊙ X )− f (m

k
b ⊙ X )

)

×

P
[
M k
a = mka,M

k
b = mkb,M

k
a (i)−M

k
b (i) = 1

]
P
[
M k
a (i)−M

k
b (i) = 1

]
+

(
f (mkb ⊙ X )− f (m

k
a ⊙ X )

)
×

P
[
M k
a = mka,M

k
b = mkb,M

k
b (i)−M

k
a (i) = 1

]
P
[
M k
b (i)−M

k
a (i) = 1

] }
(14)

=

∑
mka

∑
mkb

{(
f (mka ⊙ X )− f (m

k
b ⊙ X )

)

×

P
[
M k
a = mka,M

k
b = mkb,M

k
a (i)−M

k
b (i) = 1

]
P[M k

a (i) = 1] · P[M k
b (i) = 0]

+

(
f (mkb ⊙ X )− f (m

k
a ⊙ X )

)
×

P
[
M k
a = mka,M

k
b = mkb,M

k
b (i)−M

k
a (i) = 1

]
P[M k

b (i) = 1] · P[M k
a (i) = 0]

}
(15)

=
1

P[M k (i) = 1] · P[M k (i) = 0]

×

∑
mka

∑
mkb

{(
f (mka ⊙ X )− f (m

k
b ⊙ X )

)
× P

[
M k
a = mka,M

k
b = mkb,M

k
a (i)−M

k
b (i) = 1

]
+

(
f (mkb ⊙ X )− f (m

k
a ⊙ X )

)
× P

[
M k
a = mka,M

k
b = mkb,M

k
b (i)−M

k
a (i) = 1

]}
.

(16)

We can divide the patterns by the combination of mka(i)
and mkb(i).

P
[
M k
a = mka,M

k
b = mkb,M

k
a (i)−M

k
b (i) = 1

]

=


P
[
M k
a = mka,M

k
b = mkb

]
if mka(i)− m

k
b(i) = 1,

0 if mka(i)− m
k
b(i) = 0,

0 if mka(i)− m
k
b(i) = −1.

(17)

P
[
M k
a = mka,M

k
b = mkb,M

k
b (i)−M

k
a (i) = 1

]

=


P
[
M k
a = mka,M

k
b = mkb

]
if mkb(i)− m

k
a(i) = 1,

0 if mkb(i)− m
k
a(i) = 0,

0 if mkb(i)− m
k
a(i) = −1.

(18)

Subsequently, we can reformulate Eq. 16 as follows:

F̃i,k =
Gi,k

P[M k (i) = 1] · P[M k (i) = 0]
, (19)
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Gi,k =
∑
mka

∑
mkb

{(
f (mka ⊙ X )− f (m

k
b ⊙ X )

)
×

(
mka(i)− m

k
b(i)

)
P
[
M k
a = mka,M

k
b = mkb

]}
. (20)

We now seek to reformulate the summation of mkb into its
expected value.

Gi,k ≈
∑
mka

{
f (mka ⊙ X ) · m

k
a(i)− f (m

k
a ⊙ X ) · E

[
M k
b (i)

]
− E

[
f (M k

b ⊙ X )
]
· mka(i)

+ E
[
f (M k

b ⊙ X ) ·M
k
b (i)

]}
P
[
M k
a = mka

]
(21)

=

∑
mka

{(
f (mka ⊙ X )− E

[
f (M k

b ⊙ X )
])

×

(
mka(i)− E

[
M k
b (i)

])}
P
[
M k
a = mka

]
. (22)

In the transformation, we assumed the independence between
f (M k

b ⊙X ) andM
k
b (i). Given that m

k
a and m

k
b follow the same

distribution ofM k , we can rewrite Eq. 22 as follows.

Gi,k ≈
∑
mk

{(
f (mk ⊙ X )− E

[
f (M k

⊙ X )
])

×

(
mk (i)− E

[
M k (i)

])
P
[
M k
= mk

]}
(23)

= E
[
f
(
M k
⊙ X

)
M k (i)

]
− E

[
f
(
M k
⊙ X

)]
· E

[
M k (i)

]
.

(24)

By the definition of covariance, we can rewrite the summation
as the expected values over M k . Finally, Eq. 19 is approxi-
mated as follows.

F̃i,k ≈
E

[
f
(
M k
⊙ X

)
M k (i)

]
− E

[
f
(
M k
⊙ X

)]
· E

[
M k (i)

]
E

[
M k (i)

](
1− E

[
M k (i)

]) .

(25)

Because the calculation of exact expected values is difficult,
we instead apply a Monte-Carlo approximation.

E
[
M k (i)

]
≈

1
N

N∑
j=1

M k
j (i),

= M k (i). (26)

Similar approximations are introduced for other expected
values. In the approximation, we randomly sample N
binary masks. Thus, the final approximated Shapley value
is

ai ≈
1
K

K∑
k=1

f
(
M k ⊙ X

)
M k (i)− f

(
M k ⊙ X

)
·M k (i)

Z ·M k (i) ·
(
1−M k (i)

) . (27)

Because the changes of a single pixel would have little effect
on the output scores, we change pixels per patch in the
mask generation. Therefore, the binary masks are initially
generated in small grid size, and subsequently expand to the
input image size. Thus, the contribution of the score changes

should be equally distributed to all the pixels in the patch.
Z refers to the number of pixels in the patch and plays the
role of normalization factor. The calculation of Eq. 27 can
be performed in parallel for all pixels. Consequently, the
attribution map A comprising all ai is expressed as follows:

A =
1
K

K∑
k=1

{
f
(
M k ⊙ X

)
M k − f

(
M k ⊙ X

)
·M k

}
⊘

{
Z ·M k ⊙

(
J −M k

)}
. (28)

Here, J is an all-ones matrix and ⊘ is an element-
wise division. The number of inferences is reduced from
O(2|Nf |) in Eq. 8 to O(N ) in Eq. 28. The overview of the
process and the pseudocode of the algorithm are shown in
Fig. 3 and Algorithm 1. Because the Shapley value can
represent positive and negative attributions, we can achieve
the attribution map illustrating positive areas in red and
negative areas in blue. Although the definition of the term
has not been clearly established, this paper refers to the
saliencymap as themap representing all values of attributions
in the form of a heat map. In general, the introduction of
approximations may degrade the accuracy of the Shapley
value. We therefore conducted experiments to determine
whether the attribution maps maintain high accuracy while
still satisfying the axioms.

E. SCORE FUNCTION
The score function f is inspired by the detection similarity
of D-RISE [4]. We define the score obtained from a masked
imageM k

⊙ X as follows:

f
(
M k
⊙ X

)
= max

d j∈φ(Mk⊙X )
Sim(d t , d j), (29)

Sim(d t , d j) = sloc(d t , d j) · scls(d t , d j). (30)

Here, φ denotes the function of the object detector, d j
indicates the vector representation of a detection result,
and d t is the vector representation of the target detection.
The similarity between d t and d j is denoted as Sim(d t , d j).
sloc(d t , d j) is the Intersection over Union (IoU), which
measures the degree of overlap between the areas of d t and d j.
scls(d t , d j) is the classification score of d j corresponding to
the class label of d t . D-RISE [4] employs the cosine similarity
of the class probability vectors between d t and d j to calculate
the similarity of classification, including the probabilities
for all classes. However, our method aims to calculate the
attribution of the classification score pertaining to the target
class. In addition, there are concerns about susceptibility to
classes that are unrelated to the target. Therefore, we handle
the similarity to the output class itself, rather than that of the
probability vectors for all classes.

IV. EVALUATION AND RESULTS
In this section, qualitative and quantitative evaluations are
conducted to demonstrate the performance of our method.
Before presenting the results, detailed descriptions of the
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Algorithm 1 Computing Attribution Map A
Require: The number of masks N , number of layers K , detector function φ, patch size Z (= c × c), image X with a size of

H ×W , explanation target detection d t , similarity calculation function Sim(·), and all-ones matrix J .
Ensure: Attribution map A
1: h← ⌈Hc ⌉,w← ⌈

W
c ⌉,A← O

2: for k = 1, . . . ,K do
3: p← k

K+1 ,A
k
← O

4: sum_score← 0, sum_mask← O, sum_score_mask← O
5: for j = 1, . . . ,N do
6: M k

j ←Generate a binary mask with a size of h× w, where the elements are selected as 1 with probability p.
Subsequently, expand it to the size of H ×W by the bilinear interpolation.

7: f
(
M k
j ⊙ X

)
← maxd j∈φ(Mk

j ⊙X )
Sim(d t , d j)

8: sum_score← sum_score+ f
(
M k
j ⊙ X

)
9: sum_mask← sum_mask+M k

j
10: sum_score_mask← sum_score_mask+ f

(
M k
j ⊙ X

)
M k
j

11: end for
12: f

(
M k ⊙ X

)
← sum_score/N

13: M k ← sum_mask/N
14: f

(
M k ⊙ X

)
M k ← sum_score_mask/N

15: Ak ←
{
f
(
M k ⊙ X

)
M k − f

(
M k ⊙ X

)
·M k

}
⊘

{
K · Z ·M k ⊙

(
J −M k

)}
16: A← A+ Ak

17: end for
18: return A

FIGURE 4. Saliency maps targeting the same detection result as shown in
Fig. 2, produced by varying the number of layers K . The saliency maps are
fairly consistent and appear independent of K to human eyes.

experimental conditions and evaluation metrics related to
these evaluations are provided.

A. PARAMETER CONFIGURATION
In the evaluation of our method, we set the following
parameters: patch size Z = 32 × 32, number of masks
N = 6, 000, and number of layers K = 4. Unless otherwise
noted, all experiments for BSED throughout this study used
these parameters. The size of all input images employed
in this study were resized to approximately 600 pixels to
fully leverage the performance of the object detectors. The
patch size Z , which affects the resolution of the attribution
maps, depends upon the size of the input image. The values
of N and K affect the approximation accuracy of Eq. 28.
We consider N = 6, 000 reasonable, as other explainable
methods [4], [5], [33] using Monte Carlo sampling tend to
employ parameters of approximately the same magnitude.
Note that, the computational cost of BSED increases in
proportion to K . The result of Fig. 4 shows that K = 4 is

FIGURE 5. Attribution maps on the explanation for obtaining the target
detection of a cat. The explanation results from different object detectors
are compared.

sufficiently accurate for human eyes while refraining from
the increase in calculation costs.

B. FUNDAMENTAL EVALUATION
1) EVALUATION RESULTS
Fig. 1 shows that BSED effectively captures the car’s
characteristics, producing less noise compared to other
methods. Additionally, BSED is versatile and can be applied
to a range of detectors. This includes two-stage detectors,
which produce region proposals before classification, and
one-stage detectors that manage classification and local-
ization simultaneously. Fig. 5 presents a comparison with
the target detection being the ground truth for a cat. The
attribution map serves to reflect the detector’s performance.
Faster-RCNN [34], a representative two-stage detector, can
accurately detect the cat, yielding a distinct attribution map.
YOLOv5s [26], one of the lightweight one-stage detectors,
misclassified the object as a bear, failing to capture the cat’s
characteristics.
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2) COMPUTATIONAL TIME
Our BSED took 174 seconds on a single Nvidia Tesla V100
to generate the saliency map of Fig. 1. In contrast, D-RISE
required 47 seconds for the calculation, as it does not employ
a multilayer approximation. However, this approximation
significantly enhances the accuracy of saliency maps. Users,
especially in safety-critical fields, who seek accurate expla-
nations might be willing to allocate more computation time
and prioritize reliability over speed. Furthermore, embracing
parallel computing and advancements in GPU technology
can significantly reduce the computational time. As such,
we don’t see the processing time of BSED as a major
drawback.

3) DEPLOYMENT
Our method is hardware-agnostic, allowing it to be utilized
even on an edge device equipped onlywith a CPU. Regardless
of the deployment environment, the computational time is
proportional to the inference time of the object detector.
Although our method can operate independently on an edge
device, it is not intended for real-time use at this stage, and
performance analysis offline is themain focus. In cases where
high-spec machines with multi-core processors for parallel
computation are available, our method can run on them faster
by transferring the object detector and image data from the
device.

C. EXPERIMENT AND EVALUATION SETTINGS
To quantitatively compare our method with the existing
methods, we have to select appropriate evaluation metrics.
While various evaluation metrics have been proposed,
it remains unsettled as to which ones should be consistently
employed. Therefore, we selected widely employed metrics
in the benchmark evaluation for a fair comparison.

1) ENERGY-BASED POINTING GAME
Pointing Game [35] has been a widely-used evaluation metric
in various research, which measures whether the pixel with
the highest attribution is within the target bounding box.
However, this method does not consider the attribution of
other pixels. Therefore, we adopted Energy-based Pointing
Game (EPG) [17] to consider the states of other attributions.
In this metric, the number of feature attributions gathered in
the target bounding box is evaluated using LEPG defined as
follows:

LEPG =

∑
L(i,j)∈bbox∑

L(i,j)∈bbox +
∑
L(i,j)/∈bbox

. (31)

Here, L(i,j)∈bbox denotes the attribution value of any pixel
(i, j) which is located inside the target bounding box. Because
some methods compared in the benchmark evaluation
calculated negative feature attributions, we normalized the
attributions by the min-max normalization for the calculation
of Eq. 31.

FIGURE 6. (a) Curve plot for the Deletion and Insertion evaluation
derived from the saliency map in Fig. 1. The horizontal axis represents the
percentage of the number of removed or added pixels. The AUC of these
plots is also shown. (b) Example of a mask applied to the input image in
the Dummy evaluation. The red rectangle highlights the location where
the mask was applied.

2) DELETION AND INSERTION
We adopted deletion and insertion [38] metrics for the
benchmark evaluation because these are also widely adopted
by various research. In the deletion metric, pixels with higher
attributions are sequentially removed from the input image,
and the corresponding decrease in the output score of the
model is evaluated. In the insertion metric, pixels are added
to the black image in the same order, and the corresponding
increase in the output score of the model is evaluated.
Fig. 6(a) shows the curve plots of these metrics calculated
from the saliency map shown in Fig. 1. The area under the
curve (AUC) is an indicator of this quantitative evaluation.

As an evaluation for axioms in XAI for object detection
has not been established, we conducted new evaluations to
confirm whether the method satisfies the axioms.

3) DUMMY
We assessed the assignment of zero attributions for dummy
features. When masking a pixel has no impact on the output
score, we can interpret that pixel as a dummy feature. Tomake
the score changes observable, we masked pixels in distinct
patch regions as shown in Fig. 6(b), evaluated the change in
score denoted as 1f , and determined the mean attribution
values across the patch, denoted as ap. The size of the patch
is equivalent to the aforementioned Z . Fig. 7 shows the
relationship between these values, targeting the saliency map
of Fig. 1. The patch regions were randomly created over the
entire image. The plots of BSED and E2X are concentrated
at the zero value, indicating that most of the dummy pixels
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TABLE 1. Results of quantitative evaluation comparison with existing methods. Energy-based Pointing Game, Deletion, and Insertion are denoted as EPG,
Del., and Ins. respectively. D(A) and E(A) denote the metrics of Dummy and Efficiency.

FIGURE 7. Scatter plot showing the relationship between 1f and ap. The
kernel density function was used to indicate high densities in red and low
densities in blue.

have zero attributions. We define the criteria as follows:

D(A) = |ad |, ad ∈
{
ap

∣∣∣ |1f | < σ
}
. (32)

TABLE 2. Results of quantitative evaluation using the same metrics as in
the benchmark evaluation. The explanations of detection results derived
from the COCO [27] dataset were evaluated.

Here, A denotes the attribution map, and σ represents a
threshold for distinguishing the dummy features. The lower
value indicates the method satisfies the dummy property.
We calculated the mean D(A) across all the attribution maps
obtained in the benchmark evaluation. We set σ = 0.005 and
denoted the result as D(A) in Table 1, showing that BSED
satisfies the dummy property better than other methods.

4) EFFICIENCY
We evaluated whether the sum of the attributions is equivalent
to that of the output scores of the input image. We define the
efficiency metrics as follows:

E(A) =
∣∣∣∑
a∈A

a− f (X )
∣∣∣. (33)

We evaluated the average of E(A) over all attribution maps
obtained in the benchmark evaluation. The result, as E(A) in
Table 1, indicates that ourmethodmost satisfies the efficiency
property among the tested methods. Values for other methods
are omitted since they do not meet the efficiency property,
resulting in excessive values.

5) LINEARITY
We assessed if the BSED framework satisfies linearity. If we
define the similarity as Sim(d t , d j) = sloc(d t , d j)+scls(d t , d j)
in Eq. 30, and denote the most similar detection as dmax,
the output score Sim(d t , dmax) can be defined as a linear
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TABLE 3. One-sided test for evaluation results conducted in our study.

TABLE 4. Survey results showing the percentage of each response for all
the task images. 54.8% of the total responses indicated our method is
much or slightly better than another.

combination of sloc(d t , dmax) and scls(d t , dmax). Because
the calculation of Eq. 28 includes the linear calculation,
the attributions must be linear combinations of those from
sloc(d t , dmax) and scls(d t , dmax).

D. BENCHMARK EVALUATION RESULTS
Quantitative evaluations were conducted using a subset of
10% of images randomly selected from the widely used
COCO [27] and PASCAL Visual Object Classes (VOC) [36]
datasets of validation splits. The detections from YOLOv5s
were set as explanation targets. For a fair comparison,
the score functions required for the evaluation metrics and
the calculation in D-RISE are identical to that described
in Eq. 29. Table 1 indicates BSED exhibited the best
performance across all indicators. Additionally, we evaluated
BSED using different numbers of layers. As the number of
layers increases, the accuracy of the saliency maps likewise
increases, demonstrating the efficacy of the multilayer
calculation.

1) ADVANTAGE OVER THE EXISTING METHOD
Let us clarify the advantages of our method in comparison
to the existing method of D-RISE [4]. It calculates weighted
sums of input masks M using their corresponding output
scores as weights. D-RISE calculates a saliencymapAD using
Monte-Carlo sampling, as follows:

AD =
N∑
j=1

f
(
Mj ⊙ X

)
Mj. (34)

Here, f , X , and N denote the score function, an input image,
and the number of masks in the sampling, respectively. Mj
are binary masks generated randomly, with their elements
set to 1 with a probability of p. For a fair evaluation, our
study employed the same mask generation and score function
for D-RISE and BSED. In the official D-RISE study [4],
the value of p was set to 0.5, and we used the same value
for our evaluation of D-RISE. However, generating masks

using a single probability leads to inaccurate saliency maps.
Fig. 8 shows examples of the saliency maps generated
in the benchmark evaluation. BSED yields interpretable
saliency maps, whereas D-RISE fails to generate clear ones.
We attribute this difference to the multi-layer approximation
of our method. The parameter p determines the proportion
of masked regions in the input image in the sampling.
Moreover, it significantly affects the distribution of output
scores, thereby influencing the appearance of the saliency
map. For instance, when the masked regions are exceedingly
difficult for the target object, output scores tend to be biased
toward lower values, rendering them less informative and
leading to generating inaccurate saliency maps. Our method
circumvents this error through multiple-layer calculations
involving various ratios of masked regions. Fig. 8 shows
the box plots of feature attributions calculated in each layer
where the masked ratios are different. The layers which
significantly affect feature attributions differ per target object,
indicating that p = 0.5 is unsuitable for certain target objects.
These findings clearly show the efficacy of our multilayer
calculation.

2) EVALUATION WITH OTHER OBJECT DETECTORS
We conducted a benchmark evaluation using target detections
from other object detectors, YOLOv3 [37] and Faster-
RCNN [34]. Table 2 indicates that our method maintains the
excellent results, as observed in the benchmark evaluation
shown in Table 1. We can also confirm the efficacy of
the multilayer approximation. These results quantitatively
indicate the proposed method can be applied to various
detectors in a model-agnostic manner.

3) SIGNIFICANT DIFFERENCE
To confirm significant differences, we conducted a one-sided
test between D-RISE and BSED (K = 4) for evaluation
results in our study. P-values are shown in Table 3. Our
BSED is statistically significant (p < 0.001) in most cases.
For the deletion metrics, removing only a few critical pixels
significantly drops the scores and makes the evaluation value,
which is the area under the curve shown in Fig. 6(a), close to
zero. This makes the differences between the results of the
two methods less noticeable.

E. HUMAN-CENTRIC EVALUATION
To clarify the difference between the two methods, we con-
ducted a survey regarding which one is more understandable
for humans. Using Amazon Mechanical Turk1, online users
were asked to provide responses regarding the explanation
results, which were obtained from D-RISE and BSED in the
quantitative evaluation of Table 1. An example of the task
images presented to the users is shown in Fig. 9, and the
response results are presented in Table 4. For each task image,
responses were obtained from 20 users. Among all responses
to all the task images, 54.8% indicated that our method

1https://www.mturk.com/
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FIGURE 8. Examples of saliency maps obtained in the benchmark evaluation. The rightmost column shows the box plot
of feature attributions calculated in each layer by BSED. In the box plot, the orange lines indicate the second
interquartile, and the boxes extend from the first to the third interquartile. The topmost and bottommost points indicate
the maximum and minimum attribution values, respectively.

was more understandable, whereas 25.4% favored D-RISE.
Additionally, the task images, where responses indicating

our method is more understandable outnumbered responses
indicating another method is more understandable, accounted
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FIGURE 9. Sample of the task images presented to the users during the survey on explanation results. (a) and (b) present
explanation results of BSED and D-RISE in random order. The options for response are ‘‘(a) is much better’’, ‘‘(a) is slightly better’’,
‘‘About the same’’, ‘‘(b) is slightly better’’, and ‘‘(b) is much better.’’.

FIGURE 10. (a) is a misclassified detection. (b) is the corresponding attribution map, and (c) is its
histogram. (e) is the attribution map corresponding to a correctly classified detection, and (f) is its
histogram. By masking some of the pixels of (e), a corrected detection can be obtained as shown in (d).

for 74% of the total images. In contrast, the images indicating
the opposite trend accounted for 18% of the total.

F. THREAT TO VALIDATION
In the quantitative evaluation, we utilized established
evaluation metrics widely used in existing research and
newly proposed ones based on the axioms. We consider
them appropriate for evaluating the explanatory accuracy.
Although our method and D-RISE involve random sampling,
they employed a sufficiently large number of samples to
ensure convergence of the explanation results. Additionally,
combining multiple datasets and object detectors in the
evaluation provides multiple perspectives. Our method is
model-agnostic, thus applicable to any object detector.

We selected representative object detectors from various
categories and utilized publicly available implementations.
The chosen datasets are widely used for object detection
evaluation, containing numerous images depicting vari-
ous types of objects. Therefore, the quantitative evalua-
tion is both generalizable and reproducible. Given that
statistical significance is confirmed in most evaluation
results, we consider it valid to conclude that our method
outperforms existing methods in terms of explanatory
validity.

V. DISCUSSION
In this section, we present detailed analyses of false and true
detections as an application of our proposed method.
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FIGURE 11. (a) is a correct detection, and (b) is the corresponding attribution map. and (e) is
the attribution map corresponding to a misclassified detection. (c) depicts the different
features between truck and car, whereas (f) shows the common features between the two.

A. ANALYSIS OF FALSE DETECTION
YOLOv5s mistakenly identified a horse in an image of a
dog, as shown in Fig. 10(a). To analyze this misclassification
in depth, we generated attribution maps. By assigning the
target class labels as dog and horse in Eq. 30, we derived the
corresponding similarity scores. Using these scores, BSED
provides explanations for the two corresponding detections,
as depicted in Figs. 10(b) and 10(e). The histograms
and the sums of the positive and negative attribution
values, respectively, are displayed in Figs. 10(c) and 10(f).
We identified regions where the detector recognizes features
characteristic of dogs and horses. In addition, the histogram
of dog shows more negative attributions than that of horse,
implying that the output score of the latter outperforms
that of the former. From these results, we infer that the
detector does not adequately recognize the features of a
dog. The background and lower half of the body appear to
contribute to misclassification. By masking pixels exhibiting
negative attributions in ascending order, we can increase the
classification score of dog. Fig. 12(a) shows a plot indicating
the increase in the score as pixels with negative values
are masked. Only a few pixels must be masked to reverse
the score, thereby yielding an accurate detection shown in
Fig. 10(d).

B. ANALYSIS OF TRUE DETECTION
YOLOv3 [37] accurately detected a truck, as shown in
Fig. 11(a). Given the frequent confusion between trucks
and cars, we examine the common features between them.
Figs. 11(b) and 11(e) show the reasoning behind the accurate
and misclassified detections, respectively. Here, we regard
the regions where both attributions for truck and car are
positive as common features. Fig. 11(f) depicts the common
features with irrelevant regions masked. These findings,
suggesting that the tires and front parts of both truck and
car are similar, are intuitive for human observers. Similarly,

FIGURE 12. (a) Changes in classification score of the false detection and
(b) true detection.

regions where only the attribution for truck is positive
correspond to features exclusive to trucks. This is shown in
Fig. 11(c), indicating that the window near the truck’s bed
is a specific feature for truck, which is also interpretable.
Finally, an attempt is made to manipulate the true detection
and achieve inaccurate classification.Masking the pixels with
negative attributions for car can increase the score of car.
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Considering that the different features contribute only to
truck, masking these features enables the detector to reduce
the score of truck. Accordingly, masking both feature groups
sequentially can effectively increase the score of car with
a decrease in the score of truck. Fig. 12(b) shows a score
inversion, resulting in a misclassification with the label car,
as shown in Fig. 11(d).

VI. CONCLUSION AND FUTURE WORK
Because research on the validity of XAI for object detection
is scarce, we proposed BSED, a promising XAI method for
object detection that meets the necessary criteria for explain-
ability by incorporating the Shapley value. BSED is not
only model-agnostic but also requires no intricate parameter
tuning. Through the quantitative evaluation, we demonstrated
that our method outperforms the other existing methods
in terms of explanatory accuracy across various evaluation
metrics. We also showed that by leveraging the attribution
maps from our method, detection results can be refined,
revealing its potential for real-world applications.

For future work, we aim to continue reducing the com-
putational cost of our method, as it remains high compared
to other methods despite its efficient integration of the
Shapley value. Balancing both efficiency and explanatory
accuracy is crucial for real-world applications. Additionally,
we will work on establishing a development process for
object detectors using XAI, such as knowledge distillation
based on explanation results and retraining focused on
challenging scenes. To our best knowledge, BSED is the
first XAI for object detection that can be generalizable
and precisely quantify both positive and negative prediction
contributions. We believe this unique feature will pave the
way for innovative advancements in future XAI applications.
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